11,767
Views
44
CrossRef citations to date
0
Altmetric
Articles

Context-based learning and metacognitive prompts for enhancing scientific text comprehension

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1198-1220 | Received 18 Apr 2018, Accepted 24 Apr 2018, Published online: 05 Jun 2018

References

  • Avargil, S., Lavi, R., & Dori, Y. J. (2018). Students’ metacognition and metacognitive strategies in science education. In Y. J. Dori, Z. Mevareach, & D. Baker (Eds.), Cognition, metacognition and culture in STEM education (pp. 33–64). Cham: Springer.
  • Beatty, A., & Schweingruber, H. (2017). Seeing students learn science: Integrating assessment and instruction in the classroom. Washington, DC: National Academies Press.
  • Bennett, J., Gräsel, C., Parchmann, I., & Waddington, D. (2005). Context-based and conventional approaches to teaching chemistry: Comparing teachers’ views. International Journal of Science Education, 27, 1521–1547. doi: 10.1080/09500690500153808
  • Bennett, J., & Holman, J. (2002). Context-based approaches to the teaching of chemistry: What are they and what are their effects? In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & J. H. Van Driel (Eds.), Chemical education: Towards research-based practice (pp. 165–184). Dordrecht: Kluwer Academic Press.
  • Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91, 347–370. doi: 10.1002/sce.20186
  • Bulte, A. M., Westbroek, H. B., de Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28(9), 1063–1086. doi: 10.1080/09500690600702520
  • Bybee, R. (2015). Scientific literacy. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 944–947). Dordrecht: Springer.
  • Carnine, L., & Carnine, D. (2004). The interaction of reading skills and science content knowledge when teaching struggling secondary students. Reading & Writing Quarterly, 20, 203–218. doi: 10.1080/10573560490264134
  • Chittleborough, G., & Treagust, D. F. (2007). The modelling ability of non-major chemistry students and their understanding of the sub-microscopic level. Chemistry Education Research and Practice, 8, 274–292. doi: 10.1039/B6RP90035F
  • Chiu, J. L., & Linn, M. C. (2012). The role of self-monitoring in learning chemistry with dynamic visualizations. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education: Trends in current research (pp. 133–163). Dordrecht: Springer.
  • Choi, K., Lee, H., Shin, N., Kim, S. W., & Krajcik, J. (2011). Re-conceptualization of scientific literacy in South Korea for the 21st century. Journal of Research in Science Teaching, 48, 670–697. doi: 10.1002/tea.20424
  • DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37, 582–601. doi: 10.1002/1098-2736(200008)37:6<582::AID-TEA5>3.0.CO;2-L
  • Dori, Y. J., Dangur, V., Avargil, S., & Peskin, U. (2014). Assessing advanced high school and undergraduate students’ thinking skills: The chemistry—from the nanoscale to microelectronics module. Journal of Chemical Education, 91(9), 1306–1317. doi: 10.1021/ed500007s
  • Dori, Y. J., & Hameiri, M. (2003). Multidimensional analysis system for quantitative chemistry problems: Symbol, macro, micro, and process aspects. Journal of Research in Science Teaching, 40(3), 278–302. doi: 10.1002/tea.10077
  • Dori, Y. J., & Herscovitz, O. (1999). Question-posing capability as an alternative evaluation method: Analysis of an environmental case study. Journal of Research in Science Teaching, 36(4), 411–430. doi: 10.1002/(SICI)1098-2736(199904)36:4<411::AID-TEA2>3.0.CO;2-E
  • Dori, Y. J., & Herscovitz, O. (2005). Case-based long-term professional development of science teachers. International Journal of Science Education, 27(12), 1413–1446. doi: 10.1080/09500690500102946
  • Dori, Y. J., & Sasson, I. (2008). Chemical understanding and graphing skills in an honors case-based computerized chemistry laboratory environment: The value of bidirectional visual and textual representations. Journal of Research in Science Teaching, 45(2), 219–250. doi: 10.1002/tea.20197
  • Dori, Y. J., Tal, R. T., & Tsaushu, M. (2003). Teaching biotechnology through case studies—can we improve higher order thinking skills of nonscience majors? Science Education, 87(6), 767–793. doi: 10.1002/sce.10081
  • Fang, Z. (2005). Scientific literacy: A systemic functional linguistics perspective. Science Education, 89(2), 335–347. doi: 10.1002/sce.20050
  • Fang, Z., & Wei, Y. (2010). Improving middle school students’ science literacy through reading infusion. The Journal of Educational Research, 103, 262–273. doi: 10.1080/00220670903383051
  • Ferguson-Hessler, M. G., & de Jong, T. (1990). Studying physics texts: Differences in study processes between good and poor performers. Cognition and Instruction, 7, 41–54. doi: 10.1207/s1532690xci0701_2
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906–911. doi: 10.1037/0003-066X.34.10.906
  • Georghiades, P. (2004). From the general to the situated: Three decades of metacognition. International Journal of Science Education, 26, 365–383. doi: 10.1080/0950069032000119401
  • Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28, 957–976. doi: 10.1080/09500690600702470
  • Gilbert, J. K., & Treagust, D. F. (2009). Introduction: Macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 1–8). Dordrecht: Springer.
