922
Views
5
CrossRef citations to date
0
Altmetric
Articles

The role of the argumentation-based laboratory on the development of pre-service chemistry teachers’ argumentation skills

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 30-55 | Received 25 Nov 2019, Accepted 01 Nov 2020, Published online: 18 Jan 2021

References

  • Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945–1969. https://doi.org/10.1080/09500690701749305
  • Ananiadou, K., & Claro, M. (2009). 21st century skills and competences for new millennium learners in OECD countries. OECD Education Working Papers, No. 41, OECD Publishing. http://dx.doi.org/10.1787/218525261154d
  • Arslan, M., & Nacaroğlu, O. (2020). Özel Yetenekli Öğrencilerin Öklid’in 5. Postulatı ile Öklid dışı Geometriler Hakkındaki Farkındalıklarının İncelenmesi. International Journal of Educational Studies in Mathematics, 7(1), 14–25. https://dergipark.org.tr/tr/pub/ijesim/issue/53193/646536
  • Aydeniz, M., Pabuccu, A., Cetin, P. S., & Kaya, E. (2012). Impact of argumentation on college students’ conceptual understanding of properties and behaviors of gases. International Journal of Science and Mathematics Education, 10(6), 1303–1324. https://doi.org/10.1007/s10763-012-9336-1
  • Burke, K. A., Greenbowe, T. J., & Hand, B. M. (2006). Implementing the science writing heuristic in the chemistry laboratory. Journal of Chemical Education, 83(7), 1032–1038. https://doi.org/10.1021/ed083p1032
  • Cebrián-Robles, D., Franco-Mariscal, A.-J., & Blanco-López, Á. (2018). Preservice elementary science teachers’ argumentation competence: Impact of a training programme. Instructional Science, 46(5), 789–817. https://doi.org/10.1007/s11251-018-9446-4
  • Chen, Y. C., Park, S., & Hand, B. (2016). Examining the use of talk and writing for students’ development of scientific conceptual knowledge through constructing and critiquing arguments. Cognition and Instruction, 34(2), 100–147. https://doi.org/10.1080/07370008.2016.1145120
  • Chin, C., & Osborne, J. (2010). Supporting argumentation through students’ questions: Case studies in science classrooms. Journal of the Learning Sciences, 19(2), 230–284. https://doi.org/10.1080/10508400903530036
  • Choi, A. (2008). A study of student written argument using the science writing heuristic approach in inquiry-based freshman general chemistry laboratory classes [Unpublished doctoral dissertation]. University of Iowa, Iowa City, IA.
  • Choi, A., Hand, B., & Greenbowe, T. (2013). Students’ written arguments in general chemistry laboratory investigations. Research in Science Education, 43(5), 1763–1783. https://doi.org/10.1007/s11165-012-9330-1
  • Creswell, J. W. (2007). Qualitative inquiry & research design: Choosing among five approaches (2nd ed.). Sage.
  • Creswell, J. W. (2009). Research design qualitative, quantitative, and mixed Methods Approaches. Sage.
  • Cross, D., Taasoobshirazi, G., Hendricks, S., & Hickey, D. T. (2008). Argumentation: A strategy for improving achievement and revealing scientific identities. International Journal of Science Education, 30(6), 837–861. https://doi.org/10.1080/09500690701411567
  • Day, R. (2004). Visual cognition in understanding biology labs; can it be connected to conceptual change. A paper presented at the National Association of research in science teaching Conference, Vancouver, Canada, April 1-3.
  • de Sá Ibraim, S., & Justi, R. (2016). Teachers’ knowledge in argumentation: Contributions from an explicit teaching in an initial teacher education programme. International Journal of Science Education, 38(12), 1996–2025. https://doi.org/10.1080/09500693.2016.1221546
  • Denzin, N. K. (1978). The research act: A theoretical introduction to sociological methods (2nd ed.). McGraw-Hill.
  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  • Duschl, R. A. (2007). Quality argumentation and epistemic criteria. In S. Erduran, & M. P. Jiménez Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 159–175). Springer Netherlands.
  • Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39–72. https://doi.org/10.1080/03057260208560187
  • Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915–933. https://doi.org/10.1002/sce.20012
  • Fishman, E. J., Borko, H., Osborne, J., Gomez, F., Rafanelli, S., Reigh, E., Tseng, A., Million, S., & Berson, E. (2017). A practice-based professional development program to support scientific argumentation from evidence in the elementary classroom. Journal of Science Teacher Education, 28(3), 222–249. https://doi.org/10.1080/1046560X.2017.1302727
  • Gabel, D. L. (1993). Use of the particle nature of matter in developing conceptual understanding. Journal of Chemical Education, 70(3), 193–194. https://doi.org/10.1021/ed070p193
  • Garcia-Mila, M., & Andersen, C. (2007). Cognitive foundations of learning argumentation. In S. Erduran, & M. P. Jiménez Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 29–45). Springer Netherlands.
  • Greenbowe, T. J., & Hand, B. (2005). Introduction to the science writing heuristic. In N. J. Pienta, M. M. Cooper, & T. J. Greenbowe (Eds.), Chemists’ guide to effective teaching (pp. 140–154). Prentice-Hall.
  • Greenbowe, T. J., Poock, J. R., Burke, K. A., & Hand, B. M. (2007). Using the science writing heuristic in the general chemistry laboratory to improve students’ academic performance. Journal of Chemical Education, 84(8), 1371–1379. https://doi.org/10.1021/ed084p1371
  • Griffin, P., & Care, E. (2014). Assessment and teaching of 21st century skills: Methods and approach. Springer.
  • Guler, C., & Dogru, M. (2017). The effect of “argument-based science inquiry” approach on science teacher Candidates’ academic Achievements. International Online Journal of Education and Teaching (IOJET), 4(3), 229–244. Retrieved from http://iojet.org/index.php/IOJET/article/view/185/170
  • Hand, B., & Choi, A. (2010). Examining the impact of student use of multiple modal representations in constructing arguments in organic chemistry laboratory classes. Research in Science Education, 40(1), 29–44. https://doi.org/10.1007/s11165-009-9155-8
  • Hand, B., Park, S., Suh, J. K., & Bae, Y. (2017). Teacher orientation as a critical factor in promoting science literacy. In O. Finlayson, E. McLoughlin, S. Erduran, & P. Childs (Eds.), European science education research association (pp. 21–25). Dublin City University.
  • Hand, B., Shelley, M. C., Laugerman, M., Fostvedt, L., & Therrien, W. (2018). Improving critical thinking growth for disadvantaged groups within elementary school science: A randomized controlled trial using the science writing heuristic approach. Science Education, 102(4), 693–710. https://doi.org/10.1002/sce.21341
  • Hand, B., Wallace, C., & Yang, E. (2004). Using the science writing heuristic to enhance learning outcomes from laboratory activities in seventh grade science: Quantitative and qualitative aspects. International Journal of Science Education, 26(2), 131–149. https://doi.org/10.1080/0950069032000070252
  • Hinton, M. E., & Nakhleh, M. B. (1999). Students’ microscopic, macroscopic, and symbolic representations of chemical reactions. The Chemical Educator, 4(5), 158–167. https://doi.org/10.1007/s00897990325a
  • Hofstein, A., Kipnis, M., & Kind, P. M. (2008). Learning in and from science laboratories: Enhancing students’ meta-cognition and argumentation skills. In C. L. Petroselli (Ed.), Science education issues and developments (pp. 59–94). Nova Science.
  • Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54. https://doi.org/10.1002/sce.10106
  • Iordanou, K., & Constantinou, C. (2014). Developing pre-service teachers’ evidence-based argumentation skills on socio-scientific issues. Learning and Instruction, 34, 42–57. https://doi.org/10.1016/j.learninstruc.2014.07.004
  • Irwanto, I., Saputro, A. D., Rohaeti, E., & Prodjosantoso, A. K. (2018). Promoting critical thinking and problem solving skills of pre-service elementary teachers through process-oriented guided-inquiry learning (POGIL). International Journal of Instruction, 11(4), 777–794. https://doi.org/10.12973/iji.2018.11449a
  • Jaber, L. Z., & BouJaoude, S. (2012). A macro–micro–symbolic teaching to promote relational understanding of chemical reactions. International Journal of Science Education, 34(7), 973–998. https://doi.org/10.1080/09500693.2011.569959
  • Jiménez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In S. Erduran, & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from Classroom-based research (ss. 3–28). Springer.
