1,645
Views
3
CrossRef citations to date
0
Altmetric
Articles

Exploring college students’ cognitive patterns during reasoningFootnote*

ORCID Icon &
Pages 1736-1754 | Received 03 Nov 2016, Accepted 08 Aug 2018, Published online: 23 Aug 2018

References

  • Acar, O., Turkmen, L., & Roychoudhury, A. (2010). Student difficulties in socio-scientific argumentation and decision-making research findings: Crossing the borders of two research lines. International Journal of Science Education, 32(9), 1191–1206. doi: 10.1080/09500690902991805
  • American Association for the Advancement of Science. (1989). Science for all Americans. New York, NY: Oxford University Press.
  • American Association for the Advancement of Science. (2007). Atlas of scientific literacy (Vol. 2). Washington, DC: Author.
  • Bond, C., Philo, C., & Shipton, Z. (2011). When there isn’t a right answer: Interpretation and reasoning, key skills for twenty-first century geosciences. International Journal of Science Education, 33(5), 629–652. doi: 10.1080/09500691003660364
  • Braasch, J. L., Bråten, I., Strømsø, H. I., Anmarkrud, Ø, & Ferguson, L. E. (2013). Promoting secondary school students’ evaluation of source features of multiple documents. Contemporary Educational Psychology, 38(3), 180–195. doi: 10.1016/j.cedpsych.2013.03.003
  • Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95(4), 639–669. doi: 10.1002/sce.20449
  • Bricker, L. A., & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92(3), 473–498. doi: 10.1002/sce.20278
  • Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. London: Sage.
  • Chen, Z., & Klahr, D. (1999). All other things being equal: Children’s acquisition of the control of variables strategy. Child Development, 70, 1098–1120. doi: 10.1111/1467-8624.00081
  • Chinn, C., & Malhotra, B. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218. doi: 10.1002/sce.10001
  • Dawson, V., & Venville, G. (2009). High-school students’ informal reasoning and argumentation about biotechnology: An indicator of scientific literacy? International Journal of Science Education, 31(11), 1421–1445. doi: 10.1080/09500690801992870
  • di Sessa, A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2/3), 105–225. doi: 10.1080/07370008.1985.9649008
  • Dole, J. A., & Sinatra, G. M. (1998). Reconceptualizing change in the cognitive construction of knowledge. Educational Psychologist, 33(2–3), 109–128. doi: 10.1080/00461520.1998.9653294
  • Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Buckingham: Open University Press.
  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312. doi: 10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  • Dunbar, K. (2001). The analogical paradox: Why analogy is so easy in naturalistic settings, yet so difficult in the psychology laboratory. In D. Gentner, K. J. Holyoak, & B. Kokinov (Eds.), Analogy: Perspectives from cognitive science (pp. 313–314). Cambridge, MA: MIT Press.
  • Duschl, R., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39–72. doi: 10.1080/03057260208560187
  • Engelmann, K., Neuhaus, B., & Fischer, F. (2016). Fostering scientific reasoning in education – meta-analysis evidence from intervention studies. Educational Research and Evaluation, 22(5–6), 333–349. doi: 10.1080/13803611.2016.1240089
  • Ericsson, K., & Simon, H. (1993). Protocol analysis: Verbal reports as data. Cambridge, MA: MIT Press.
  • European Union (2006). Recommendation of the European parliament and of the council of 18 December 2006 on key competences for lifelong learning. Official Journal of the European Union, L 394/10–L 394/18. Retrieved from http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32006H0962
  • Evans, J. (1996). Deciding before you think: Relevance and reasoning in the selection task. British Journal of Psychology, 87, 223–240. doi: 10.1111/j.2044-8295.1996.tb02587.x
  • Evans, J. S. B. T. (2002). Logic and human reasoning: An assessment of the deduction paradigm. Psychological Bulletin, 128, 978–996. doi: 10.1037/0033-2909.128.6.978
  • Evans, J. S. B. T. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7, 454–459. doi: 10.1016/j.tics.2003.08.012
  • Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59(1), 255–278. doi: 10.1146/annurev.psych.59.103006.093629
  • Fassinger, R. E. (2005). Paradigms, praxis, problems, and promise: Grounded theory in counseling psychology research. Journal of Counseling Psychology, 52, 156–166. doi: 10.1037/0022-0167.52.2.156
  • Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R. … Eberle, J. (2014). Scientific reasoning and argumentation: Advancing an interdisciplinary research agenda in education. Frontline Learning Research, 4, 28–45.
