13,290
Views
21
CrossRef citations to date
0
Altmetric
Articles

Designing context-based teaching materials by transforming authentic scientific modelling practices in chemistry

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1108-1135 | Received 18 Apr 2018, Accepted 24 Apr 2018, Published online: 15 May 2018

References

  • Abraham, M. R. (1998). The learning cycle approach as a strategy for instruction in science. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 513–524). Dordrecht: Kluwer.
  • Aikenhead, G. (1994). What is STS teaching? In J. Solomon & G. Aikenhead (Eds.), STS education: International perspectives on reform (pp. 47–59). New York, NY: Teachers College Press.
  • Arievitch, I. M., & Haenen, J. P. P. (2005). Connecting sociocultural theory and educational practice: Galperin’s approach. Educational Psychologist, 40, 155–165. doi: 10.1207/s15326985ep4003_2
  • Bennett, J., & Lubben, F. (2006). Context-based chemistry: The salters approach. International Journal of Science Education, 28(9), 999–1015. doi: 10.1080/09500690600702496
  • Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347–370. doi: 10.1002/sce.20186
  • Bulte, A. M. W., & Seller, F. (2011). Making an innovation grow. On shared learning within and between communities. In C. Linder, L. Ostman, D. A. Roberts, P. Wickmann, G. Ericksen, & A. KacKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 237–254). London: Routledge.
  • Bulte, A. M. W., Westbroek, H. B., De Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28(9), 1063–1086. doi: 10.1080/09500690600702520
  • Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, CO: Office of Science Education National Institutes of Health.
  • Edelson, D. C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355–385. doi: 10.1002/1098-2736(200103)38:3<355::AID-TEA1010>3.0.CO;2-M
  • Engestrom, Y. (1987). Learning by expanding: An activity -theoretical approach to developmental research. Helsinki, Finland: Orienta-Konsultit.
  • Foster, N. F., Dimmock, N., & Bersani, A. (2008). Participatory design of website with web design workshops. The Code4lib Journal, 2, 1–12.
  • George, J. M., & Lubben, F. (2002). Facilitating teachers’ professional growth through their involvement in creating context-based materials in science. International Journal of Educational Development, 22, 659–672. doi: 10.1016/S0738-0593(01)00033-5
  • Gilbert, J. K. (2006). On the nature of ‘context’ in chemical education. International Journal of Science Education, 28(9), 957–976. doi: 10.1080/09500690600702470
  • Gott, R., Duggan, S., & Johnson, P. (1999). What do practising applied scientists do and what are the implications for science education? Research in Science & Technological Education, 17(1), 97–107. doi: 10.1080/0263514990170108
  • Guskey, T. R. (2000). Evaluating professional development. Thousand Oaks: Corwin Press.
  • Hofstein, A., & Kesner, M. (2006). Industrial chemistry and school chemistry: Making chemistry studies more relevant. International Journal of Science Education, 28(9), 1017–1039. doi: 10.1080/09500690600702504
  • Kelly, G. J. (2008). Inquiry, activity, and epistemic practice. In R. Duschl & R. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 99-117–288-291). Rotterdam: Sense Publishers.
  • Kelly, G. J., Carlsen, W. S., & Cunningham, C. M. (1993). Science education in sociocultural context: Perspectives from the sociology of science. Science, 77, 207–220.
  • Klaassen, C. W. J. M. (1995). A problem-posing approach to teaching the topic of radioactivity. Utrecht: CDβ-press.
  • Könings, K. D., Brand-Gruwel, S., & Van Merriënboer, J. J. G. (2005). Towards more powerful learning environments through combining the perspectives of designers, teachers, and students. British Journal of Educational Psychology, 75, 645–660. doi: 10.1348/000709905X43616
  • Könings, K. D., Van Zundert, M. J., Brand-Gruwel, S., & Van Merriënboer, J. J. G. (2007). Participatory design in secondary education: Is it a good idea? Students’ and teachers’ opinions on its desirability and feasibility. Educational Studies, 33(4), 445–465. doi: 10.1080/03055690701423648
  • Lawson, A. E. (1995). Science teaching and the development of thinking. Belmont, CA: Wadsworth.
  • Leont'ev, A. (1972). The problem of activity in psychology. Voprosy filosofi, 9, 4–33.
  • Leont'ev, A. N. (1978). Activity. Consciousness and personality. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
  • Lijnse, P. L., & Klaassen, K. (2004). Didactical structures as an outcome of research on teaching-learning sequences? International Journal of Science Education, 26(5), 537–554. doi: 10.1080/09500690310001614753
  • Loucks-Horsley, S., Love, N., Hewson, P., Stiles, K., & Mundry, S. (2003). Designing professional development for teachers of science and mathematics. Thousand Oaks: Corwin Press.
  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The constructs and its implications for science education. (pp. 95–132). Boston, MA: Kluwer.
  • Mankin, D., Cohen, S. G., & Sikson, T. K. (1997). Teams and technology: Tensions in participatory design. Organizational Dynamics, 26, 63–76. doi: 10.1016/S0090-2616(97)90028-0
  • Mettes, C. T. C. W., & Pilot, A. (1980). Over het leren oplossen van natuurwetenschappelijke problemen, een methode voor ontwikkeling en evaluatie van onderwijs, toegepast op een kursus thermodynamika [On learning to solve science problems, a method for designing and evaluating, a case study in a thermodynamics course] (Unpublished Dissertation). Twente University, Enschede.
