4,980
Views
51
CrossRef citations to date
0
Altmetric
Articles

Science education textbook research trends: a systematic literature review

ORCID Icon & ORCID Icon
Pages 1496-1516 | Received 19 Oct 2018, Accepted 26 Apr 2019, Published online: 23 May 2019

References

  • Abd-El-Khalick, F., Waters, M., & Le, A. P. (2008). Representations of nature of science in high school chemistry textbooks over the past four decades. Journal of Research in Science Teaching, 45(7), 835–855. doi: 10.1002/tea.20226
  • Aldahmash, A. H., Mansour, N. S., Alshamrani, S. M., & Almohi, S. (2016). An analysis of activities in Saudi Arabian middle school science textbooks and workbooks for the Inclusion of Essential features of Inquiry. Research in Science Education, 46(6), 879–900. doi: 10.1007/s11165-015-9485-7
  • Aydin, S., Sinha, S., & Izci, K. (2014). Turkish, Indian, and American chemistry textbooks use of inscriptions to represent ‘types of chemical reactions’. Eurasia Journal of Mathematics Science and Technology Education, 10(5), 383–393. doi: 10.12973/eurasia.2014.1060a
  • Baptista, G. C. S., Santos, R. D., & Cobern, W. W. (2016). Perspectives on the origins of life in science textbooks from a Christian publisher: Implications for teaching science. International Journal of Science and Mathematics Education, 14(2), S309–S326. doi: 10.1007/s10763-015-9641-6
  • Bednekoff, P. A. (2005). Animal behavior in introductory textbooks: Consensus on topics, confusion over terms. Bioscience, 55(5), 444–448. doi: 10.1641/0006-3568(2005)055[0444:abiitc]2.0.co;2
  • Bergqvist, A., Drechsler, M., De Jong, O., & Rundgren, S. N. C. (2013). Representations of chemical bonding models in school textbooks – help or hindrance for understanding? Chemistry Education Research and Practice, 14(4), 589–606. doi: 10.1039/c3rp20159g
  • Bergqvist, A., & Rundgren, S. N. C. (2017). The influence of textbooks on teachers’ knowledge of chemical bonding representations relative to students’ difficulties understanding. Research in Science & Technological Education, 35(2), 215–237. doi: 10.1080/02635143.2017.1295934
  • Biber, D., Conrad, S., & Cortes, V. (2004). If you look at … : Lexical bundles in university teaching and textbooks. Applied Linguistics, 25(3), 371–405.
  • Bierema, A. M. K., Schwartz, R. S., & Gill, S. A. (2017). To what extent does current scientific research and textbook content align? A methodology and case study. Journal of Research in Science Teaching, 54(8), 1097–1118. doi: 10.1002/tea.21399
  • Cakici, Y. (2012). Exploring Turkish upper primary level science textbooks’ coverage of scientific literacy themes. Egitim Arastirmalari-Eurasian Journal of Educational Research, 12(49), 81–102.
  • Calado, F. M., Scharfenberg, F. J., & Bogner, F. X. (2015). To what extent do biology textbooks contribute to scientific literacy? Criteria for analysing science-technology-society-environment issues. Education Sciences, 5(4), 255–280. doi: 10.3390/educsci5040255
  • Certad, V. P. A. (2016). Teaching strategies in the Venezuelan chemistry textbooks for teaching basic concepts of measurement, matter and energy. Revista De Comunicacion De La Seeci, (39), 17–43. doi: 10.15198/seeci.2016.39.17-45
  • Chang, Y. H., Chang, C. Y., & Tseng, Y. H. (2010). Trends of science education research: An automatic content analysis. Journal of Science Education and Technology, 19, 315–331. doi: 10.1007/s10956-009-9202-2
  • Cheng, M. C., Chou, P. I., Wang, Y. T., & Lin, C. H. (2015). Learning effects of a science textbook designed with adapted cognitive process principles on grade 5 students. International Journal of Science and Mathematics Education, 13(3), 467–488. doi: 10.1007/s10763-013-9471-3
  • Chiappetta, E. L., & Fillman, D. A. (2007). Analysis of five high school biology textbooks used in the United States for inclusion of the nature of science. International Journal of Science Education, 29(15), 1847–1868.
