1,899
Views
39
CrossRef citations to date
0
Altmetric
Articles

Context characteristics and their effects on students’ situational interest in chemistry

ORCID Icon, , , , &
Pages 1154-1175 | Received 18 Apr 2018, Accepted 24 Apr 2018, Published online: 03 May 2018

References

  • Ainley, M., & Ainley, J. (2015). Early science learning experiences: Triggered and maintained interest. In K. A. Renninger, M. Nieswandt, & S. Hidi (Eds.), Interest in mathematics and science learning (pp. 17–32). Washington, DC: American Educational Research Association.
  • American Chemical Society. (1988). Chemcom: Chemistry in the community. New York: W. H. Freeman.
  • Bennett, J. (2003). Teaching and learning science. Continuum studies in research in education. London: Continuum.
  • Bennett, J. (2016). Bringing science to life. In R. Taconis, P. d. Brok, & A. Pilot (Eds.), Teachers creating context-based learning environments in science (pp. 21–39). Rotterdam: SensePublishers. doi: 10.1007/978-94-6300-684-2_2
  • Bennett, J., Holman, J., Lubben, F., Nicolson, P., & Otter, C. (2005). Science in context: The salters approach. In P. Nentwig & D. Waddington (Eds.), Making it relevant. Context based learning in science (pp. 121–153). Münster: Waxmann.
  • Blankenburg, J. S., Höffler, T. N., & Parchmann, I. (2016). Fostering today what is needed tomorrow: Investigating students’ interest in science. Science Education, 100(2), 364–391. doi: 10.1002/sce.21204
  • Broman, K., Bernholt, S., & Parchmann, I. (2015). Analysing task design and students’ responses to context-based problems through different analytical frameworks. Research in Science & Technological Education, 33(2), 143–161. doi: 10.1080/02635143.2014.989495
  • Broman, K., & Parchmann, I. (2014). Students’ application of chemical concepts when solving chemistry problems in different contexts. Chemistry Education Research and Practice, 15(4), 516–529. doi: 10.1039/C4RP00051J
  • Brunner, M., Nagy, G., & Wilhelm, O. (2012). A tutorial on hierarchically structured constructs. Journal of Personality, 80(4), 796–846. doi: 10.1111/j.1467-6494.2011.00749.x
  • Burton, W. G., Holman, J. S., Pilling, G. M., & Waddington, D. J. (1994). Advanced chemistry salters: Chemical storylines, chemical ideas, activities and assessment pack: Teacher’s guide. Oxford: Heinemann.
  • Campbell, B., & Lubben, F. (2000). Learning science through contexts: Helping pupils make sense of everyday situations. International Journal of Science Education, 22(3), 239–252. doi: 10.1080/095006900289859
  • Dawson, C. (2000). Upper primary boys’ and girls’ interests in science: Have they changed since 1980? International Journal of Science Education, 22(6), 557–570. doi: 10.1080/095006900289660
  • Dierks, P. O., Höffler, T. N., Blankenburg, J. S., Peters, H., & Parchmann, I. (2016). Interest in science: A RIASEC-based analysis of students’ interests. International Journal of Science Education, 38(2), 238–258. doi: 10.1080/09500693.2016.1138337
  • Durik, A. M., Hulleman, C. S., & Harackiewicz, J. M. (2015). One size fits some: Instructional enhancements to promote interest. In K. A. Renninger, M. Nieswandt, & S. Hidi (Eds.), Interest in mathematics and science learning (pp. 49–62). Washington, DC: American Educational Research Association.
  • Engeln, K. (2004). Schülerlabors: Authentische, aktivierende Lernumgebungen als Möglichkeit, Interesse an Naturwissenschaften und Technik zu wecken. Studien zum Physiklernen: Bd. 36. Berlin: Logos-Verl.
  • Fechner, S. (2009). Effects of context oriented learning on student interest and achievement in chemistry education. Studien zum Physik- und Chemielernen: Bd. 95. Berlin: Logos.
  • Fechner, S., van Vorst, H., Kölbach, E., & Sumfleth, E. (2015). It’s the situation that matters: Affective involvement in context-oriented learning tasks. In M. Kahveci & M. Orgill (Eds.), Affective dimensions in chemistry education (pp. 159–176). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-662-45085-7_8
  • Fensham, P. J. (2009). Real world contexts in PISA science: Implications for context-based science education. Journal of Research in Science Teaching, 46(8), 884–896. doi: 10.1002/tea.20334
  • Fine, G. A. (1987). With the boys: Little League baseball and preadolescent culture. A Chicago original paperback. Chicago: University of Chicago Press.