  • Gillespie, C., & Rasinski, T. (1989). Content area teachers’ attitudes and practices toward reading in the content areas: A review. Literacy Research and Instruction, 28, 45–67.
  • Hand, B. M., Alvermann, D. E., Gee, J., Guzzetti, B. J., Norris, S. P., Phillips, L. M., … Yore, L. D. (2003). Message from the “island group”: What is literacy in science literacy? Journal of Research in Science Teaching, 40, 607–615. doi: 10.1002/tea.10101
  • Herscovitz, O., Kaberman, Z., Saar, L., & Dori, Y. J. (2012). The relationship between metacognition and the ability to pose questions in chemical education. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education: Trends in current research (pp. 165–195). Dordrecht: Springer.
  • Holbrook, J., & Rannikmae, M. (2007). The nature of science education for enhancing scientific literacy. International Journal of Science Education, 29, 1347–1362. doi: 10.1080/09500690601007549
  • Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70, 701–705. doi: 10.1021/ed070p701
  • Kaberman, Z., & Dori, Y. J. (2009). Metacognition in chemical education: Question posing in the case-based computerized learning environment. Instructional Science, 37(5), 403–436. doi: 10.1007/s11251-008-9054-9
  • Koch, A. (2001). Training in metacognition and comprehension of physics texts. Science Education, 85, 758–768. doi: 10.1002/sce.1037
  • Kouba, V. L., & Champagne, A. B. (1998). Literacy in the national science and mathematics standards: Communication and reasoning (Report Series 3.14). New York: National Research Center on English Learning & Achievement, University at Albany-State University of New York.
  • Krajcik, J. S., & Sutherland, L. M. (2010). Supporting students in developing literacy in science. Science, 328, 456–459. doi: 10.1126/science.1182593
  • Kramarski, B., & Mevarech, Z. R. (2003). Enhancing mathematical reasoning in the classroom: The effects of cooperative learning and metacognitive training. American Educational Research Journal, 40(1), 281–310. doi: 10.3102/00028312040001281
  • Lavonen, J., & Laaksonen, S. (2009). Context of teaching and learning school science in Finland: Reflections on PISA 2006 results. Journal of Research in Science Teaching, 46, 922–944. doi: 10.1002/tea.20339
  • Malik, S. K., & Zaman, N. (2012). Effect of graphical organizer teaching model on students’ learning achievement. Elixir Psychology, 42, 6220–6227.
  • Michalsky, T. (2013). Integrating skills and wills instruction in self-regulated science text reading for secondary students. International Journal of Science Education, 35(11), 1846–1873. doi: 10.1080/09500693.2013.805890
  • Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future. London: King’s College London, School of Education.
  • Nietfeld, J. L., Cao, L., & Osborne, J. W. (2006). The effect of distributed monitoring exercises and feedback on performance, monitoring accuracy, and self-efficacy. Metacognition and Learning, 1, 159–179. doi: 10.1007/s10409-006-9595-6
  • Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224–240. doi: 10.1002/sce.10066
  • Norris, S. P., & Phillips, L. M. (2012). Reading science: How a naive view of reading hinders so much else. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education (pp. 37–56). Berlin: Springer.
  • Norris, S. P., & Phillips, L. M. (2015). Scientific literacy: Its relationship to “literacy”. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 947–950). Berlin: Springer.