  • Ciascai, L., & Haiduc, L. (2011). Metacognitive strategies that Romanian pupils use when reading science textbooks. In F. Tao (Ed.), Social science and humanity, Pt two (Vol. 5, pp. 389–392). Singapore: IACSIT Press.
  • de Jong, O. (2007). Trends in western science curricula and science education research: A bird’s eyeview. Journal of Baltic Science Education, 6(1), 15–22.
  • Dikmenli, M. (2010). An analysis of analogies used in secondary school biology textbooks: Case of Turkey. Egitim Arastirmalari-Eurasian Journal of Educational Research, 10(41), 73–90.
  • Dimopoulos, K., Koulaidis, V., & Sklaveniti, S. (2003). Towards an analysis of visual images in school science textbooks and press articles about science and technology. Research in Science Education, 33(2), 189–216. doi: 10.1023/a:1025006310503
  • Elgar, A. G. (2004). Science textbooks for lower secondary schools in Brunei: Issues of gender equity. International Journal of Science Education, 26(7), 875–894. doi: 10.1080/0950069032000138888
  • Eybe, J., & Schmidt, H.-J. (2001). Quality criteria and exemplary papers in chemistry education research. International Journal of Science Education, 23, 209–225. doi:10.1080/09500690118920
  • Fitzgerald, W. J., Elmore, J., Kung, M., & Stenner, A. J. (2017). The conceptual complexity of vocabulary in elementary-grades core science program textbooks. Reading Research Quarterly, 52(4), 417–442. doi: 10.1002/rrq.184
  • Gegios, T., Salta, K., & Koinis, S. (2017). Investigating high-school chemical kinetics: The Greek chemistry textbook and students’ difficulties. Chemistry Education Research and Practice, 18(1), 151–168. doi: 10.1039/c6rp00192k
  • Gericke, Niklas M., & Hagberg, Mariana. (2010). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40(4), 605–623. doi:10.1007/s11165-009-9136-y
  • Gericke, N. M., Hagberg, M., & Jorde, D. (2013). Upper secondary students’ understanding of the use of multiple models in biology textbooks-the importance of conceptual variation and incommensurability. Research in Science Education, 43(2), 755–780. doi: 10.1007/s11165-012-9288-z
  • Gilbert, J. K., De Jong, O., Justi, R., Treagust, D. F., & Van Driel, J. H. (2003). Research and development for the future of chemical education. In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & J. H. Van Driel (Eds.), Chemical education: Towards research-based Practice (pp. 391–408). Dordrecht: Kluwer Academic Publishers.
  • Gillette, G., & Sanger, M. J. (2014). Analysing the distribution of questions in the gas law chapters of secondary and introductory college chemistry textbooks from the United States. Chemistry Education Research and Practice, 15(4), 787–799. doi: 10.1039/c4rp00115j
  • Glava, A. E. (2017). Metadiscourse markers in Science schoolbooks as facilitators for metacognitive regulation of learning. In A. Sandu, T. Ciulei, & A. Frunza (Eds.), 2nd Central & Eastern European Lumen international conference - multidimensional education & professional development. Ethical values (Vol. 27, pp. 249–256).
  • Han, J. Y., & Roth, W. M. (2006). Chemical inscriptions in Korean textbooks: Semiotics of macro- and microworld. Science Education, 90(2), 173–201. doi: 10.1002/sce.20091
  • Harter, S., & Nisonger, T. E. (1997). ISI’s impact factor as misnomer: A proposed new measure to assess journal impact. Journal of the American Society for Information Science, 48, 1146–1148.