  • Jimenez-Aleixandre, M., Rodriguez, A., & Duschl, R. (2000). ‘Doing the lesson’ or ‘doing science’: Argument in high school genetics. Science Education, 84(6), 757–792.https://doi.org/<757::AID-SCE5>3.0.CO;2-F
  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x
  • Katchevich, D., Hofstein, A., & Mamlok-Naaman, R. (2013). Argumentation in the chemistry laboratory: Inquiry and confirmatory experiments. Research in Science Education, 43(1), 317–345. https://doi.org/10.1007/s11165-011-9267-9
  • Kaya, E. (2013). Argumentation practices in classroom: Pre-service teachers’ conceptual understanding of chemical equilibrium. International Journal of Science Education, 35(7), 1139–1158. https://doi.org/10.1080/09500693.2013.770935
  • Keys, C. W., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36(10), 1065–1084. https://doi.org/10.1002/(SICI)1098-2736(199912)36:10<1065::AID-TEA2>3.0.CO;2-I
  • Kind, P. M., Kind, V., Hofstein, A., & Wilson, J. (2011). Peer argumentation in the school science laboratory exploring effects of task features. International Journal of Science Education, 33(18), 2527–2558. https://doi.org/10.1080/09500693.2010.550952
  • Kinik Topalsan, A, & Bayram, H. (2017). Eliminate with Created Argument Environment after Evaluated and Categorized Misconceptions in an Ontological Sense. Eurasian Journal of Educational Research, 69, 1–19. doi:10.14689/ejer.2017.69.1
  • Klein, P., Boscolo, P., Kirkpatrick, L., & Gelati, C. (Eds.). (2014). Writing as a learning activity. Brill.
  • Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(9), 949–968. https://doi.org/10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
  • Kuhn, D. (1991). The skills of argument. Cambridge University Press.
  • Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824. https://doi.org/10.1002/sce.20395
  • Kuhn, T. E. (1962). The structure of scientific revolutions. University of Chicago Press.
  • Kuhn, D., & Katz, J. (2009). Are self-explanations always beneficial? Journal of Experimental Child Psychology, 103(3), 386–394. https://doi.org/10.1016/j.jecp.2009.03.003
  • Lee, K. W. L. (1999). A comparison of university lecturers’ and pre-service teachers’ understanding of a chemical reaction at the particulate level. Journal of Chemical Education, 76(7), 1008–1012. https://doi.org/10.1021/ed076p1008
  • Lincoln, Y, & Guba, E. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.
  • Liu, S., & Roehrig, G. (2019). Exploring science teachers’ argumentation and personal epistemology about global climate change. Research in Science Education, 49(1), 173–189. https://doi.org/10.1007/s11165-017-9617-3
  • Martín-Gámez, C., & Erduran, S. (2018). Understanding argumentation about socio-scientific issues on energy: A quantitative study with primary pre-service teachers in Spain. Research in Science & Technological Education, 36(4), 463–483. https://doi.org/10.1080/02635143.2018.1427568
  • Merriam, S. B., & Tisdell, E. J. (2016). Qualitative research: A guide to design and implementation. John Wiley & Sons.
  • Millar, R., & Osborne, J. F. (Eds.). (1998). Beyond 2000: Science education for the future. Nuffield Foundation.
