389
Views
5
CrossRef citations to date
0
Altmetric
Articles

Tracing physics content knowledge gains using content complexity levels

ORCID Icon
Pages 1585-1608 | Received 07 Oct 2019, Accepted 18 May 2020, Published online: 20 Jun 2020

References

  • ACT Inc. (2010). The alignment of the NAEP grade 12 mathematics assessment and the WorkKeys applied mathematics assessment.
  • Adams, R. J., & Wu, M. L. (Eds.). (2003). Programme for international student assessment (PISA) (PISA 2000 Tech. Rep.). OECD Publishing.
  • Albrecht, A. (2011). Längsschnittstudie zur Identifikation von Risikofaktoren für einen erfolgreichen Studieneinstieg in das Fach Physik [Longitudinal study to identify risk factors of successful study start in physics] [Doctoral dissertation, Freie Universität Berlin, Berlin]. Retrieved 29.01.2014, from http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000010456/Dissertation_Druckversion_Andre_Albrecht_UB.pdf
  • Bauer, A. B., Lahme, S., Woitkowski, D., Vogelsang, C., & Reinhold, P. (2019). PSΦ: Forschungsprogramm zur Studieneingangsphase im Physikstudium [Research programme on the study introductory phase in physics].
  • Beaton, A. E., & Allen, N. L. (1992). Interpreting scales through scale anchoring. Journal of Educational Statistics, 17(2), 191–204.
  • Bernholt, S., & Parchmann, I. (2011). Assessing the complexity of students' knowledge in chemistry. Chemistry Education Research and Practice, 12(2), 167. doi: https://doi.org/10.1039/C1RP90021H
  • Blömeke, S., Felbrich, A., Müller, C., Kaiser, G., & Lehmann, R. (2008). Effectiveness of teacher education: State of research, measurement issues and consequences for future studies. ZDM, 40(5), 719–734. doi: https://doi.org/10.1007/s11858-008-0096-x
  • Bøe, M. V., Henriksen, E. K., Lyons, T., & Schreiner, C. (2011). Participation in science and technology: Young people's achievement–related choices in late–modern societies. Studies in Science Education, 47(1), 37–72. doi: https://doi.org/10.1080/03057267.2011.549621
  • Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. Springer.
  • Breitenberger, E. (1991). The mathematical knowledge of physics graduates: Primary data and conclusions. American Journal of Physics, 60(4), 318–323. doi: https://doi.org/10.1119/1.16874
  • Burger, R., & Groß, M. (2016). Gerechtigkeit und Studienabbruch. Die Rolle der wahrgenommenen Fairness von Benotungsverfahren bei der Entstehung von Abbruchsintentionen [Fairness and dropout. The role of perceived fairness of grading procedures for the development of study dropout intentions]. Zeitschrift für Erziehungswissenschaft, 19(3), 625–647. doi: https://doi.org/10.1007/s11618-016-0672-8
  • Buschhüter, D., Spoden, C., & Borowski, A. (2016). Mathematische Kenntnisse und Fähigkeiten von Physikstudierenden zu Studienbeginn [Mathematical knowledge and skills of university physics students at start of study]. Zeitschrift für Didaktik der Naturwissenschaften, 22(1), 61–75. doi: https://doi.org/10.1007/s40573-016-0041-4
  • Clauser, B. E., Baldwin, P., Margolis, M. J., Mee, J., & Winward, M. (2017). An experimental study of the internal consistency of judgments made in bookmark standard setting. Journal of Educational Measurement, 54(4), 481–497. doi: https://doi.org/10.1111/jedm.2017.54.issue-4
  • Commons, M. L., & Richards, F. A. (2002). Organizing components into combinations: How stage transition works. Journal of Adult Development, 9(3), 159–177. doi: https://doi.org/10.1023/A:1016047925527
  • Commons, M. L., Trudeau, E. J., Stein, S. A., Richards, F. A., & S. R. Krause (1998). Hierarchical complexity of tasks shows the existence of developmental stages. Developmental Review, 18, 237–278. doi: https://doi.org/10.1006/drev.1998.0467
  • Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why? Current Directions in Psychological Science, 19(1), 51–57. doi: https://doi.org/10.1177/0963721409359277
  • Dawson-Tunik, T. L. (2006). Stage-like patterns in the development of conceptions of energy. In X. Liu & W. J. Boone (Eds.), Applications of rasch measurement in science education (pp. 111–136). JAM Press.