  • Mettes, C. T. C. W., Pilot, A., & Roossink, H. J. (1981). Linking factual and procedural knowledge in solving science problems: A case study in a thermodynamics course. Instructional Science, 10, 333–361. doi: 10.1007/BF00162732
  • National Academy of Sciences. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies.
  • Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., Ralle, B., & the Chik Project Group. (2006). ‘Chemie im kontext’: A symbiotic implementation of a context-based teaching and learning approach. International Journal of Science Education, 28(9), 1041–1062. doi: 10.1080/09500690600702512
  • Pilot, A., & Bulte, A. M. W. (2006). The use of ‘contexts’ as a challenge for the chemistry curriculum: Its successes and the need for further development and understanding. International Journal of Science Education, 28, 1087–1112. doi: 10.1080/09500690600730737
  • Prins, G. T., Bulte, A. M. W., & Pilot, A. (2011). Evaluation of a design principle for fostering students’ epistemological view on models and modelling using authentic practices as contexts for learning in chemistry education. International Journal of Science Education, 33(11), 1539–1569. doi: 10.1080/09500693.2010.519405
  • Prins, G. T., Bulte, A. M. W., & Pilot, A. (2016). An activity-based instructional framework for transforming authentic modeling practices into meaningful contexts for learning in science education. Science Education, 100(6), 1092–1123. doi: 10.1002/sce.21247
  • Prins, G. T., Bulte, A. M. W., Van Driel, J. H., & Pilot, A. (2008). Selection of authentic modelling practices as contexts for chemistry education. International Journal of Science Education, 30(14), 1867–1890. doi: 10.1080/09500690701581823
  • Prins, G. T., Bulte, A. M. W., Van Driel, J. H., & Pilot, A. (2009). Students’ involvement in authentic modelling practices as contexts in chemistry education. Research in Science Education, 39(5), 681–700. doi: 10.1007/s11165-008-9099-4
  • Reigeluth, C. M. (1999). Instructional-design theories and models: A new paradigm of instructional theory (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Schwartz, A. T. (2006). Contextualized chemistry education: The American experience. International Journal of Science Education, 28(9), 977–998. doi: 10.1080/09500690600702488
  • Schwartz, R. S., Lederman, N., & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science Education, 88(4), 610–645. doi: 10.1002/sce.10128
  • Schwarz, C. V., & Gwekwerere, Y. N. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K-8 science teaching. Science Education, 91(1), 158–186. doi: 10.1002/sce.20177
  • Sevian, H., & Bulte, A. M. W. (2015). Learning chemistry to enrich students’ views on the world they live In. In I. Eilks & A. Hofstein (Eds.), Relevant chemistry education (pp. 55–78). Rotterdam: Sense Publishers.
  • Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–23. doi: 10.17763/haer.57.1.j463w79r56455411
  • Smith, D. K. (2011). From crazy chemists to engaged learners through education. Nature Chemistry, 3, 681–684. doi: 10.1038/nchem.1091
  • Smith, J. A. (1995). Semi-structured interviewing and qualitative analysis. In J. A. Smith, R. Harre, & L. Van Langenhove (Eds.), Rethinking methods in psychology. (pp. 9–26). Thousand Oaks: Sage.
  • Stolk, M. J., Bulte, A. M. W., De Jong, O., & Pilot, A. (2009a). Strategies for a professional development programme: Empowering teachers for context-based chemistry education. Chemistry Education Research and Practice, 10, 154–163. doi: 10.1039/B908252M
  • Stolk, M. J., Bulte, A. M. W., De Jong, O., & Pilot, A. (2009b). Towards a framework for a professional development programme: Empowering teachers for context-based chemistry education. Chemistry Education Research and Practice, 10, 164–175. doi: 10.1039/B908255G
  • Stolk, M. J., Bulte, A. M. W., De Jong, O., & Pilot, A. (2012). Evaluating a professional development framework to empower chemistry teachers to design context-based education. International Journal of Science Education, 34(10), 1487–1508. doi: 10.1080/09500693.2012.667580
  • Stolk, M. J., Bulte, A. M. W., De Jong, O., & Pilot, A. (2016). A framework for empowering teachers for teaching and designing context-based chemistry education. In R. Taconis, P. Den Brok & A. Pilot (Eds.), Teachers creating context-based learning environments in science. (pp. 191–211). Rotterdam: Sense Publishers.
  • Talyzina, N. F. (1973). Psychological bases of programmed instruction. Instructional Science, 2, 243–280. doi: 10.1007/BF00119056
  • The design-based research collective. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13. doi: 10.3102/0013189X032001009
  • Van Aalsvoort, J. (2004). Activity theory as a tool to address the problem of chemistry’s lack of relevance in secondary school chemical education. International Journal of Science Education, 26(13), 1635–1651. doi: 10.1080/0950069042000205378
  • Van Oers, B. (1998). From context to contextualizing. Learning and Instruction, 8, 473–488. doi: 10.1016/S0959-4752(98)00031-0
  • Van Veen, M. P. (2001). CONSEXPO 3.0: Consumer exposure and uptake models. (No. 612810011). Bilthoven, the Netherlands: National Institute of Public Health and the Environment.
  • Vermunt, J. D., & Verloop, N. (1999). Congruence and friction between learning and teaching. Learning and Instruction, 9(257), 280.
  • Vos, M. A., Taconis, R., Jochems, W. M., & Pilot, A. (2010). Teachers implementing context-based teaching materials: A framework for case-analysis in chemistry. Chemistry Education Research and Practice, 11(3), 193–206. doi: 10.1039/C005468M
  • Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge: Harvard University press.