  • Finkelstein, N. (2005). Learning physics in context: A study of student learning about electricity and magnetism. International Journal of Science Education, 27(10), 1187–1209. doi: 10.1080/09500690500069491
  • Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957–976. doi: 10.1080/09500690600702470
  • Gräber, W. (2011). German high school students’ interest in chemistry: A comparison between 1990 and 2008. Educación química, 22(2), 134–140.
  • Habig, S. (2017). Systematisch variierte Kontextaufgaben und ihr Einfluss auf kognitive und affektive Schülerfaktoren (Vol. 223). Berlin: Logos.
  • Harms, U. (2002). Biotechnology education in schools. Electronic Journal of Biotechnology, 5(3), 5–6. doi: 10.2225/vol5-issue3-fulltext-i03
  • Häussler, P., & Hoffmann, L. (2000). A curricular frame for physics education: Development, comparison with students’ interests, and impact on students’ achievement and self-concept. Science Education, 84(6), 689–705. doi: 10.1002/1098-237X(200011)84:6<689::AID-SCE1>3.0.CO;2-L
  • Helms, J. V. (1998). Science and/in the community: Context and goals in practical work. International Journal of Science Education, 20(6), 643–653. doi: 10.1080/0950069980200603
  • Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127. doi: 10.1207/s15326985ep4102_4
  • Holland, J. L. (1997). Making vocational choices: A theory of vocational personalities and work environments (3rd ed.). Odessa, FL: Psychological Assessment Resources.
  • Hu, L.-t., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453. doi: 10.1037/1082-989X.3.4.424
  • Kölbach, E. (2011). Kontexteinflüsse beim Lernen mit Lösungsbeispielen. Studien zum Physik- und Chemielernen (Vol. 123). Berlin: Logos.
  • Kortland, K. (2005). Physics in personal, social and scientific contexts: A retrospective view on the Dutch physics curriculum development project PLON. In P. Nentwig & D. Waddington (Eds.), Making it relevant. Context based learning in science (pp. 67–90). Münster: Waxmann.
  • Krapp, A. (1999). Interest, motivation and learning: An educational-psychological perspective. European Journal of Psychology of Education, 14(1), 23–40. doi: 10.1007/BF03173109
  • Krapp, A., & Fink, B. (1992). The development and function of interests during the critical transition from home to preschool. In The role of interest in learning and development (pp. 397–429). Hillsdale, NJ: Erlbaum.
  • Krapp, A., Hidi, S., & Renninger, K. A. (1992). Interest, learning and development. In The role of interest in learning and development (pp. 3–25). Hillsdale, NJ: Erlbaum.
  • Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27–50. doi: 10.1080/09500693.2010.518645
  • Kuhn, J. (2010). Authentische Aufgaben im theoretischen Rahmen von Instruktions- und Lehr-Lern-Forschung: Optimierung von Ankermedien für eine neue Aufgabenkultur im Physikunterricht (1. Aufl.). Wissenschaft. Wiesbaden: Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden.
  • Lee, H.-S., & Butler, N. (2003). Making authentic science accessible to students. International Journal of Science Education, 25(8), 923–948. doi: 10.1080/09500690305023
  • Lubben, F., Campbell, B., & Dlamini, B. (1996). Contextualizing science teaching in Swaziland: Some student reactions. International Journal of Science Education, 18(3), 311–320. doi: 10.1080/0950069960180304
  • Marsh, H. W., Lüdtke, O., Muthén, B., Asparouhov, T., Morin, A. J. S., Trautwein, U., & Nagengast, B. (2010). A new look at the big five factor structure through exploratory structural equation modeling. Psychological Assessment, 22(3), 471–491. doi: 10.1037/a0019227
  • McIntosh, C. (Eds.) (2013). Cambridge advanced learner’s dictionary (4th ed.). Cambridge: Cambridge University Press.
