870
Views
2
CrossRef citations to date
0
Altmetric
Articles

‘Integration of scientific practices into daily living contexts: a framework for the design of teaching-learning sequences’

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2574-2600 | Received 13 Oct 2019, Accepted 07 Sep 2020, Published online: 22 Sep 2020

References

  • Acher, A. (2014). Cómo facilitar la modelización científica en el aula [How to facilitate the scientific modeling in the classroom]. Tecné, Episteme y Didaxis: TED, 1(36), 63–75. https://doi.org/10.17227/01213814.36ted63.75
  • Adúriz-Bravo, A. (2017). Puentes entre la argumentación y la modelización en la enseñanza de las ciencias [Bridges between argumentation and modeling in science education]. Enseñanza de las Ciencias, extra, 4491–4495.
  • Aikenhead, G. S. (2005). Educación Ciencia-Tecnología-sociedad (CTS) Una buena idea como quiera que se le llame [STS education: A good idea whatever it is called]. Educación Química, 16(2), 304–314. https://doi.org/10.22201/fq.18708404e.2005.2.66121
  • Aragón, M. M., Oliva, J. M., & Navarrete, A. (2013). Evolución de los modelos explicativos de los alumnos en torno al cambio químico a través de una propuesta didáctica con analogías [Development of explanatory models of students about chemical change through a methodological approach with analogies]. Enseñanza de las Ciencias, 31(2), 9–30.
  • Balaguer, L., García, R., & Mantero, M. A. (2006). Yogur “versus” yogur pasteurizado [Yogurt “versus” pasteurized yogurt]. Alambique, Didáctica de las Ciencias Experimentales, 48, 119–123.
  • Barron, B. J. S., Schwartz, D. L., Vye, N. J., Moore, A., Petrosino, A., Zech, L., & Bransford, J. D. (1998). Doing with understanding: Lessons from research on problem and project-based learning. Journal of Learning Sciences, 3, 271–312.
  • Beeth, M. E. (1998). Teaching for conceptual change: Using status as a metacognitive tool. Science Education, 82(3), 343–356. https://doi.org/10.1002/(SICI)1098-237X(199806)82:3<343::AID-SCE3>3.0.CO;2-C
  • Bell, P., Hoadley, C. M., & Linn, M. C. (2004). Design-based research in education. In M. C. Linn, E. A. Davis, & P. Bell (Eds.), Internet environments for science education (pp. 73–84). Lawrence Erlbaum Associates.
  • Blanco-López, A., Franco-Mariscal, A. J., & España-Ramos, E. (2015). Enseñar química en el contexto de problemas y situaciones de la vida diaria relacionados con la salud [Teaching chemistry in the context of problems and situations of everyday life related to health]. Educació Química, 20, 40–47. https://doi.org/10.2436/20.2003.02.150
  • Blanco-López, A., Franco-Mariscal, A. J., & España-Ramos, E. (2016). A competence-based approach to the design of a teaching sequence about oral and dental health and hygiene: A case study. Journal of Biological Education, 50(2), 196–206. https://doi.org/10.1080/00219266.2015.1058838
  • Blumenfeld, P., & Krajcik, J. (2006). Project-based learning. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 333–354). Cambridge University Press.
  • Boronat, R., & López, J. P. (2011). El estudio de la fermentación en el laboratorio de educación secundaria [The studied of the fermentation in compulsory secondary education laboratory]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 8(1), 111–114. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2011.v8.i1.10
  • Bryne, J., & Sharp, J. (2006). Chlidrens’ ideas about micro-organisms. School Science Review, 88(322), 71–79. https://doi.org/10.1080/09500690802688071
  • Buty, C., Tiberghien, A., & Le Maréchal, J. F. (2004). Learning hypotheses and an associated tool to design and to analyse teaching–learning sequences. International Journal of Science Education, 26(5), 579–604. https://doi.org/10.1080/09500690310001614735
  • Caamaño, A. (2011). Contextualización, indagación y modelización. Tres enfoques para el aprendizaje de la competencia científica en las clases de química [Contextualization, inquiry and modeling. Three approaches to learning scientific competence in chemistry classes]. Aula de Innovación Educativa, 207, 17–21.
  • Chen, J., Wang, M., Grotzer, T. A., & Dede, C. (2018). Using a three-dimensional thinking graph to support inquiry learning. Journal of Research in Science Teaching, 55(9), 1239–1263. https://doi.org/10.1002/tea.21450
  • Chevallard, Y. (1998). La transposición didáctica [The didactic transposition]. Aique.