  • Day, E. A., Arthur, W., & Gettman, D. (2001). Knowledge structures and the acquisition of a complex skill. Journal of Applied Psychology, 86(5), 1022–1033. doi: https://doi.org/10.1037/0021-9010.86.5.1022
  • Elton, L. R. B. (2007). Mathematical deficiencies in university entrants. European Journal of Science Education, 2(1), 25–44. doi: https://doi.org/10.1080/0140528800020105
  • Eylon, B., & Reif, F. (1984). Effects of knowledge organization on task performance. Cognition and Instruction, 1(1), 5–44. doi: https://doi.org/10.1207/s1532690xci0101_2
  • Griese, B. (2017). Learning strategies in engineering mathematics: Conceptualisation, development, and evaluation of MP2-MathePlus. Springer Spektrum.
  • Hartig, J. (2007). Skalierung und Definition von Kompetenzniveaus [Scaling and definition of compentency levels]. In B. Beck & E. Klieme (Eds.), Sprachliche Kompetenzen. Konzepte und Messung (pp. 83–99). Beltz.
  • Hartig, J., & Jude, N. (2007). Empirische Erfassung von Kompetenzen und psychometrische Kompetenzmodelle [Empirical analysis of competencies and psychometrical models of competence]. In J. Hartig & E. Klieme (Eds.), Möglichkeiten und Voraussetzungen technologiebasierter Kompetenzdiagnostik: Eine Expertise im Auftrag des Bundesministeriums für Bildung und Forschung (pp. 17–36). BMBF.
  • Hestenes, D., Wells, M., & Swackhammer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141–158. doi: https://doi.org/10.1119/1.2343497
  • Heublein, U., Ebert, J., Hutzsch, C., Isleib, S., König, R., Richter, J., & Woisch, A. (2017). Studienerwartungen und Studienwirklichkeit, Ursachen des Studienabbruchs, beruflicher Verbleib der Studienabbrecherinnen und Studienabbrecher und Entwicklung der Studienabbruchquote an deutschen Hochschulen [Study expectations and reality, causes for dropout, occupational destination of university dropouts and the development of dropout quotes at German universities]. DZHW.
  • IQB, Institut zur Qualitätsentwicklung im Bildungswesen. (2013). Kompetenzstufenmodelle zu den Bildungsstandards im Fach Physik für den Mittleren Schulabschluss: Kompetenzbereiche “Fachwissen” und “Erkenntnisgewinnung”: Entwurf, Stand: 29. Oktober 2013 [Models of competency levels for the educational standards in physics for intermediate education: Competency areas ‘Content Knowledge’ and ‘scientific reasoning’: Draft, 29. October 2013]. Retrieved Stand: 29. Oktober 2013, from http://www.iqb.hu-berlin.de/bista/ksm/KSM_Physik.pdf
  • Jenert, T., Brahm, T., Gommers, L., & Kühner, P. (2017). How do they find their place? A typology of students' enculturation during the first year at a business school. Learning, Culture and Social Interaction, 12, 87–99. doi: https://doi.org/10.1016/j.lcsi.2016.12.001
  • Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Harvard University Press.
  • Kauertz, A., & Fischer, H. E. (2006). Assessing students' level of knowledge and analysing the reasons for learning difficulties in physics by rasch analysis. In X. Liu & W. J. Boone (Eds.), Applications of rasch measurement in science education (pp. 121–246). JAM Press.
  • KFP, Konferenz der Fachbereiche Physik. (2005). Empfehlungen der Konferenz der Fachbereiche Physik (KFP) zu Bachelor- und Master-Studiengängen in Physik [Recommendation of the conference of physics departments (KFP) for bachelor and master study programmes in physics]. KFP.
  • KFP, Konferenz der Fachbereiche Physik. (2010). Zur Konzeption von Bachelor- und Master-Studiengängen in der Physik: Handreichung [Concerning the conception of bachelor and master study programmes in physics: Guidelines]. KFP.
