692
Views
4
CrossRef citations to date
0
Altmetric
Articles

Explicit promotion of experimental skills. And what about the content-related skills?

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1305-1326 | Received 28 Jul 2017, Accepted 13 May 2018, Published online: 28 May 2018

References

  • Adey, P., & Shayer, M. (1990). Accelerating the development of formal thinking in middle and high school students. Journal of Research in Science Teaching, 27(3), 267–285. doi: 10.1002/tea.3660270309
  • Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18. doi: 10.1037/a0021017
  • Bloom, B. S., Engelhardt, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1971). Taxonomy of educational objectives – Handbook 1: Cognitive domain (16th ed.). New York, NY: David McKay.
  • Brell, C. (2008). Lernmedien und Lernerfolg – reale und virtuelle Materialien im Physikunterricht. Empirische Untersuchungen in achten Klassen an Gymnasien (Laborstudie) zum Computereinsatz mit Simulationen und IBE [Learning Media and Learning Gain – Real and Virtual Media in Physics Education]. Berlin: Logos.
  • Buffler, A., Allie, S., Lubben, F., & Campbell, B. (2001). The development of first year physics students’ ideas about measurement in terms of point and set paradigms. International Journal of Science Education, 23(11), 1137–1156. doi: 10.1080/09500690110039567
  • Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variables strategy. Child Development, 70(5), 1098–1120. doi: 10.1111/1467-8624.00081
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46. doi: 10.1177/001316446002000104
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
  • Dean, D., & Kuhn, D. (2006). Direct instruction vs. discovery: The long view. Science Education, 91(3), 384–397. doi: 10.1002/sce.20194
  • Dickmann, M., Eickhorst, B., Theyßen, H., Neumann, K., Schecker, H., & Schreiber, N. (2013). Measuring experimental skills in large-scale assessments: Developing a simulation-based test instrument. In C. P. Constantinou, N. Papadouris, & A. Hadjigeorgiou (Eds.), E-Book proceedings of the ESERA 2013 conference: Science education research for evidence-based teaching and coherence in learning. Part 11 (co-ed. Jens Dolin & Robin Millar), (pp. 1993–2001). Nicosia: European Science Education Research Association.
  • Ellis, R. (2009). Implicit and explicit learning, knowledge and instruction. In R. Ellis, S. Loewen, C. Elder, R. Erlam, J. Philip, & H. Reinders (Eds.), Implicit and explicit knowledge in second language learning, testing and teaching (pp. 3–25). Bristol: Multilingual Matters.
  • Emden, M., & Sumfleth, E. (2016). Assessing students’ experimentation processes in guided inquiry. International Journal of Science and Mathematics Education, 14(1), 29–54. doi: 10.1007/s10763-014-9564-7
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi: 10.3758/BF03193146
  • Field, A. (2009. Discovering statistics using SPSS (3rd ed.). London: Sage.
  • Gooding, D. (1997). Review of scientific practice: Theories and stories of doing physics by Jed Z. Buchwald. Isis, 88(1), 121–122. doi: 10.1086/383631
  • Halliday, D., Resnick, R., & Walker, J. (2013. Haliday Physik. Fundamentals of physics (10th ed.). Hoboken, NJ: Wiley.
  • Heinicke, S., & Riess, F. (2012). Missing links in the experimental work: Student’s actions and reasoning on measurement and uncertainly. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), E-Book proceedings of the ESERA 2011 conference: Science learning and citizenship. Part 5 (co-ed. L. Maurines & A. Redfors), (pp. 52–56). Lyon: European Science Education Research Association.
  • Holliday, W. G. (2004). A balanced approach to science inquiry teaching. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education (pp. 201–217). Dordrecht: Kluwer Academic.