  • Hatzinikita, V., Dimopoulos, K., & Christidou, V. (2008). PISA test items and school textbooks related to science: A textual comparison. Science Education, 92(4), 664–687. doi: 10.1002/sce.20256
  • Hendricks, C., Reinsberg, S. A., & Rieger, G. (2017). The Adoption of an open textbook in a large physics course: An analysis of cost, outcomes, use, and perceptions. International Review of Research in Open and Distributed Learning, 18(4), 78–99.
  • Henson, K. T. (2001). Writing for professional journals: Paradoxes and promises. Phi Delta Kappan, 82, 765–768.
  • Hrabí, L. (2010). The text difficulty in some Czech natural science textbooks. New Educational Review, 22(3-4), 143–148.
  • Hsu, W. H. (2014). Measuring the vocabulary load of engineering textbooks for EFL undergraduates. English for Specific Purposes, 33, 54–65. doi: 10.1016/j.esp.2013.07.001
  • Hulten, M. (2016). Scientists, teachers and the ‘scientific’ textbook: Interprofessional relations and the modernisation of elementary science textbooks in nineteenth-century Sweden. History of Education, 45(2), 143–168. doi: 10.1080/0046760x.2015.1060542
  • Irez, S. (2009). Nature of science as depicted in Turkish biology textbooks. Science Education, 93(3), 422–447. doi: 10.1002/sce.20305
  • Kahveci, A. (2010). Quantitative analysis of science and chemistry textbooks for indicators of reform: A complementary perspective. International Journal of Science Education, 32(11), 1495–1519. doi: 10.1080/09500690903127649
  • Kirilova, I. (2017). Analysis of the Bulgarian national curriculum on the subject “man and nature” in 4th grade and the textbooks in the context of the TIMSS 2015 framework: A comparative analysis of the content area. Pedagogika, 89(3), 394–402.
  • Korfiatis, K. J., Stamou, A. G., & Paraskevopoulos, S. (2004). Images of nature in Greek primary school textbooks. Science Education, 88(1), 72–89. doi: 10.1002/sce.10133
  • Kummer-Hannoun, P., & Roux-Goupille, C. (2015). Twenty years of evolution in French secondary school science textbooks. IARTEM e-Journal, 7(3), 45–73.
  • Lee, A. R. (2013). An analysis on the recent research trend in Korean elementary science education. Journal of Korean Elementary Science Education, 32(3), 260–268.
  • Lee, M. H., Wu, Y. T., & Tsai, C. C. (2009). Research trends in science education from 2003 to 2007: A content analysis of publications in selected journals. International Journal of Science Education, 31(15), 1999–2020.
  • Leivas Pozzer, L., & Roth, W. M. (2003). Prevalence, function, and structure of photographs in high school biology textbooks. Journal of Research in Science Teaching, 40(10), 1089–1114. doi: 10.1002/tea.10122
  • Lemoni, R., Lefkaditou, A., Stamou, A. G., Schizas, D., & Stamou, G. P. (2013). Views of nature and the human-nature relations: An analysis of the visual syntax of pictures about the environment in Greek primary school textbooks-diachronic considerations. Research in Science Education, 43(1), 117–140. doi: 10.1007/s11165-011-9250-5
  • Lemoni, R., Stamou, A. G., & Stamou, G. P. (2011). Romantic, classic and baroque views of nature: An analysis of pictures about the environment in Greek primary school textbooks-diachronic considerations. Research in Science Education, 41(5), 811–832. doi: 10.1007/s11165-010-9191-4
  • Lin, T.-J., Lin, T.-C., Potvin, P., & Tsai, C.-C. (2018). Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. International Journal of Science Education, 1–21. doi: 10.1080/09500693.2018.1550274
  • Lin, T.-C., Lin, T.-J., & Tsai, C.-C. (2014). Research trends in science education from 2008 to 2012: A systematic content analysis of publications in selected journals. International Journal of Science Education, 36(8), 1346–1372. doi: 10.1080/09500693.2013.864428
  • Lubben, F., Campbell, B., Kasanda, C., Kapenda, H., Gaoseb, N., & Kandjeo-Marenga, U. (2003). Teachers’ use of textbooks: Practice in Namibian science classrooms. Educational Studies, 29(2-3), 109–125. doi: 10.1080/0305569032000092790
  • Majidi, S., & Mantyla, T. (2011). Knowledge onganization in physics textbooks: A case study of magnetostatics. Journal of Baltic Science Education, 10(4), 285–299.