  • Chi, M., Slotta, J., & Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27–43. https://doi.org/10.1016/0959-4752(94)90017-5
  • Couso, D. (2011). Las secuencias didácticas en la enseñanza y el aprendizaje de las ciencias: Modelos para su diseño y validación [Teaching sequences in the teaching and learning of science: Models for its design and validation]. In A. Caamaño (Ed.), Didáctica de la física y la química [Physics and chemistry teaching] (pp. 57–84). Graó.
  • Couso, D. (2013). La elaboración de unidades didácticas competenciales [The development of competence teaching units]. Alambique, Didáctica de las Ciencias Experimentales, 74, 12–24.
  • Couso, D. (2014). “De la moda de “aprender indagando” a la indagación para modelizar: una reflexión crítica” [“From the trend of” learning by inquiring “to the inquiry to model: A critical thinking”]. [Paper presentation]. XXVI Encuentro de Didáctica de las Ciencias Experimentales, Huelva.
  • Davis, J. P., & Bellocchi, A. (2018). Objectivity, subjectivity, and emotion in school science inquiry. Journal of Research in Science Teaching, 55(10), 1419–1447. https://doi.org/10.1002/tea.21461
  • Díaz, R., López, R., García, A., Abuín, G., Nogueira, E., & García, J. A. (1996). ¿Son los alumnos capaces de atribuir a los microorganismos algunas transformaciones de los alimentos? [Are the students able to attribute some transformations of food to microorganisms?]. Enseñanza de las Ciencias, 14(2), 143–153.
  • Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13(1), 105–122. https://doi.org/10.1080/03057268608559933
  • Duit, R., Gropengießer, H., & Kattmann, U. (2005). Towards science education research that is relevant for improving practice: The model of educational reconstruction. In H. Fisher (Ed.), Developing standards in research on science education (pp. 1–9). Taylor and Francis.
  • Edelson, D. C. (2001). Learning-for-use: A framework for integrating content and process learning in the design of inquiry activities. Journal of Research in Science Teaching, 38(3), 355–385. https://doi.org/10.1002/1098-2736(200103)38:3<355::AID-TEA1010>3.0.CO;2-M
  • Erduran, S., & Jiménez-Aleixandre, M. P. (Eds.). (2008). Argumentation in science education: Perspectives from classroom-based research. Springer.
  • España-Ramos, E., Blanco-López, A., & Rueda-Serón, J. A. (2013). Identificación de problemas de la vida diaria como contextos para el desarrollo de la competencia científica [Identification of problems of daily life as contexts for the development of scientific competence]. In P. Membiela, N. Casado, & M. I. Cebreiros (Eds.), Experiencias de investigación e innovación en enseñanza de las ciencias (pp. 169–173). Educación Editora.
  • Franco-Mariscal, A. J. (2015). Competencias científicas en la enseñanza y el aprendizaje por investigación. Un estudio de caso sobre corrosión de metales en secundaria [Scientific competences in teaching and learning through research. A case study about the corrosion of metals in secondary education]. Enseñanza de las Ciencias, 33(2), 231–252. https://doi.org/10.5565/rev/ensciencias.1645
  • Franco-Mariscal, A. J., Blanco-López, A., & España-Ramos, E. (2016). A scheme for the assessment of students’ explanation capacity in an STS problem. A case study on oral cavities. Indagatio Didactica, 8(1), 1000–1016.
  • Georghiades, P. (2000). Beyond conceptual change learning in science education: Focusing on transfer, durability and metacognition. Educational Research, 42(2), 119–139. https://doi.org/10.1080/001318800363773
  • Gil, D. (1993). Contribución de la historia y de la filosofía de las ciencias al desarrollo de un modelo de enseñanza/aprendizaje como investigación [Contribution of the history and philosophy of science to the development of a teaching/learning model as research]. Enseñanza de las Ciencias, 11(2), 197–212.
  • Gilbert, J., Bulte, A., & Pilot, A. (2011). Concept development and transfer in context-based science education. International Journal of Science Education, 33(11), 817–837. https://doi.org/10.1080/09500693.2010.493185
  • Gilbert, J. K., & Justi, R. (2016). Models and modelling in science education. Springer.