  • Koeppen, K., Hartig, J., Klieme, E., & Leutner, D. (2008). Current issues in competence modeling and assessment. Zeitschrift für Psychologie / Journal of Psychology, 216(2), 61–73. doi: https://doi.org/10.1027/0044-3409.216.2.61
  • Krause, F., & Reiners-Logothetidou, A. (1981). Kenntnisse und Fähigkeiten naturwissenschaftlich orientierter Studienanfänger in Physik und Mathematik: Die Ergebnisse des bundesweiten Studieneingangstests Physik 1978 [Knowledge and skills of study freshmen in science oriented study programmes in physics and mathematics: Results of the national study incoming test]. Universität Bonn.
  • Krauss, S., Baumert, J., & Blum, W. (2008). Secondary mathematics teachers' pedagogical content knowledge and content knowledge: Validation of the COACTIV constructs. The International Journal on Mathematics Education, 40(5), 873–892. https://doi.org/10.1007/s11858-008-0141-9.
  • Kubinger, K. D., Hohensinn, C., Hofer, S., Khorramdel, L., Frebort, M., Holocher-Ertl, S., Reif, M., & Sonnleitner, P. (2011). Designing the test booklets for Rasch model calibration in a large-scale assessment with reference to numerous moderator variables and several ability dimensions. Educational Research and Evaluation, 17(6), 483–495. doi: https://doi.org/10.1080/13803611.2011.632666
  • Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in soar: the anatomy of general learning mechanisms. Machine Learning, 1, 11–46.
  • Leighton, J. P., & Gierl, M. J. (2007). Defining and evaluating models of cognition used in educational measurement to make inferences about examinees' thinking processes. Educational Measurement.
  • Lewis, D., & Lord-Bessen, J. (2018). Standard setting. In W. J. van der Linden (Ed.), Handbook of item response theory (pp. 229–247). CRC Press.
  • Marsh, H. W., & O'Mara, A. (2009). Reciprocal effects between academic self-concept, self-esteem, achievement, and attain-ment over seven adolescent years: Unidimensional and multi-dimensional perspectives of self-concept. Personality and Social Psychology Bulletin, 34, 542–552. doi: https://doi.org/10.1177/0146167207312313
  • Mešić, V., & Muratović, H. (2011). Identifying predictors of physics item difficulty: A linear regression approach. Physical Review Special Topics – Physics Education Research, 7(1).doi: https://doi.org/10.1103/PhysRevSTPER.7.010110
  • Mitzel, H. C., Lewis, D. M., Patz, R. J., & Green, D. R. (2001). The bookmark procedure: Psychological perspectives. In G. J. Cizek (Ed.), Setting performance standards (pp. 249–281). Lawrence Erlbaum.
  • Müller, J. (2019). Studienerfolg in der Physik: Zusammenhang zwischen Modellierungskompetenz und Studienerfolg [Success in studying physics: Interelation between modelling competencies and study success] (Vol. 273). Logos.
  • Müller, J., Stender, A., Fleischer, J., Borowski, A., Dammann, E., Lang, M., & Fischer, H. E. (2018). Mathematisches Wissen von Studienanfängern und Studienerfolg. Zeitschrift für Didaktik der Naturwissenschaften, 22(1), 1–17. doi: https://doi.org/10.1007/s40573-018-0082-y
  • Mullis, I. V. S. (2012). Using scale anchoring to interpret the TIMSS and PIRLS 2011 achievement scales. In M. O. Martin & I. V. S. Mullis (Eds.), Methods and procedures in TIMSS and PIRLS 2011. TIMSS & PIRLS International Study Center, Boston College.
  • Neumann, I., Sorge, S., Jeschke, C., Heinze, A., & Neumann, K. (2016). Zur Academic Buoyancy von Physikstudierenden [About the academic buoyancy of students in physics]. In C. Maurer (Ed.), Authentizität und Lernen – das Fach in der Fachdidaktik (pp. 86–88). Universität Regensburg.
  • Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162–188. doi: https://doi.org/10.1002/tea.v50.2
  • Nienhaus, G. U. (2007). Die Physik auf Bologna-Kurs [Physics on track for Bologna]. Physik Journal, 6(10), 27–30.