  • McDonald, C. V. (2016). Evaluating junior secondary science textbook usage in australian schools. Research in Science Education, 46(4), 481–509. doi: 10.1007/s11165-015-9468-8
  • McFall, R. (2005). Electronic textbooks that transform how textbooks are used. The Electronic Library, 23(1), 72–81.
  • Medina-Jerez, W. (2018). Science education research trends in Latin America. International Journal of Science and Mathematics Education, 16(3), 465–485. doi:10.1007/s10763-016-9785-z
  • Milne, C., Siry, C., & Mueller, M. (2015). Reflections on the challenges and possibilities of journal publication in science education. Cultural Studies of Science Education, 10(4), 1063–1069. doi: 10.1007/s11422-015-9719-z
  • Mohlmann, K., & Syrbe, J. (2016). Term extraction from German computer science textbooks. In Y. Tan & Y. Shi (Eds.), Data mining and big data, Dmbd 2016 (Vol. 9714, pp. 219–226). Cham: Springer.
  • Morning, Ann. (2008). Reconstructing race in science and society: Biology textbooks, 1952–2002. American Journal of Sociology, 114(S1), S106–S137. doi:10.1086/592206
  • Niaz, M. (2000). The oil drop experiment: A rational reconstruction of the Millikan-Ehrenhaft controversy and its implications for chemistry textbooks. Journal of Research in Science Teaching, 37(5), 480–508. doi:10.1002/(sici)1098-2736(200005)37:5<480::aid-tea6>3.0.co;2-x
  • Niaz, M. (2005). Do general chemistry textbooks facilitate conceptual understanding? Quimica Nova, 28(2), 335–336. doi: 10.1590/s0100-40422005000200027
  • Ninnes, P., & Burnett, G. (2001). Postcolonial theory and science education: Textbooks, curriculum and cultural diversity in Aotearoa New Zealand. New Zealand Journal of Educational Studies, 36(1), 25–39.
  • Nyachwaya, J. M., & Gillaspie, M. (2016). Features of representations in general chemistry textbooks: A peek through the lens of the cognitive load theory. Chemistry Education Research and Practice, 17(1), 58–71. doi: 10.1039/c5rp00140d
  • Orgill, M., & Bodner, G. M. (2006). An analysis of the effectiveness of analogy use in college-level biochemistry textbooks. Journal of Research in Science Teaching, 43(10), 1040–1060. doi: 10.1002/tea.20129
  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.
  • Osterlund, L. L., Berg, A., & Ekborg, M. (2010). Redox models in chemistry textbooks for the upper secondary school: Friend or foe? Chemistry Education Research and Practice, 11(3), 182–192. doi: 10.1039/c005467b
  • Overman, M., Vermunt, J. D., Meijer, P. C., Bulte, A. M. W., & Brekelmans, M. (2013). Textbook questions in context-based and traditional chemistry curricula analysed from a content perspective and a learning activities perspective. International Journal of Science Education, 35(17), 2954–2978. doi: 10.1080/09500693.2012.680253
  • Papageorgiou, G., Amariotakis, V., & Spiliotopoulou, V. (2017). Visual representations of microcosm in textbooks of chemistry: Constructing a systemic network for their main conceptual framework. Chemistry Education Research and Practice, 18(4), 559–571. doi: 10.1039/c6rp00253f
  • Parker, R., Larkin, T., & Cockburn, J. (2017). A visual analysis of gender bias in contemporary anatomy textbooks. Social Science & Medicine, 180, 106–113. doi: 10.1016/j.socscimed.2017.03.032
  • Peixinho, J. P., & Vieira, R. M. (2015). Digital textbook of science for the first cycle of basic education: Tool to assess the quality of the digital textbook with science-technology-society / Critical thinking orientation. In L. G. Chova, A. L. Martinez, & I. C. Torres (Eds.), Inted2015: 9th international technology, education and development conference (pp. 3776–3783). Madrid: IATED Academy.