  • Gogolin, S., & Krüger, D. (2018). Student’s understanding of the nature and purpose of models. Journal of Research in Science Teaching, 55(9), 1313–1338. https://doi.org/10.1002/tea.21453
  • Grooms, J., Sampson, V., & Enderle, P. (2018). How concept familiarity and experience with scientific argumentation are related to the way groups participate in an episode of argumentation. Journal of Research in Science Teaching, 55(9), 1264–1286. https://doi.org/10.1002/tea.21451
  • Hagger, M., Chatzisarantis, N., Culverhouse, T., & Biddle, S. (2003). The processes by which perceived autonomy support in physical education promotes leisure-time physical activity intentions and behavior: A trans-contextual model. Journal of Educational Psychology, 95(4), 784–795. https://doi.org/10.1037/0022-0663.95.4.784
  • Henderson, J. B., McNeill, K. L., González-Howard, M., Close, K., & Evans, M. (2018). Key challenges and future directions for educational research on scientific argumentation. Journal of Research in Science Teaching, 55(1), 5–18. https://doi.org/10.1002/tea.21412
  • Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645–670. https://doi.org/10.1080/09500690305021
  • Izquierdo, M. (2013). Consideraciones acerca de la diferencia entre ‘contexto del alumno’ y ‘contexto de modelización científica escolar’ y de las dificultades que de ella se derivan [Considerations about the difference between ‘student context’ and ‘school scientific modeling context’ and the difficulties that arise from it]. [Paper presentation] Seminario Perspectivas sobre el contexto en la educación científica: Aproximaciones teóricas e implicaciones para la práctica educativa, Barcelona.
  • Jiménez-Liso, M. R., López-Gay, R., & Márquez, M. M. (2010). Química y cocina: del contexto a la construcción de modelos [Chemistry and cooking: From context to building models]. Alambique, Didáctica de las Ciencias Experimentales, 65, 33–44.
  • Jiménez, N., & Oliva, J. M. (2016). Análisis reflexivo de profesores de ciencias de secundaria en formación inicial en torno a diferentes secuencias didácticas [Reflective analysis of secondary science teachers in initial formation around different didactic sequences]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(2), 423–439. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2016.v13.i2.14
  • King, D., & Ritchie, S. (2012). Learning science through real world contexts. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (pp. 69–77). Springer.
  • Kortland, J. (2007). Context-based science curricula: Exploring the didactical friction between context and science content [Paper presentation] ESERA 2007 Conference. Malmo, Sweden.
  • Kortland, K., & Klaassen, K. (Eds.). (2010). Designing theory-based teaching-learning sequences for science education. Proceedings of the symposium in honour of Piet Lijnse at the time of his retirement as professor of Physics Didactics at Utrecht University. Utrecht: CDBeta Press. Freudenthal Institute for science and mathematics education (FISME), Utrecht University. FISME series on Research in Science Education, 64.
  • Krajcik, J., & Czerniak, C. M. (2007). Teaching science in elementary and middle school: A project-based approach. Erlbaum.
  • Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning-goals-driven design model: Developing curriculum materials that align with national standards and incorporate project-based pedagogy. Science Education, 92(1), 1–32. https://doi.org/10.1002/sce.20240
  • Krajcik, J. S., Reiser, B. J., Sutherland, L. M., & Fortus, D. (Eds.). (2007). Investigating and questioning our world through science and technology. National Science Foundation.
  • Laborde, C., Coquidé, M., & Tiberghien, A. (2002). Situations de formation dans l’enseignement en vue de l’apprentissage du savoir scientifique et mathématique [Situations of training in teaching for the learning of scientific and mathematical knowledge]. In A. Tiberghien (Ed.), Des connaissances naïves au savoir scientifique (Paris: Programme ‘École et sciences cognitives’, ministère de la recherche) [From naive knowledge to scientific knowledge (Paris: School and Cognitive Sciences Program, Ministry of Research)] (pp. 107–143). Presses Universitaires de France.
  • Leach, J., & Scott, P. (2002). Designing and evaluating science teaching sequences: An approach drawing upon the concept of learning demand and a social constructivist perspective on learning. Studies in Science Education, 38(1), 115–142. https://doi.org/10.1080/03057260208560189
  • Lumpe, A. T., Haney, J. J., & Czerniak, C. M. (2000). Assessing teachers’ beliefs about their science teaching context. Journal of Research in Science Teaching, 37(3), 275–292. https://doi.org/10.1002/(SICI)1098-2736(200003)37:3<275::AID-TEA4>3.0.CO;2-2
  • Marchán, I., & Sanmartí, N. (2015). Criterios para el diseño de unidades didácticas contextualizadas: Aplicación al aprendizaje de un modelo teórico para la estructura atómica [Design of contextualized teaching-learning sequences: Application to learning a theoretical model for the atomic structure]. Educación Química, 26(4), 267–274. https://doi.org/10.1016/j.eq.2015.06.001
  • Méheut, M., & Psillos, D. (2004). Teaching-learning sequences: Aims and tools for science education research. International Journal of Science Education, 26(5), 515–535. https://doi.org/10.1080/09500690310001614762
  • Merrill, M. (2007). A task-centered instructional strategy. Journal of Research on Technology in Education, 40, 33–50. https://doi.org/10.1080/15391523.2007.10782493
  • Ministerio de Educación y Ciencia (MEC). (2015). Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato [Royal Decree 1105/2014, of December 26, which establishes the basic curriculum of Compulsory Secondary Education and Baccalaureate].
