825
Views
4
CrossRef citations to date
0
Altmetric
Articles

Physics demonstrations: who are the students appreciating them?

ORCID Icon & ORCID Icon
Pages 529-551 | Received 08 Oct 2019, Accepted 30 Dec 2020, Published online: 24 Jan 2021

References

  • Abrahams, I. (2009). Does practical work really motivate? A study of the affective value of practical work in secondary school science. International Journal of Science Education, 31(17), 2335–2353. https://doi.org/10.1080/09500690802342836
  • Adar, L. (1969). A theoretical framework for the study of motivation in education. School of Education, Hebrew University.
  • Bacher, J., Wenzig, K., & Vogler, M. (2004). SPSS TwoStep cluster – A first evaluation. Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Soziologie.
  • Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, 3(2), 77–85. https://doi.org/10.1111/j.2044-8317.1950.tb00285.x
  • Basheer, A., Hugerat, M., Kortam, N., & Hofstein, A. (2017). The effectiveness of teachers’ use of demonstrations for enhancing students’ understanding of and attitudes to learning the oxidation-reduction concept. Eurasia Journal of Mathematics, Science and Technology Education, 13(3), 555–570. https://doi.org/10.12973/eurasia.2017.00632a
  • Bøe, M. V., & Henriksen, E. K. (2013). Love it or leave it: Norwegian students’ motivations and expectations for postcompulsory physics. Science Education, 97(4), 550–573. https://doi.org/10.1002/sce.21068
  • Caleon, I., & Subramaniam, R. (2005). The impact of a cryogenics-based enrichment programme on attitude towards science and the learning of science concepts. International Journal of Science Education, 27(6), 679–704. https://doi.org/10.1080/09500690500038306
  • Choi, J., Mogami, T., & Medalia, A. (2010). Intrinsic motivation inventory: An adapted measure for schizophrenia research. Schizophrenia Bulletin, 36(5), 966–976. https://doi.org/10.1093/schbul/sbp030
  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155
  • Cohen, J. (1998). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates.
  • Cortright, R. N., Lujan, H. L., Blumberg, A. J., Cox, J. H., & DiCarlo, S. E. (2013). Higher levels of intrinsic motivation are related to higher levels of class performance for male but not female students. Advances in Physiology Education, 37(3), 227–232. https://doi.org/10.1152/advan.00018.2013
  • Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10(7), 1–9. https://doi.org/10.7275/jyj1-4868
  • Coutts, R., Gilleard, W., & Baglin, R. (2011). Evidence for the impact of assessment on mood and motivation in first-year students. Studies in Higher Education, 36(3), 291–300. https://doi.org/10.1080/03075079.2010.523892
  • Crouch, C. H., Fagen, A. P., Callan, J. P., & Mazur, E. (2004). Classroom demonstrations: Learning tools or entertainment? American Journal of Physics, 72(6), 835–838. https://doi.org/10.1119/1.1707018
  • Cunningham, H. A. (1920). Individual laboratory work vs. lecture demonstration. University of Illinois Bulletin, 17, 104–107.
  • Deci, E. L., & Ryan, R. M. (1975). Intrinsic motivation. Plenum.
  • Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Plenum.
  • Deci, E. L., Vallerand, R. J., Pelletier, L. G., & Ryan, R. M. (1991). Motivation and education: The self-determination perspective. The Educational Psychologist, 26(3), 325–346. https://doi.org/10.1207/s15326985ep2603&4_6
  • DeWitt, J., Archer, L., & Moote, J. (2019). 15/16-Year-old students’ reasons for choosing and not choosing physics at a level. International Journal of Science and Mathematics Education, 17(6), 1071–1087. https://doi.org/10.1007/s10763-018-9900-4
  • Dohn, N. B., Madsen, P. T., & Malte, H. (2009). The situational interest of undergraduate students in zoophysiology. Advances in Physiology Education, 33(3), 196–20. https://doi.org/10.1152/advan.00038.2009
  • Downing, E. R. (1931). Methods in science teaching. Journal of Higher Education, 2(6), 316–320. https://doi.org/10.2307/1974818
  • Elliott, A. C., & Woodward, W. A. (2006). Statistical analysis quick reference guidebook: With SPSS examples. SAGE Publications Inc.