  • Poblete, J. C., Rojas, R. O., Merino, C., & Quiroz, W. (2016). An ontological and epistemological analysis of the presentation of the first law of thermodynamics in school and university textbooks. Chemistry Education Research and Practice, 17(4), 1041–1053. doi: 10.1039/c6rp00105j
  • Rodriguez, M. A., & Niaz, M. (2004). The oil drop experiment: An illustration of scientific research methodology and its implications for physics textbooks. Instructional Science, 32(5), 357–386. doi: 10.1023/B:TRUC.0000044641.19894.ed
  • Rokhmah, A., Sunarno, W., & Masykuri, M. (2017). Science literacy indicators in optical instruments of highschool physics textbooks chapter. Jurnal Pendidikan Fisika Indonesia-Indonesian Journal of Physics Education, 13(1), 19–24. doi: 10.15294/jpfi.v13i1.8391
  • Roman, D., & Busch, K. C. (2016). Textbooks of doubt: Using systemic functional analysis to explore the framing of climate change in middle-school science textbooks. Environmental Education Research, 22(8), 1158–1180. doi: 10.1080/13504622.2015.1091878
  • Rothing, A. (2017). Sexual orientation in Norwegian science textbooks: Heteronormativity and selective inclusion in textbooks and teaching. Teaching and Teacher Education, 67, 143–151. doi: 10.1016/j.tate.2017.06.005
  • Rusek, M., Stárková, D., Metelková, I., & Beneš, P. (2016). Hodnocení obtížnosti textu učebnic chemie pro základní školy [Elementary school chemistry textbooks. Text-difficulty evaluation]. Chemické Listy, 110(12), 953–958.
  • Rusek, M., & Vojíř, K. (2018). Analysis of text difficulty in lower-secondary chemistry textbooks. Chemistry Education Research and Practice, 20(1), 85–94. doi: 10.1039/C8RP00141C
  • Rusilowati, A., Nugroho, S. E., & Susilowati, S. M. E. (2016). Development of science textbook based on scientific literacy for secondary school. Jurnal Pendidikan Fisika Indonesia-Indonesian Journal of Physics Education, 12(2), 98–105. doi: 10.15294/jpfi.v12i2.4252
  • Sanders, M., & Makotsa, D. (2016). The possible influence of curriculum statements and textbooks on misconceptions: The case of evolution. Education as Change, 20(1), 216–238. doi: 10.17159/1947-9417/2015/555
  • Schizas, D., Papatheodorou, E., & Stamou, G. (2018). Transforming “ecosystem” from a scientific concept into a teachable topic: Philosophy and history of ecology informs science textbook analysis. Research in Science Education, 48(2), 267–300. doi: 10.1007/s11165-016-9568-0
  • Seyihoglu, A., & Ozgurbuz, I. E. (2015). Analysis of analogies in geography textbooks. Egitim Ve Bilim-Education and Science, 40(179), 163–179.
  • Shih, M., Feng, J., & Tsai, C.-C. (2008). Research and trends in the field of e-learning from 2001 to 2005: A content analysis of cognitive studies in selected journals. Computers & Education, 51(2), 955–967.
  • Simon, S. M., Meldrum, H., Ndung’u, E., & Ledley, F. D. (2018). Representation of industry in introductory biology textbooks: A missed opportunity to advance stem learning. CBE-Life Sciences Education, 17(4), arb. 61. doi: 10.1187/cbe.17-03-0057
  • Simsek, C. L. (2011). Investigation of environmental topics in the science and technology curriculum and textbooks in terms of environmental ethics and aesthetics. Kuram Ve Uygulamada Egitim Bilimleri, 11(4), 2252–2257.