  • Kallio, E. (1998). Training of students’ scientific reasoning skills (Dissertation – Jyväskylä studies in education, psychology and social research No. 139). Jyväskylä, Finland. Retrieved from https://jyx.jyu.fi/dspace/bitstream/handle/123456789/13385/9513912922.pdf?sequence=1
  • Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15(10), 661–667. doi: 10.1111/j.0956-7976.2004.00737.x
  • Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 44, 183–203. doi: 10.1002/tea.20152
  • Koenen, J. (2014). Entwicklung und Evaluation von experimentgestützten Lösungsbeispielen zur Förderung naturwissenschaftlich – experimenteller Arbeitsweisen [Development and evaluation of experiment-supported worked-examples to foster scientific inquiry]. Berlin: Logos.
  • Lin, X., & Lehman, J. D. (1999). Supporting learning of variable control in a computer-based biology environment: Effects of prompting college students to reflect on their own thinking. Journal of Research in Science Teaching, 36(7), 837–858. doi: 10.1002/(SICI)1098-2736(199909)36:7<837::AID-TEA6>3.0.CO;2-U
  • Lubben, F., & Millar, R. (1996). Children’s ideas about the reliability of experimental data. International Journal of Science Education, 18(8), 955–968. doi: 10.1080/0950069960180807
  • Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys, 38(3), 1–24. doi: 10.1145/1132960.1132961
  • Piekny, J., Grube, D., & Maehler, C. (2014). The development of experimentation and evidence evaluation skills at preschool age. International Journal of Science Education, 36(2), 334–354. doi: 10.1080/09500693.2013.776192
  • Ross, J. A. (1988). Controlling variables: A meta-analysis of training studies. Review of Educational Research, 58(4), 405–437. doi: 10.3102/00346543058004405
  • Ross, R. J., Hubbell, C., Ross, C. G., & Thompson, M. B. (1976). The training and transfer of formal thinking tasks in college students. Genetic Psychology Monographs, 93(2), 171–187.
  • Schwichow, M., Christoph, S., Boone, W. J., & Härtig, H. (2016a). The impact of sub-skills and item content on students’ skills with regard to the control-of-variables strategy. International Journal of Science Education, 38(2), 216–237. doi: 10.1080/09500693.2015.1137651
  • Schwichow, M., Croker, S., Zimmerman, C., Höffler, T., & Härtig, H. (2016b). Teaching the control-of-variables strategy: A meta-analysis. Developmental Review, 39, 37–63. doi: 10.1016/j.dr.2015.12.001
  • Schwichow, M., Zimmerman, C., Croker, S., & Härtig, H. (2016c). What students learn from hands-on activities. Journal of Research in Science Teaching, 53(7), 980–1002. doi: 10.1002/tea.21320
  • Séré, M-J, Journeaux, R., & Larcher, C. (1993). Learning the statistical analysis of measurement errors. International Journal of Science Education, 15(4), 427–438. doi: 10.1080/0950069930150406
  • Tomlinson-Keasey, C. (1972). Formal operations in females from eleven to fifty-four years of age. Developmental Psychology, 6(2), 364. doi: 10.1037/h0032085
  • Vorholzer, A. (2016). Promoting students’ understanding of scientific inquiry through explicit instruction: Results of a classroom-based intervention. In J. Lavonen, K. Juuti, J. Lampiselkä, A. Uitto, & K. Hahl (Eds.), Electronic proceedings of the ESERA 2015 conference: Science education research: Engaging learners for a sustainable future, Part 1 (co-ed. O. Finlayson & R. Pinto), (pp. 150–157). Helsinki: University of Helsinki.
  • Welzel, M., Haller, K., Bandiera, M. M., Hammelev, D., Panagiotis, K., Niedderer, H., Paulsen, A., Robinault, K., & von Aufschnaiter, S. (1998). Teachers’ objectives for labwork: Research tool and cross country results. Retrieved from http://www.idn.uni-bremen.de/pubs/Niedderer/1998-LSE-WP6.pdf
  • Zohar, A., & Peled, B. (2008). The effect of explicit teaching of metastrategic knowledge on low- and high-achieving students. Learning and Instruction, 18, 337–353. doi: 10.1016/j.learninstruc.2007.07.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.