  • Peacock, A., & Weedon, H. (2002). Children working with text in science: Disparities with ‘literacy hour’ practice. Research in Science & Technological Education, 20, 185–197. doi: 10.1080/0263514022000030444
  • Pearson, P. D., Moje, E., & Greenleaf, C. (2010). Literacy and science: Each in the service of the other. Science, 328, 459–463. doi: 10.1126/science.1182595
  • Phillips, L. M., & Norris, S. P. (2009). Bridging the gap between the language of science and the language of school science through the use of adapted primary literature. Research in Science Education, 39, 313–319. doi: 10.1007/s11165-008-9111-z
  • Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Sandi-Urena, S., Cooper, M. M., & Stevens, R. H. (2011). Enhancement of metacognition use and awareness by means of a collaborative treatment. International Journal of Science Education, 33, 323–340. doi: 10.1080/09500690903452922
  • Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111–139. doi: 10.1007/s11165-005-3917-8
  • Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7, 351–371. doi: 10.1007/BF02212307
  • Schwartz, A. T. (2006). Contextualized chemistry education: The American experience. International Journal of Science Education, 28, 977–998. doi: 10.1080/09500690600702488
  • Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15(1), 10–23. doi: 10.1039/C3RP00111C
  • Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2005). The importance of involving high-school chemistry teachers in the process of defining the operational meaning of ‘chemical literacy’. International Journal of Science Education, 27, 323–344. doi: 10.1080/0950069042000266191
  • Sjöström, J., & Eilks, I. (2018). Reconsidering different visions of scientific literacy and science education based on the concept of Bildung. In Y. J. Dori, Z. Mevarech, & D. Baker (Eds.), Cognition, metacognition and culture in STEM education (pp. 65–88). Cham: Springer.
  • Taber, K. S. (2013). Revisiting the chemistry triplet: Drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14, 156–168. doi: 10.1039/C3RP00012E
  • Thomas, G., Anderson, D., & Nashon, S. (2008). Development of a tool designed to investigate elements of science students’ metacognition, self-efficacy and learning processes: The SEMLI-S. International Journal of Science Education, 30, 1701–1724. doi: 10.1080/09500690701482493
  • Thomas, G. P., & McRobbie, C. J. (2001). Using a metaphor for learning to improve students’ metacognition in the chemistry classroom. Journal of Research in Science Teaching, 38(2), 222–259. doi: 10.1002/1098-2736(200102)38:2<222::AID-TEA1004>3.0.CO;2-S
  • Tsaparlis, G., & Sevian, H. (2013). Introduction: Concepts of matter–complex to teach and difficult to learn. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 1–8). Dordrecht: Springer.
  • Wandersee, J. H. (1988). Ways students read texts. Journal of Research in Science Teaching, 25, 69–84. doi: 10.1002/tea.3660250107
  • Wang, J. R., Chen, S. F., Fang, I., & Chou, C. T. (2014). Comparison of Taiwanese and Canadian students’ metacognitive awareness of science reading, text, and strategies. International Journal of Science Education, 36, 693–713. doi: 10.1080/09500693.2013.826841
  • Watanabe, M., Nunes, N., Mebane, S., Scalise, K., & Claesgens, J. (2007). “Chemistry for all, instead of chemistry just for the elite”: Lessons learned from detracted chemistry classrooms. Science Education, 91, 683–709. doi: 10.1002/sce.20213
  • Wellington, J., & Osborne, J. (2001). Language and literacy in science education. Philadelphia, PA: Open University Press.
  • Yarden, A. (2009). Reading scientific texts: Adapting primary literature for promoting scientific literacy. Research in Science Education, 39, 307–311. doi: 10.1007/s11165-009-9124-2
  • Yore, L. D. (1991). Secondary science teachers’ attitudes toward and beliefs about science reading and science textbooks. Journal of Research in Science Teaching, 28, 55–72. doi: 10.1002/tea.3660280106
  • Yore, L., Bisanz, G. L., & Hand, B. M. (2003). Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25, 689–725. doi: 10.1080/09500690305018
  • Yore, L. D., Craig, M. T., & Maguire, T. O. (1998). Index of science reading awareness: An interactive-constructive model, test verification, and grades 4-8 results. Journal of Research in Science Teaching, 35, 27–51. doi: 10.1002/(SICI)1098-2736(199801)35:1<27::AID-TEA3>3.0.CO;2-P
  • Yore, L. D., Hand, B., Goldman, S. R., Hildebrand, G. M., Osborne, J. F., Treagust, D. F., & Wallace, C. S. (2004). New directions in language and science education research. Reading Research Quarterly, 39, 347–352.
  • Yore, L. D., & Treagust, D. F. (2006). Current realities and future possibilities: Language and science literacy—empowering research and informing instruction. International Journal of Science Education, 28, 291–314. doi: 10.1080/09500690500336973
  • Zhang, W.-X., Hsu, Y.-S., Wang, C.-Y., & Ho, Y.-T. (2015). Exploring the impacts of cognitive and metacognitive prompting on students’ scientific inquiry practices within an e-learning environment. International Journal of Science Education, 37, 529–553. doi: 10.1080/09500693.2014.996796
  • Zohar, A., & Dori, Y. J. (2003). Higher order thinking skills and low-achieving students: Are they mutually exclusive? Journal of the Learning Sciences, 12(2), 145–181. doi: 10.1207/S15327809JLS1202_1