  • Nentwig, P. M., Demuth, R., Parchmann, I., Ralle, B., & Gräsel, C. (2007). Chemie im Kontext: Situating learning in relevant contexts while systematically developing basic chemical concepts. Journal of Chemical Education, 84(9), 1439–1444. doi: 10.1021/ed084p1439
  • Nentwig, P., Parchmann, I., Demuth, R., Gräsel, C., & Ralle, B. (2005). Chemie im Kontext-from situated learning in relevant contexts to a systematic development of basic chemical concepts. In P. Nentwig & D. Waddington (Eds.), Making it relevant. Context-based learning of science (pp. 155–173). Münster: Waxmann.
  • Palmer, D. H. (2009). Student interest generated during an inquiry skills lesson. Journal of Research in Science Teaching, 46(2), 147–165. doi: 10.1002/tea.20263
  • Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., & Ralle, B. (2006). “Chemie im Kontext”: A symbiotic implementation of a context-based teaching and learning approach. International Journal of Science Education, 28(9), 1041–1062. doi: 10.1080/09500690600702512
  • Patrick, Löffler. (2016). Modellanwendung in Problemlöseaufgaben – Wie wirkt Kontext? (Vol. 205). Berlin: Logos.
  • Prins, G. T., Bulte, A., & Pilot, A. (2016). An activity-based instructional framework for transforming authentic modeling practices into meaningful contexts for learning in science education. Science Education, 100(6), 1092–1123. doi: 10.1002/sce.21247
  • Renninger, K. A. (2000). Individual interest and its implications for understanding intrinsic motivation. In C. Sansone & J. M. Harackiewicz (Eds.), Intrinsic and extrinsic motivation: The search for optimal motivation and performance (pp. 373–404). San Diego: Academic Press. doi: 10.1016/B978-012619070-0/50035-0
  • Renninger, K. A., & Hidi, S. (2011). Revisiting the conceptualization, measurement, and generation of interest. Educational Psychologist, 46(3), 168–184. doi: 10.1080/00461520.2011.587723
  • Renninger, K. A., & Leckrone, T. G. (1991). Continuity in young children’s actions: A consideration of interest and temperament. In L. Oppenheimer & J. Valsiner (Eds.), The origins of action: Interdisciplinary and international perspectives (pp. 205–238). New York, NY: Springer New York. doi: 10.1007/978-1-4612-3132-5_8
  • Rotgans, J. I., & Schmidt, H. G. (2011). Situational interest and academic achievement in the active-learning classroom. Learning and Instruction, 21(1), 58–67. doi: 10.1016/j.learninstruc.2009.11.001
  • Schiefele, U. (1991). Interest, learning, and motivation. Educational Psychologist, 26(3), 299–323. doi: 10.1207/s15326985ep2603&4_5
  • Sjøberg, S., & Schreiner, C. (2010). The ROSE project. An overview and key findings.
  • Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‘relevance’ in science education and its implications for the science curriculum. Studies in Science Education, 49(1), 1–34. doi: 10.1080/03057267.2013.802463
  • Swarat, S., Ortony, A., & Revelle, W. (2012). Activity matters: Understanding student interest in school science. Journal of Research in Science Teaching, 49(4), 515–537. doi: 10.1002/tea.21010
  • Taasoobshirazi, G., & Carr, M. (2008). A review and critique of context-based physics instruction and assessment. Educational Research Review, 3(2), 155–167. doi: 10.1016/j.edurev.2008.01.002
  • Ültay, N., & Çalık, M. (2012). A thematic review of studies into the effectiveness of context-based chemistry curricula. Journal of Science Education and Technology, 21(6), 686–701. doi: 10.1007/s10956-011-9357-5
  • van Vorst, H. (2013). Kontextmerkmale und ihr Einfluss auf das Schülerinteresse im Fach Chemie. Studien zum Physik- und Chemielernen (Vol. 145). Berlin: Logos.
  • van Vorst, H., Dorschu, A., Fechner, S., Kauertz, A., Krabbe, H., & Sumfleth, E. (2014). Charakterisierung und Strukturierung von Kontexten im naturwissenschaftlichen Unterricht – Vorschlag einer theoretischen Modellierung. Zeitschrift für Didaktik der Naturwissenschaften. Advance online publication. doi: 10.1007/s40573-014-0021-5
  • Waddington, D. J. (2005). Context-based learning in science education: A review. In P. Nentwig & D. Waddington (Eds.), Making it relevant. Context based learning in science (pp. 305–321). Münster: Waxmann.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.