  • Erinosho, S. Y. (2013). How do students perceive the difficulty of physics in secondary school? An exploratory study in Nigeria. International Journal for Cross-Disciplinary Subjects in Education, 3(3), 1510–1515. https://doi.org/10.20533/ijcdse.2042.6364.2013.0212
  • Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. https://doi.org/10.1037/1082-989X.4.3.272
  • Field, A. (2009). Discovering statistics using SPSS. SAGE.
  • Gibbens, B. (2019). Measuring student motivation in an introductory biology class. The American Biology Teacher, 81(1), 20–26. https://doi.org/10.1525/abt.2019.81.1.20
  • Harackiewicz, J. M., Smith, J. L., & Priniski, S. J. (2016). Interest matters: The importance of promoting interest in education. Policy Insights from the Behavioral and Brain Sciences, 3(2), 220–227. https://doi.org/10.1177/2372732216655542
  • Hazari, Z., Tai, R. H., & Sadler, P. M. (2007). Gender differences in introductory university physics performance: The influence of high school physics preparation and affective factors. Science Education, 91(6), 847–876. https://doi.org/10.1002/sce.20223
  • Hidi, S. E. (2000). An interest researcher’s perspective: The effects of extrinsic and intrinsic factors on motivation. In C. Sansone & J. M. Harackiewicz (Eds.), Intrinsic and extrinsic motivation (pp. 309–339). Academic Press.
  • Hidi, S., & Harackiewicz, J. M. (2000). Motivating the academically unmotivated: A critical issue for the 21st century. Review of Educational Research, 70(2), 151–179. https://doi.org/10.3102/00346543070002151
  • Hidi, S. E., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127. https://doi.org/10.1207/s15326985ep4102_4
  • Hoffstein, A., & Kempa, R. F. (1985). Motivating strategies in science education: Attempt at an analysis. The European Journal of Science Education, 7(3), 221–229. https://doi.org/10.1080/0140528850070301
  • Jenkins, E. W., & Nelson, N. W. (2005). Important but not for me: Students’ attitudes towards secondary school science in England. Research in Science & Technological Education, 23(1), 41–57. https://doi.org/10.1080/02635140500068435
  • Józsa, K., & Morgan, G. A. (2017). Reversed items in Likert scales: Filtering out invalid responders. Journal of Psychological and Educational Research, 25(1), 7–25.
  • Kahle, J. B., & Meece, J. (1994). Research on gender issues in the classroom. In D. L. Gabel (Ed.), Handbook of research in science teaching and learning (pp. 543–557). Macmillan.
  • Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401–415. https://doi.org/10.1007/BF02291817
  • Kempa, R. F., & Diaz, M. M. (1990). Motivational traits and preferences for different instructional modes in science. International Journal of Science Education, 12(2), 195–203. https://doi.org/10.1080/0950069900120208
  • Kinne, L. J., & Zacate, M. O. (2014). The physics demonstration show: A force for learning and increasing interest in science? Delta Journal of Education, 4(1), 38–55.
  • Kintu, M. J., Zhu, C., & Kagambe, E. (2017). Blended learning effectiveness: The relationship between student characteristics, design features and outcomes. International Journal of Educational Technology in Higher Education, 14(1), 7. https://doi.org/10.1186/s41239-017-0043-4
  • Kokott, K., Lengersdorf, D., & Schlüter, K. (2018). Gender construction in experiment-based biology lessons. Education Sciences, 8(3), 115. https://doi.org/10.3390/educsci8030115
  • Korsun, I. (2017). The use of interdisciplinary approach for the formation of learners’ situational interest in Physics. Asia-Pacific Forum on Science Learning and Teaching, 18(2), 1–18.