  • Gallup. (2010). Americans’ global warming concerns continue to drop. Retrieved from www.gallup.com/poll/126560/americans-global-warming-concerns-continue-drop.aspx
  • Giere, R., Bickle, J., & Mauldin, R. (2006). Understanding scientific reasoning (5th ed.). Belmont, CA: Thomson Wadsworth.
  • Gil, L., Bråten, I., Vidal-Abarca, E., & Strømsø, H. I. (2010). Summary versus argument tasks when working with multiple documents: Which is better for whom? Contemporary Educational Psychology, 35(3), 157–173. doi: 10.1016/j.cedpsych.2009.11.002
  • Glaser, G. (1978). Theoretical sensitivity. Mill Valley, CA: The Sociology Press.
  • Glaser, B. G., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago, IL: Aldine.
  • Holyoak, K., & Morrison, R. (2005). Thinking and reasoning: A reader’s guide. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 1–11). Cambridge: Cambridge University Press.
  • Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books.
  • Intergovernmental Panel on Climate Change. (2007). Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.). Cambridge: Cambridge University Press.
  • Intergovernmental Panel on Climate Change. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (Eds.). Cambridge: Cambridge University Press.
  • Jones, S. R., Torres, V., & Arminio, J. (2006). Negotiating the complexities of qualitative research in higher education: Fundamental elements and issues. New York, NY: Routledge.
  • Kind, P. (2013). Establishing assessment scales using a novel disciplinary rationale for scientific reasoning. Journal of Research in Science Teaching, 50(5), 530–560. doi: 10.1002/tea.21086
  • Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning. Cambridge, MA: MIT Press.
  • Koslowski, B., Marasia, J., Chelenza, M., & Dublin, R. (2008). Information becomes evidence when an explanation can incorporate it into a causal framework. Cognitive Development, 23, 472–487. doi: 10.1016/j.cogdev.2008.09.007
  • Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319–337. doi: 10.1002/sce.3730770306
  • Lawson, A. (2005). What is the role of induction and deduction in reasoning and scientific inquiry. Journal of Research in Science Teaching, 42(6), 716–740. doi: 10.1002/tea.20067
  • Lawson, A. E., Clark, B., Cramer-Meldrum, E., Falconer, K. A., Kwon, Y. J., & Sequist, J. M. (2000). The development of reasoning skills in college biology: Do two levels of general hypothesis-testing skills exist? Journal of Research in Science Teaching, 30(10), 1327–1348. doi: 10.1002/tea.3660301012
  • Leiserowitz, A., Maibach, E., Roser-Renouf, C., & Smith, N. (2011). Global warming’s six Americas, May 2011. New Haven, CT: Yale Project on Climate Change Communication/Yale University and George Mason University.
  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: SAGE.