  • Smith, L. K., Hanks, J. H., & Erickson, L. B. (2017). Secondary biology textbooks and national standards for english learners. Science Education, 101(2), 302–332. doi: 10.1002/sce.21265
  • Smith, B. L., Holliday, W. G., & Austin, H. W. (2010). Students’ comprehension of science textbooks using a question-based reading strategy. Journal of Research in Science Teaching, 47(4), 363–379. doi: 10.1002/tea.20378
  • Stern, L., & Roseman, J. E. (2004). Can middle-school science textbooks help students learn important ideas? Findings from project 2061’s curriculum evaluation study: Life science. Journal of Research in Science Teaching, 41(6), 538–568. doi: 10.1002/tea.20019
  • Stylianidou, Fani. (2002). Analysis of science textbook pictures about energy and pupils' readings of them. International Journal of Science Education, 24(3), 257–283. doi:10.1080/09500690110078905
  • Sullivan, J. P. (2008). The use of photographs to portray urban ecosystems in six introductory environmental science textbooks. Journal of Research in Science Teaching, 45(9), 1003–1020. doi: 10.1002/tea.20253
  • Teo, T. W., Goh, M. T., & Yeo, L. W. (2014). Chemistry education research trends: 2004–2013. Chemistry Education Research and Practice, 15(4), 470–487. doi: 10.1039/c4rp00104d
  • Tsai, C. C., & Wen, M. L. (2005). Research and trends in science education from 1998 to 2002: A content analysis of publication in selected journals. International Journal of Science Education, 27(1), 3–14. doi: 10.1080/0950069042000243727
  • Tsaparlis, G. (2014). The logical and psychological structure of physical chemistry and its relevance to the organization/sequencing of the major areas covered in physical chemistry textbooks. Chemistry Education Research and Practice, 15(3), 391–401. doi: 10.1039/c4rp00019f
  • Tshuma, T., & Sanders, M. (2015). Textbooks as a possible influence on unscientific ideas about evolution. Journal of Biological Education, 49(4), 354–369. doi: 10.1080/00219266.2014.967274
  • Uyulgan, M. A., Özbayrak, Ö, Alpat, S. K., & Alpat, Ş. (2011). Opinions of teachers and students on secondary education chemistry textbooks. Procedia Computer Science, 3, 1126–1130.
  • van Eijck, M., Goedhart, M. J., & Ellermeijer, T. (2011). Polysemy in the domain-specific pedagogical use of graphs in science textbooks: The case of an electrocardiogram. Research in Science Education, 41(1), 1–18. doi: 10.1007/s11165-009-9143-z
  • Vasconcelos, C., Faria, J., Almeida, A., & Dourado, L. (2014). Geology in the Lab: Preliminar studies for validating a checklist for analysing modelling activities in textbooks. In L. G. Chova, A. L. Martinez, & I. C. Torres (Eds.), Iceri2014: 7th international conference of education, research and innovation (pp. 2571–2577). Sevilla: IATED Academy.
  • Vesterinen, V. M., Aksela, M., & Lavonen, J. (2013). Quantitative analysis of representations of nature of science in nordic upper secondary school textbooks using framework of analysis based on philosophy of chemistry. Science & Education, 22(7), 1839–1855. doi: 10.1007/s11191-011-9400-1
  • Wahlberg, S. J., & Gericke, N. M. (2018). Conceptual demography in upper secondary chemistry and biology textbooks’ descriptions of protein synthesis: A matter of context? CBE-Life Sciences Education, 17(3), arb. 41. doi: 10.1187/cbe.17-12-0274
  • Yilmaz, M., Gunduz, E., Cimen, O., & Karakaya, F. (2017). Examining of biology subjects in the science textbook for grade 7 regarding scientific content. Turkish Journal of Education, 6(3), 128–142. doi:10.19128/turje.318064.
  • Zhou, P., Wang, Q. W., Yang, J., Li, J. Q., Guo, J. M., & Gong, Z. H. (2015). A statistical analysis of college biochemistry textbooks in China: The statuses on the publishing and usage. Eurasia Journal of Mathematics Science and Technology Education, 11(3), 685–691.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.