1,465
Views
30
CrossRef citations to date
0
Altmetric
Articles

Middle school students’ learning of mechanics concepts through engagement in different sequences of physical and virtual experiments

, , &
Pages 1573-1600 | Received 01 May 2016, Accepted 08 Jun 2017, Published online: 30 Jun 2017

References

  • Ainsworth, S. (1999). The functions of multiple representations. Computers and Education, 33(2–3), 131–152. doi: 10.1016/S0360-1315(99)00029-9
  • Ainsworth, S. (2006). Deft: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. doi: 10.1016/j.learninstruc.2006.03.001
  • Barsalou, L. (2009). Situating concepts. In M. Aydede & P. Robbins (Eds.), The Cambridge handbook of situated cognition (pp. 236–263). Cambridge: Cambridge University Press.
  • Bell, P. (2004, July). The school science laboratory: Considerations of learning, technology, and scientific practice. Paper presented at the meeting of High School Science Laboratories: Role and Vision, National Academy of Sciences, Washington, DC.
  • Chini, J. J., Madsen, A., Gire, E, Rebello, N. S., & Puntambekar, S. (2012). Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory. Physical Review Special Topics-Physics Education Research, 8(1), 010–113. doi: 10.1103/PhysRevSTPER.8.010113
  • Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218. doi: 10.1002/sce.10001
  • de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305–308. doi:10.1126/science.1230579 doi: 10.1126/science.1230579
  • Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., … LeMaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review, Special Topics: Physics Education Research, 1(1), 010103, 1–8.
  • Gire, E., Carmichael, A., Chini, J. J, Rouinfar, A., Rebello, S., Smith, G., & Puntambekar, S. (2010). The effects of physical and virtual manipulatives on students’ conceptual learning about pulleys. In Proceedings of the 9th International Conference of the Learning Sciences-Volume 1 (pp. 937–943). Chicago, Illinois: International Society of the Learning Sciences.
  • Glenberg, A. M., Brown, M., & Levin, J. R. (2007). Enhancing comprehension in small reading groups using a manipulation strategy. Contemporary Educational Psychology, 32(3), 389–399. doi: 10.1016/j.cedpsych.2006.03.001
  • Glenberg, A., Havas, D., Becker, R., & Rinck, M. (2005). Grounding language in bodily states: The case for emotion. In D. Pecher & R. A. Zwaan (Eds.), The grounding of cognition: The role of perception and action in memory, language, and thinking (pp. 115–128). Cambridge: Cambridge University Press.
  • Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9(3), 558–565. doi: 10.3758/BF03196313
  • Goldstone, R., Landy, D., & Son, J. Y. (2008). A well-grounded education: The role of perception in science and mathematics. In M. DeVega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols, embodiment and meaning (pp. 327–355). Oxford: Oxford University Press.
  • Hofstein, A., & Lunetta, V. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54. doi: 10.1002/sce.10106
  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.
  • Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika, 75(2), 383–386. doi: 10.1093/biomet/75.2.383
  • Jaakkola, T., & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24(4), 271–283. doi: 10.1111/j.1365-2729.2007.00259.x
  • Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical experience enhances science learning. Psychological Science, 26(6), 737–749. doi: 10.1177/0956797615569355
  • Krajcik, J. S., Blumenfeld, P. C., Marx, R. W., & Soloway, E. (1994). A collaborative model for helping middle grade science teachers learn project-based instruction. The Elementary School Journal, 94(5), 483–497. doi: 10.1086/461779
  • Lakoff, G. J., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: University of Chicago Press.
  • Lehrer, R., & Romberg, T. (1996). Exploring children’s data modeling. Cognition and Instruction, 14(1), 69–108. doi: 10.1207/s1532690xci1401_3
  • Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys (CSUR), 38(3), 7–es. doi: 10.1145/1132960.1132961
  • Marshall, J. A., & Young, E. S. (2006). Preservice teachers’ theory development in physical and simulated environments. Journal of Research in Science Teaching, 43(9), 907–937. doi: 10.1002/tea.20124
  • McKinney, W. J. (1997). The educational use of computer based science simulations: Some lessons from the philosophy of science. Science & Education, 6(6), 591–603. doi: 10.1023/A:1008694507127