  • Nold, G., Rossa, H., & Hartig, J. (2008). Proficiency scaling in DESI listening and reading EFL tests: Task characteristics, item difficulty and cut-off points. In L. Taylor & C. J. Weir (Eds.), Multilingualism and Assessment (pp. 94–116). Cambridge Univ. Press.
  • OECD. (2009). (PISA 2006 Tech. Rep.).
  • Ohle, A. (2010). Primary school teachers' content knowledge in physics and its impact on teaching and students' achievement: Dissertation (Vol. 110). Logos.
  • Osterlind, S. J., & Everson, H. T. (2009). Differential item functioning (2nd ed.). Sage.
  • Planinic, M., Boone, W. J., Susac, A., & Ivanjek, L. (2019). Rasch analysis in physics education research: Why measurement matters. Physical Review Physics Education Research, 15(2), 23. doi: https://doi.org/10.1103/PhysRevPhysEducRes.15.020111
  • Prenzel, M., Häußler, P., Rost, J., & Senkbeil, M. (2002). Der PISA-Naturwissenschaftstest: Lassen sich die Aufgabenschwierigkeiten vorhersagen? [The PISA science test: Can item difficulties be predicted?]. Unterrichtswissenschaft – Zeitschrift für Lernforschung, 30(1), 120–135.
  • Riese, J. (2009). Professionelles Wissen und professionelle Handlungskompetenz von (angehenden) Physiklehrkräften [Professional knowledge and professional competency of (prospective) physics teachers] (Vol. 97). Logos.
  • Robitzsch, A., Kiefer, T., & Wu, M. L. (2017). TAM: Test analysis modules. https://CRAN.R-project.org/package=TAM
  • Schecker, H., Neumann, K., Theyßen, H., Eickhorst, B., & Dickmann, M. (2016). Stufen experimenteller Kompetenz [Levels of experimental competencies]. Zeitschrift für Didaktik der Naturwissenschaften, 22(1), 197–213. doi: https://doi.org/10.1007/s40573-016-0050-3
  • Tinto, V. (1993). Leaving college: Rethinking the causes and cures of student attrition (2nd ed.). University of Chicago Press.
  • Turner, R., Dossey, J., Blum, W., & Niss, M. (2013). Using mathematical competencies to predict item difficulty in PISA: A MEG study. In M. Prenzel, M. Kobarg, K. Schöps, & S. Rönnebeck (Eds.), Research on PISA (pp. 22–37). Springer Netherlands.
  • Vincent-Ruz, P., & Schunn, C. D. (2019). Identity complexes and science identity in early secondary: Mono-topical or in combination with other topical identities. Research in Science Education, 20(4), 13. doi: https://doi.org/10.1007/s11165-019-09882-0
  • von Davier, A. A., Carstensen, C. H., & von Davier, M. (2008). Linking competencies in horizontal, vertical, and longitudinal settings and measuring growth. In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in educational contexts (pp. 121–149). Hogrefe.
  • Wilson, M. (2005). Constructing measures. An item response modelling approach. Lawrence Erlbaum.
  • Woitkowski, D. (2015). Fachliches Wissen Physik in der Hochschulausbildung: Konzeptionalisierung, Messung, Niveaubildung: Dissertation [Physics content knowledge in university education: conceptionalising, measurement, proficiency levels] (Vol. 185). Logos.
  • Woitkowski, D. (2019). Erfolgreicher Wissenserwerb im ersten Semester Physik: Analyse mithilfe eines Niveaumodells [Successful knowledge acquisition in first semester physics: Analysis based on competency levels]. Zeitschrift für Didaktik der Naturwissenschaften, 25(1). doi: https://doi.org/10.1007/s40573-019-00094-7
  • Woitkowski, D., & Riese, J. (2017). Kriterienorientierte Konstruktion eines Kompetenzniveaumodells im physikalischen Fachwissen [Criterion oriented construction of a model of compentency levels in physics content knowledge]. Zeitschrift für Didaktik der Naturwissenschaften, 23(1), 39–52. doi: https://doi.org/10.1007/s40573-016-0054-z
  • Woitkowski, D., Riese, J., & Reinhold, P. (2011). Modellierung fachwissenschaftlicher Kompetenz angehender Physiklehrkräfte [Modelling becoming physics teachers' professional competency]. Zeitschrift für Didaktik der Naturwissenschaften, 17, 289–313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.