  • Liu, S., & Roehrig, G. (2017). Exploring in-service teachers’ argumentation and personal epistemology about climate change. Research in Science Education. Advance online publication. doi:10.1007/s11165-017-9617-3
  • Lombardi, D., Bickel, E., Brandt, C., & Burg, C. (2017). Categorising students’ evaluations of evidence and explanations about climate change. International Journal of Global Warming, 12(3/4), 313–330. doi: 10.1504/IJGW.2017.084782
  • Lombardi, D., Brandt, C., Bickel, E., & Burg, C. (2016). Students’ evaluations about climate change. International Journal of Science Education, 38(8), 1392–1414. doi: 10.1080/09500693.2016.1193912
  • Lombardi, D., Danielson, R., & Young, N. (2016). A plausible connection: Models examining the relations between evaluation, plausibility, and the refutation text effect. Learning and Instruction, 44, 74–86. doi: 10.1016/j.learninstruc.2016.03.003
  • Lombardi, D., & Sinatra, G. (2012). College students’ perceptions about the plausibility of human-induced climate change. Research in Science Education, 42, 201–217. doi: 10.1007/s11165-010-9196-z
  • Lombardi, D., & Sinatra, G. (2013). Emotions about teaching about human-induced climate change. International Journal of Science Education, 35(1), 167–191. doi: 10.1080/09500693.2012.738372
  • Magliano, J., Trabasso, T., & Graesser, A. C. (1999). Strategic processes during comprehension. Journal of Educational Psychology, 91(4), 615–629. doi: 10.1037/0022-0663.91.4.615
  • Maibach, E., Roser-Renouf, C., & Leiserowitz, A. (2008). Communication and marketing as climate change intervention assets: A public health perspective. American Journal of Preventive Medicine, 35(5), 488–500. doi: 10.1016/j.amepre.2008.08.016
  • Mason, L., & Scirica, F. (2006). Prediction of students’ argumentation skills about controversial topics by epistemological understanding. Learning and Instruction, 16, 492–509. doi: 10.1016/j.learninstruc.2006.09.007
  • Mayer, D., Sodian, B., Koerber, S., & Schwippert, K. (2014). Scientific reasoning in elementary school children: Assessment and relations with cognitive abilities. Learning and Instruction, 29, 43–55. doi: 10.1016/j.learninstruc.2013.07.005
  • McNeill, K., Lizotte, D., Krajcik, J., & Marx, R. (2006). Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15(2), 153–191. doi: 10.1207/s15327809jls1502_1
  • Mercier, H., Boudry, M., Paglieri, F., & Trouche, E. (2017). Natural-born arguers: Teaching how to make the best of our reasoning abilities. Educational Psychologist, 52(1), 1–16. doi: 10.1080/00461520.2016.1207537
  • Mercier, H., & Sperber, D. (2011). Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences, 34, 57–74. doi: 10.1017/S0140525X10000968
  • National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
  • National Research Council. (2001). Educating teachers of science, mathematics, and technology. Washington, DC: National Academies Press.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K-12 science education standards. Board on Science Education, Division of Behavioral and Social Sciences and Education, Washington, DC: The National Academics Press.
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.
  • Nicolaidou, I., Kyza, E., Terzian, D., Hadjichambis, A., & Kafouris, D. (2011). A framework for scaffolding students’ assessment of the credibility of evidence. Journal of Research in Science Teaching, 48(7), 711–744. doi: 10.1002/tea.20420
  • Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463–466. doi: 10.1126/science.1183944
  • Pluta, W. J., Buckland, L. A., Chinn, A. C., Duncan, R. G., & Duschl, R. A. (2008). Learning to evaluate scientific models. In G. Kanselaar, J. van Merriënboer, P. Kirschner, & T. de Jong (Eds.), International perspectives in the learning sciences: Creating a learning world. Proceedings of the eight international conference for the learning sciences (pp. 411–412). Utrecht.
  • Sadler, T. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536. doi: 10.1002/tea.20009
  • Sadler, T., Barab, S., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry. Research in Science Education, 37, 371–391. doi: 10.1007/s11165-006-9030-9
  • Sadler, T., & Donnelly, L. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488. doi: 10.1080/09500690600708717
  • Sadler, T., & Zeidler, D. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42, 112–138. doi: 10.1002/tea.20042
  • Sampson, V., & Clark, D. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447–472. doi: 10.1002/sce.20276
  • Sanchez, C. A., Wiley, J., & Goldman, S. R. (2006). Teaching students to evaluate source reliability during internet research tasks. In S. A. Barab, K. E. Hay, & D. T. Hickey (Eds.), Proceedings of the seventh international conference on the learning sciences (pp. 662–666). Mahwah, NJ: Erlbaum.