  • Moon, A., Stanford, C., Cole, R., & Towns, M. (2017). Analysis of inquiry materials to explain complexity of chemical reasoning in physical chemistry students’ argumentation. Journal of Research in Science Teaching, 54(10), 1322–1346. https://doi.org/10.1002/tea.21407
  • Moraga, S. H. (2018). El contexto y la modelización en la enseñanza de la química: Análisis de secuencias de enseñanza y aprendizaje diseñadas por el profesorado de ciencias de educación secundaria en formación inicial [Unpublished doctoral dissertation]. [Context and modeling in chemistry teaching: Analysis of teaching and learning sequences designed by secondary school science teachers in initial training]. Universitat Autónoma de Barcelona.
  • Moreno-Arcuri, G. (2010). Construcción de modelos escolares, en un grupo de primero de secundaria acerca de la fermentación [Construction of school models, in a group of first year high school students about fermentation] [Doctoral dissertation]. Universidad Pedagógica Nacional.
  • Moreno-Arcuri, G., & López, A. (2013). Construcción de modelos en clase acerca del fenómeno de la fermentación, con alumnos de educación secundaria [Fermentation phenomenon classroom model construction with secondary school students]. Revista Latinoamericana de Estudios Educativos (Colombia), 9(1), 53–78. https://doi.org/10.3305/nh.2013.28.6.6856
  • Moreno, L. A., Cervera, P., Ortega, R. M., Díaz, J. J., Baladia, E., Basulto, J., Serrat, S. B., Altaba, I. I., López-Sobaler, A. M., Manera, M., Rodríguez, E. M., Pasías, A. M. S., Babio, N., & Salas, J. (2013). Evidencia científica sobre el papel del yogur y otras leches fermentadas en la alimentación saludable de la población española [Scientific evidence about the role of yogurt and other fermented milks in the healthy diet for the Spanish population]. Nutrición Hospitalaria, 28(6), 2039–2089.
  • Muñoz-Campos, V., Blanco-López, A., & Franco-Mariscal, A. J. (2015). La elaboración de yogur como contexto para el aprendizaje de la reacción química mediante modelización [Making yogurt as a context for learning the chemical reaction through modeling]. In P. Membiela, N. Casado y M. I. Cebreiros (Eds.), La enseñanza de las ciencias: Desafíos y perspectivas [Science teaching: Challenges and perspectives] (pp. 265–269). Educación Editora.
  • Muñoz-Campos, V., Franco-Mariscal, A. J., & Blanco-López, A. (2017). Concepciones previas de estudiantes de ESO sobre aspectos relacionados con el yogur [Misconceptions of secondary students on aspects related to yogurt]. In P. Membiela, N. Casado, M. I. Cebreiros, & M. Vidal (Eds.), La enseñanza de las ciencias en el actual contexto educativo [Science education in the current educational context] (pp. 283–288). Educación Editora.
  • Muñoz-Campos, V., Franco-Mariscal, A. J., & Blanco-López, A. (2018). Modelos mentales de estudiantes de educación secundaria sobre la transformación de la leche en yogur [Secondary students’ mental models about milk transformation into yogurt]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 15(2), 1–20. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2018.v15.i2.2106
  • National Research Council (NRC). (2012). A framework for K-12 science education: Practices crosscutting concepts, and core ideas. National Academy Press.
  • Next Generation Science Standards (NGSS). (2013). Next generation science standards: For states, by states. Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS. www.nextgenscience.org/
  • OECD. (2016). PISA 2015 assessment and analytical framework: Science, reading, mathematic and financial literacy. OECD Publishing.
  • Organisation for Economic Co-operation and Development (OECD). (2002). Definition and selection of competences (DeSeCo): Theoretical and conceptual foundations. Executive Summary. http://www.oecd.org/pisa/35070367.pdf
  • Osborne, J. F., Henderson, J. B., MacPherson, A., Szu, E., Wild, A., & Yao, S. (2016). The development and validation of a learning progression for argumentation in science. Journal of Research in Science Teaching, 53(6), 821–846. https://doi.org/10.1002/tea.21316
  • Parra, R. A. (2012). Yogur en la salud humana [Yogurt and human health]. Revista Lasallista de investigación, 9(2), 162–177.