  • Myneni, L. S., Narayanan, N. H., Rebello, S., Rouinfar, A., & Pumtambekar, S. (2013). An interactive and intelligent learning system for physics education. IEEE Transactions on Learning Technologies, 6(3), 228–239. doi: 10.1109/TLT.2013.26
  • National Research Council. (2006). America’s lab report: Investigations in high school science. Committee on High School Science Laboratories: Role and Vision (S. R. Singer, M. L. Hilton, & H. A. Schweingruber, eds.). Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education (pp. 75–115). Washington, DC: The National Academy Press.
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.
  • Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students’ conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21–47. doi: 10.1002/sce.20463
  • Olympiou, G., & Zacharia, Z. C. (2014). Blending physical and virtual manipulatives in physics laboratory experimentation. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), Topics and trends in current science education (pp. 419–433). Dordrecht: Springer.
  • Pouw, W. T., van Gog, T., & Paas, F. (2014). An embedded and embodied cognition review of instructional manipulatives. Educational Psychology Review, 26(1), 51–72. doi: 10.1007/s10648-014-9255-5
  • Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science labs: Attitudes, performance and access. Journal of Science Education and Technology, 21(1), 133–147. doi: 10.1007/s10956-011-9291-6
  • Sadler, P. M., Whitney, C. A., Shore, L., & Deutsch, F. (1999). Visualization and representation of physical systems: Wavemaker as an aid to conceptualizing wave phenomena. Journal of Science Education and Technology, 8(3), 197–209. doi: 10.1023/A:1009456229491
  • Snir, J., Smith, C., & Grosslight, L. (1995). Understanding in the science classroom: Integrating laboratory experiments, students and computer models, and class discussion in learning scientific concepts. In D. N. Perkins, J. L. Schwartz, M. M. West, & M. S. Wiske (Eds.), Software goes to school: Teaching for understanding with new technologies (pp. 233–257). Oxford: Oxford University Press.
  • Tatli, Z., & Ayas, A. (2013). Effects of a virtual chemistry laboratory on students’ achievement. Educational Technology & Society, 16(1), 159–170.
  • Toth, E. E., Klahr, D., & Chen, Z. (2000). Bridging research and practice: A cognitively based classroom intervention for teaching experimentation skills to elementary school children. Cognition and Instruction, 18(4), 423–459. doi: 10.1207/S1532690XCI1804_1
  • Triona, L. M., & Klahr, D. (2003). Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary school students’ ability to design experiments. Cognition and Instruction, 21(2), 149–173. doi: 10.1207/S1532690XCI2102_02
  • White, B. Y. (1993). Thinkertools: Causal models, conceptual change, and science education. Cognition and Instruction, 10(1), 1–100. doi: 10.1207/s1532690xci1001_1
  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636. doi: 10.3758/BF03196322
  • Winn, W., Stahr, F., Sarason, C., Fruland, R., Oppenheimer, P., & Lee, Y.-L. (2006). Learning oceanography from a computer simulation compared with direct experience at sea. Journal of Research in Science Teaching, 43(1), 25–42. doi: 10.1002/tea.20097
  • Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: An effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23(2), 120–132. doi: 10.1111/j.1365-2729.2006.00215.x
  • Zacharia, Z. C., & Anderson, O. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of physics. American Journal of Physics, 71, 618–629. doi: 10.1119/1.1566427
  • Zacharia, Z. C., & Constantinou, C. P. (2008). Comparing the influence of physical and virtual manipulatives in the context of the physics by inquiry curriculum: The case of undergraduate students’ conceptual understanding of heat and temperature. American Journal of Physics, 76(4), 425–430. doi: 10.1119/1.2885059
  • Zacharia, Z. C., & de Jong, T. (2014). The effects on students’ conceptual understanding of electric circuits of introducing virtual manipulatives within a physical manipulatives-oriented curriculum. Cognition and Instruction, 32(2), 101–158. doi: 10.1080/07370008.2014.887083
  • Zacharia, Z. C., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21(3), 317–331. doi: 10.1016/j.learninstruc.2010.03.001
  • Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 1021–1035. doi: 10.1002/tea.20260

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.