  • Sandoval, W., & Millwood, K. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23–55. doi: 10.1207/s1532690xci2301_2
  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102–119. doi: 10.1037/0012-1649.32.1.102
  • Sinatra, G., Kienhues, D., & Hofer, B. K. (2014). Addressing challenges to public understanding of science: Epistemic cognition, motivated reasoning, and conceptual change. Educational Psychologist, 49(2), 123–138. doi: 10.1080/00461520.2014.916216
  • Strauss, A. L., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.
  • Strauss, A. L., & Corbin, J. (1998). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.
  • Tang, K. (2016). Constructing scientific explanations through premise-reasoning-outcome (PRO): an exploratory study to scaffold students in structuring written explanations. International Journal of Science Education, 38(9), 1415–1440. doi: 10.1080/09500693.2016.1192309
  • Topcu, M., Sadler, T., & Yilmaz-Tuzun, O. (2010). Preservice science teachers’ informal reasoning about socioscientific issues: The influence of issue context. International Journal of Science Education, 32(18), 2475–2495. doi: 10.1080/09500690903524779
  • van der Graaf, J., Segers, E., & Verhoeven, L. (2016). Scientific reasoning in kindergarten: Cognitive factors in experimentation and evidence evaluation. Learning and Individual Differences, 49, 190–200. doi: 10.1016/j.lindif.2016.06.006
  • Walker, J., & Sampson, V. (2013). Learning to argue and argue to learn: Argument-driven inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course. Journal of Research in Science Teaching, 50(5), 561–596. doi: 10.1002/tea.21082
  • Wason, P., & Johnson-Laird, P. (1972). Psychology of reasoning: Structure and content. Cambridge, MA: Harvard University Press.
  • Watters, J., & English, L. (1995). Children’s application of simultaneous and successive processing in inductive and deductive reasoning problems: Implications for developing scientific reasoning skills. Journal of Research in Science Teaching, 32(7), 699–714. doi: 10.1002/tea.3660320705
  • Weiss, I. R., Pasely, J. D., Smith, P. S., Banilower, E. R., & Heck, D. J. (2003). Looking inside the classroom: A study of K-12 mathematics and science education in the United States. Chapel Hill, NC: Horizon Research.
  • Wu, H. K., & Hsieh, C. E. (2006). Developing sixth graders’ inquiry skills to construct explanatory inquiry-based learning environments. International Journal of Science Education, 28(11), 1289–1313. doi: 10.1080/09500690600621035
  • Wu, Y., & Tsai, C.-C. (2007). High school students’ informal reasoning on a socio-scientific issue: Qualitative and quantitative analyses. International Journal of Science Education, 29(9), 1163–1187. doi: 10.1080/09500690601083375
  • Wu, Y., & Tsai, C.-C. (2011). High school students’ informal reasoning regarding a socio-scientific issue, with relation to scientific epistemological beliefs and cognitive structures. International Journal of Science Education, 33(3), 371–400. doi: 10.1080/09500690903505661
  • Yang, F. Y., & Anderson, O. R. (2003). Senior high school students’ preference and reasoning modes about nuclear energy use. International Journal of Science Education, 25, 689–725. doi: 10.1080/09500690305018
  • Yang, F. Y., Chang, C. Y., & Hsu, Y. S. (2008). Teacher views about the constructivist instruction and personal epistemology – a national study in Taiwan. Educational Studies, 34, 527–542. doi: 10.1080/03055690802288486
  • Yang, F. Y., & Tsai, C.-C. (2010). Reasoning about science-related uncertain issues and epistemological perspectives among children. Instructional Science, 38, 325–354. doi: 10.1007/s11251-008-9084-3
  • Zeidler, D., Sadler, T., Simmons, M., & Howes, E. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89, 357–377. doi: 10.1002/sce.20048
  • Zeineddin, A., & Abd-El-Khalick, F. (2010). Scientific reasoning and epistemological commitments: Coordination of theory and evidence among college science standards. Journal of Research in Science Teaching, 47(9), 1064–1093. doi: 10.1002/tea.20368
  • Zimmerman, C. (2005). The development of scientific reasoning skills: What psychologists contribute to an understanding of elementary science learning. Final draft of a report to the National Research Council Committee on Student Learning Kindergarten through Eighth Grade. Washington, DC: National Research Council.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.