  • Lavonen, J., Byman, R., Juuti, K., Meisalo, V., & Uitto, A. (2005). Pupil interest in physics: A survey in Finland. Nordina, 1(2), 72–85. https://doi.org/10.5617/nordina.486
  • Lengyel, A., & Botta-Dukát, Z. (2019). Silhouette width using generalized mean – A flexible method for assessing clustering efficiency. Ecology and Evolution, 9(23), 13231–13243. https://doi.org/10.1002/ece3.5774
  • Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22(140), 1–55.
  • Lin, H., Hong, Z.-R., & Chen, Y.-C. (2013). Exploring the development of college students’ situational interest in learning science. International Journal of Science Education, 35(13), 2152–2173. https://doi.org/10.1080/09500693.2013.818261
  • Linnenbrink-Garcia, L., Durik, A. M., Conley, A. M., Barron, K. E., Tauer, J. M., Karabenick, S. A., & Harackiewicz, J. M. (2010). Measuring situational interest in academic domains. Educational and Psychological Measurement, 70(4), 647–671. https://doi.org/10.1177/0013164409355699
  • Loukomies, A., Pnevmatikos, D., Lavonen, J., Spyrtou, A., Byman, R., Kariotoglou, P., & Juuti, K. (2013). Promoting students’ interest and motivation towards science learning: The role of personal needs and motivation orientations. Research in Science Education, 43(6), 2517–2539. https://doi.org/10.1007/s11165-013-9370-1
  • McCrory, P. (2013). In defence of the classroom science demonstration. School Science Review, 95(350), 81–87.
  • Monteiro, V., Mata, L., & Peixoto, F. (2015). Intrinsic motivation inventory: Psychometric properties in the context of first language and mathematics learning. Psicologia: Reflexão e Crítica, 28(3), 434–443. https://doi.org/10.1590/1678-7153.201528302
  • Murphy, P. (2005). Gender differences in pupils’ reactions to practical work. In R. Levinson (Ed.), Teaching Science (pp. 131–143). Routledge.
  • Odom, A. L., & Bell, C. V. (2015). Associations of middle school student science achievement and attitudes about science with student-reported frequency of teacher lecture demonstrations and student-centered learning. International Journal of Environmental and Science Education, 10(1), 87–97.
  • Palmer, D. H. (2009). Student interest generated during an inquiry skills lesson. Journal of Research in Science Teaching, 46(2), 147–165. https://doi.org/10.1002/tea.20263
  • Palmer, D., Dixon, J., & Archer, J. (2017). Using situational interest to enhance individual interest and science-related behaviours. Research in Science Education, 47(4), 731–753. https://doi.org/10.1007/s11165-016-9526-x
  • Pavelková, I., Škaloudová, A., & Hrabal, V. (2010). Analýza vyučovacích předmětů na základě výpovědí žáků. [Analysis of school subjects on the basis of the testimony of pupils]. Pedagogika, 60(1), 38–61.
  • Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85–129. https://doi.org/10.1080/03057267.2014.881626
  • Price, D. S., & Brooks, D. W. (2012). Extensiveness and perceptions of lecture demonstrations in the high school chemistry classroom. Chemistry Education Research and Practice, 13(4), 420–427. https://doi.org/10.1039/C2RP20014G
  • Pugh, D. B. (1927). A comparison of the lecture-demonstration and individual laboratory methods of performing chemistry experiments, as measured by non-standardized objective tests. High School Teacher, 3, 384–387.
  • Reid, N., & Skryabina, E. A. (2003). Gender and physics. International Journal of Science Education, 25(4), 509–536. https://doi.org/10.1080/0950069022000017270
  • Renninger, K. A., Ewen, L., & Lasher, A. K. (2002). Individual interest as context in expository text and mathematical word problems. Learning and Instruction, 12(4), 467–491. https://doi.org/10.1016/S0959-4752(01)00012-3
  • Renninger, K. A., & Hidi, S. E. (2016). The power of interest for motivation and engagement. Routledge.
  • Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(1), 53–65. https://doi.org/10.1016/0377-0427(87)90125-7
  • Ryan, R. M. (1982). Control and information in the intrapersonal sphere: An extension of cognitive evaluation theory. Journal of Personality and Social Psychology, 43(3), 450–461. https://doi.org/10.1037/0022-3514.43.3.450
  • Ryan, R. M., Connell, J. P., & Plant, R. W. (1990). Emotions in non-directed text learning. Learning and Individual Differences, 2(1), 1–17. https://doi.org/10.1016/1041-6080(90)90014-8
  • Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. https://doi.org/10.1006/ceps.1999.1020
  • Schiefele, U. (2009). Situational and individual interest. In K. R. Wentzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 197–222). Routledge.
  • Snětinová, M., Kácovský, P., & Machalická, J. (2018). Hands-on experiments in the interactive physics laboratory: Students’ intrinsic motivation and understanding. Center for Educational Policy Studies Journal, 8(1), 55–75. https://doi.org/10.26529/cepsj.319
  • Sokoloff, D. R., & Thornton, R. K. (2004). Interactive lecture demonstrations: Active learning in introductory physics. John Wiley & Sons.
  • Suárez-Alvarez, J., Pedrosa, I., Lozano, L. M., García-Cueto, E., Cuesta, M., & Muñiz, J. (2018). Using reversed items in Likert scales: A questionable practice. Psicothema, 30(2), 149–158. https://doi.org/10.7334/psicothema2018.33
  • Tas, C., Brown, E. C., Esen-Danaci, A., Lysaker, P. H., & Brüne, M. (2012). Intrinsic motivation and metacognition as predictors of learning potential in patients with remitted schizophrenia. Journal of Psychiatric Research, 46(8), 1086–1092. https://doi.org/10.1016/j.jpsychires.2012.04.027
  • Taskinen, P. H., Schütte, K., & Prenzel, M. (2013). Adolescents’ motivation to select an academic science-related career: The role of school factors, individual interest, and science self-concept. Educational Research and Evaluation, 19(8), 717–733. https://doi.org/10.1080/13803611.2013.853620
  • Trumper, R. (2006). Factors affecting junior high school students' interest in physics. Journal of Science Education and Technology, 15(1), 47–58. http://dx.doi.org/10.1007/s10956-006-0355-6
  • Vaino, K., Holbrook, J., & Rannikmäe, M. (2012). Stimulating students’ intrinsic motivation for learning chemistry through the use of context-based learning modules. Chemistry Education Research and Practice, 13(4), 410–419. https://doi.org/10.1039/C2RP20045G
  • Watson, J., McEwen, A., & Dawson, S. (1994). Sixth form A-level students’ perceptions of the difficulty, intellectual freedom and interest of science and arts subjects. Research in Science & Technological Education, 12(1), 43–51. https://doi.org/10.1080/0263514940120106
  • Weinburgh, M. (1995). Gender differences in student attitudes toward science: A meta-analysis of the literature from 1970 to 1991. Journal of Research in Science Teaching, 32(4), 387–398. http://dx.doi.org/10.1002/(ISSN)1098-2736
  • Wiley, W. H. (1918). An experimental study of methods of teaching high school chemistry. Journal of Educational Psychology, 9(4), 181–198. https://doi.org/10.1037/h0070825
  • Williams, C., Stanisstreet, M., Spall, K., Boyes, E., & Dickson, D. (2003). Why aren’t secondary students interested in physics? Physics Education, 38(4), 324–329. https://doi.org/10.1088/0031-9120/38/4/306
  • Wulff, P., Hazari, Z., Petersen, S., & Neumann, K. (2018). Engaging young women in physics: An intervention to support young women’s physics identity development. Physical Review Physics Education Research, 14(2), 020113. https://doi.org/10.1103/PhysRevPhysEducRes.14.020113

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.