  • Murphy, P. K., Greene, J. A., Allen, E., Baszczewski, S., Swearingen, A., Wei, L., & Butler, A. M. (2018). Fostering high school students’ conceptual understanding and argumentation performance in science through quality talk discussions. Science Education, 102(6), 1239–1264. https://doi.org/10.1002/sce.21471
  • Nakhleh, M. B., & Krajcik, J. S. (1994). Influence of levels of information as presented by different technologies on students’ understanding of acid, base, and pH concepts. Journal of Research in Science Teaching, 31(10), 1077–1096. https://doi.org/10.1002/tea.3660311004
  • Osborne, J. F., Borko, H., Fishman, E., Gomez Zaccarelli, F., Berson, E., Busch, K. C., & Tseng, A. (2019). Impacts of a practice-based professional development program on elementary teachers’ facilitation of and student engagement with scientific argumentation. American Educational Research Journal, 56(4), 1067–1112. https://doi.org/10.3102/0002831218812059
  • Özdem Yilmaz, Y., Cakiroglu, J., Ertepinar, H., & Erduran, S. (2017). The pedagogy of argumentation in science education: Science teachers’ instructional practices, International Journal of Science Education, 39(11), 1443-1464. https://doi.org/10.1080/09500693.2017.1336807
  • Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modeling classrooms. International Journal of Science Education, 34(10), 1535–1554. https://doi.org/10.1080/09500693.2011.577842
  • Robertshaw, B., & Campbell, T. (2013). Constructing arguments: Investigating pre-service science teachers’ argumentation skills in a socio-scientific context. Science Education International, 24(2), 195–211. Retrieved from https://files.eric.ed.gov/fulltext/EJ1015818.pdf
  • Sadler, T. D. (2006). Promoting discourse and argumentation in science teacher education. Journal of Science Teacher Education, 17(4), 323–346. https://doi.org/10.1007/s10972-006-9025-4
  • Sampson, V., & Blanchard, M. R. (2012). Science teachers and scientific argumentation: Trends in views and practice. Journal of Research in Science Teaching, 49(9), 1122–1148. https://doi.org/10.1002/tea.21037
  • Sampson, V., Enderle, P., Grooms, J., & Witte, S. (2013). Writing to learn by learning to write during the school science laboratory: Helping middle and high school students develop argumentative writing skills as they learn core ideas. Science Education, 97(5), 643–670. https://doi.org/10.1002/sce.21069
  • Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23–55. https://doi.org/10.1207/s1532690xci2301_2
  • Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260. https://doi.org/10.1080/09500690500336957
  • Taber, K. S. (2009). Learning at the symbolic level. In J. Gilbert, & D. F. Treagust (Authors), Multiple representations in chemical education (pp. 75–105). Springer.
  • Toulmin, S. (1958). The uses of argument. Cambridge University Press.
  • Van Eemeren, F. H., & Grootendorst, R. (2004). A systematic theory of argumentation: The pragma-dialectic approach. Cambridge University Press.
  • Van Eemeren, F. H., Grootendorst, R., Henkemans, F. S., Blair, J. A., Johnson, R. H., & Krabbe, E. C. W. (1996). Fundamentals of argumentation theory: A handbook of historical back- grounds and contemporary developments. Lawrence Erlbaum.
  • Venville, G. J., & Dawson, V. M. (2010). The impact of a classroom intervention on grade 10 students’ argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47(8), 952–977. https://doi.org/10.1002/tea.20358
  • Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131. https://doi.org/10.1002/tea.20213
  • Vygotsky, L. S. (1978). Mind in society: The development of higher mental process. Harvard University Press.
  • Walker, J. P., Sampson, V., & Zimmerman, C. O. (2011). Argument-driven inquiry: An introduction to a new instructional model for use in undergraduate chemistry labs. Journal of Chemical Education, 88(8), 1048–1056. https://doi.org/10.1021/ed100622h
  • Watson, J. R., Swain, J. R. L., & McRobbie, C. (2004). Students’ discussions in practical scientific inquiries. Research report. International Journal of Science Education, 26(1), 25–45. https://doi.org/10.1080/0950069032000072764
  • Wilson, C. D., Taylor, J. A., Kowalski, S. M., & Carlson, J. (2010). The relative effects and equity of inquiry-based and commonplace science teaching on students’ knowledge, reasoning, and argumentation. Journal of Research in Science Teaching, 47(3), 276–301. https://doi.org/10.1002/tea.20329
  • Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967. https://doi.org/10.1002/sce.20259
  • Yaman, F. (2018). Pre-service science teachers’ development and use of multiple levels of representation and written arguments in general chemistry laboratory courses. Research in Science Education, 1, https://doi.org/10.1007/s11165-018-9781-0
  • Zeidler, D L. (1997). The central role of fallacious thinking in science education. Science Education, 81(4). https://doi.org/10.1002/(SICI)1098-237X(199707)81:4<483::AID-SCE7>3.0.CO;2-8
  • Zembal-Saul, C., Munford, D., Crawford, B., Friedrichsen, P., & Land, S. (2002). Scaffolding pre- service science teachers’ evidence-based arguments during an investigation of natural selection. Research in Science Education, 32(4), 437–463. https://doi.org/10.1023/A:1022411822951
  • Zohar, A. (2008). Science teacher education and professional development in argumentation. In S. Erduran, & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 245–268). Springer.
  • Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62. https://doi.org/10.1002/tea.10008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.