  • Prins, G. T. (2010). Teaching and learning of modelling in chemistry education. Authentic practices as contexts for learning. CD-ß Press, Freudenthal Institute for Science and Mathematics Education, Utrecht University.
  • Prins, G. T., Bulte, A. M., Van Driel, J. H., & Pilot, A. (2008). Selection of authentic modelling practices as contexts for chemistry education. International Journal of Science Education, 30(14), 1867–1890. https://doi.org/10.1080/09500690701581823
  • Psillos, D., & Kariotoglou, P. (2016). Theoretical issues related to designing and developing teaching-learning sequences. In D. Psillos, & P. Kariotoglou (Eds.), Iterative design of teaching-learning sequences (pp. 11–34). Springer.
  • Salmerón, L. (2013). Actividades que promueven la transferencia de los aprendizajes: Una revisión de la literatura [Activities that promote transfer of learning: A review of the literature]. Revista de Educación, extra, 34–53.
  • Samarapungavan, A., Bryan, L., & Wills, J. (2017). Second graders’ emerging particle models of matter in the context of learning through model-based inquiry. Journal of Research in Science Teaching, 54(8), 988–1023. https://doi.org/10.1002/tea.21394
  • Sampson, V., & Clark, D. (2009). The impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448–484. https://doi.org/10.1002/sce.20306
  • Sánchez, L. (2005). Reestructuración de los modelos explicativos con respecto al concepto de microorganismos asociados a enfermedad, que conlleve a su aplicación en la industria, mediante el aprendizaje significativo con estudiantes de 8ª grado en la institución normal de Envigado [Unpublished doctoral dissertation]. [Restructuring of the explanatory models regarding the concept of microorganisms associated with disease, which leads to its application in the industry, through meaningful learning with 8th grade students in the Envigado institution]. Universidad de Antioquia.
  • Sánchez, G., & Valcárcel, M. (1993). Diseño de unidades didácticas en el área de ciencias experimentales [Design of teaching unit in science education]. Enseñanza de las Ciencias, 11(1), 33–44. https://doi.org/10.4151/07189729-vol.57-iss.1-art.642
  • Sanmartí, N. (2000). El diseño de unidades didácticas [The design of teaching units]. In F. Perales y P. Cañal de León (Eds.), Didáctica de las ciencias experimentales [Teaching of experimental sciences] (pp. 239–266). Editorial Marfil.
  • Sanmartí, N. (2002). Didáctica de las ciencias en la educación secundaria obligatoria [Science education compulsory secondary education]. Síntesis.
  • Sanmartí, N., Burgoa, B., & Nuño, T. (2011). ¿Por qué el alumnado tiene dificultad para utilizar sus conocimientos científicos escolares en situaciones cotidianas? [Why do students find it difficult to use their school science knowledge in everyday situations?]. Alambique, Didáctica de las Ciencias Experimentales, 67, 62–69.
  • Sanmartí, N., & Márquez, C. (2017). Aprendizaje de las ciencias basado en proyectos: del contexto a la acción [Projects based learning science: From context to action]. Ápice, Revista de Educación Científica, 1(1), 3–16. https://doi.org/10.17979/arec.2017.1.1.2020
  • Schwartz, D., & Bransford, J. (1998). A time for telling. Cognition and Instruction, 16(4), 475–522. https://doi.org/10.1207/s1532690xci1604_4
  • Schwartz, R. S., Lederman, N. G., & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science Education, 88(4), 610–645. https://doi.org/10.1002/sce.10128
  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311
  • Simonneaux, L. (2000). A study of pupils’ conceptions and reasoning in connection with ‘microbes’, as a contribution to research in biotechnology education. International Journal of Science Education, 22(6), 619–644. https://doi.org/10.1080/095006900289705
  • Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29(11), 1387–1410. https://doi.org/10.1080/09500690601068095
  • Webb, M. E. (1994). Beginning computer-based modelling in primary schools. Computers & Education, 22(1), 129–144. https://doi.org/10.1016/0360-1315(94)90081-7
  • Zangori, L., Peel, A., Kinslow, A., Friedrichsen, P., & Sadler, T. (2017). Student development of model-based reasoning about carbon cycling and climate change in a socio-scientific issues unit. Journal of Research in Science Teaching, 54(10), 1249–1273. https://doi.org/10.1002/tea.21404

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.