1,220
Views
0
CrossRef citations to date
0
Altmetric
Articles

Interdisciplinary STEM program on authentic aerosol science research and students’ systems thinking approach in problem-solving

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1419-1439 | Received 13 Sep 2021, Accepted 18 May 2022, Published online: 27 May 2022

References

  • Alcaraz-Dominguez, S., & Barajas, M. (2021). Conceiving socioscientific issues in STEM lessons from science education research and practice. Education Sciences, 11(5), Article 238. https://www.mdpi.com/2227-7102/11/5/238. https://doi.org/10.3390/educsci11050238
  • Anderson, J. R., Reder, L. M., & Simon, H. A. (1996). Situated learning and education. Educational Researcher, 25(4), 5–11. https://doi.org/10.3102/0013189X025004005
  • Assaraf, O. B.-Z., & Orion, N. (2005). Development of system thinking skills in the context of earth system education. Journal of Research in Science Teaching, 42(5), 518–560. https://doi.org/10.1002/tea.20061
  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn (Vol. 11). National Academy Press.
  • Braun, V., & Clarke, V. (2012). Thematic analysis (APA handbook of research methods in psychology, Vol 2: Research designs: Quantitative, qualitative, neuropsychological, and biological (pp. 57–71). American Psychological Association. https://doi.org/10.1037/13620-004
  • Braund, M., & Reiss, M. (2006). Towards a more authentic science curriculum: The contribution of out-of-school learning. International Journal of Science Education, 28(12), 1373–1388. https://doi.org/10.1080/09500690500498419
  • Bulte, A. M. W., Westbroek, H. B., de Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28(9), 1063–1086. https://doi.org/10.1080/09500690600702520
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA Press.
  • Carslaw, K., Spracklen, D., Mann, G., & Pringle, K. (2021). Aerosols and climate. University of Leeds. Retrieved June 5, 2021 from https://environment.leeds.ac.uk/atmospheric-chemistry-aerosols/doc/aerosols-climate
  • Chi, M. T., Glasser, R., & Farr, M. J. (2014). The nature of expertise. Psychology Press.
  • Christenson, N, Chang Rundgren, S.-N, & Höglund, H.-O. (2012). Using the SEE-SEP Model to Analyze Upper Secondary Students’ Use of Supporting Reasons in Arguing Socioscientific Issues. Journal of Science Education and Technology, 21(3), 342–352. https://doi.org/10.1007/s10956-011-9328-x
  • Collins, A. (1988). Cognitive apprenticeship and instructional technology (Technical Report).
  • Conner, L. D. C., Oxtoby, L. E., & Perin, S. M. (2021). Power and positionality shape identity work during a science research apprenticeship for girls. International Journal of Science Education, 43(11), 1880–1893. https://doi.org/10.1080/09500693.2021.1940348
  • Cook, K. (2015). Grappling with wicked problems: Exploring photovoice as a decolonizing methodology in science education. Cultural Studies of Science Education, 10(3), 581–592. https://doi.org/10.1007/s11422-014-9613-0
  • Council, N. R. (2010). Exploring the intersection of science education and 21st century skills: A workshop summary. The National Academies Press. https://doi.org/10.17226/12771
  • Dewey, J. (2013). The school and society and the child and the curriculum. University of Chicago Press.
  • Donaldson, T., Fore, G. A., Filippelli, G. M., & Hess, J. L. (2020). A systematic review of the literature on situated learning in the geosciences: Beyond the classroom. International Journal of Science Education, 42(5), 722–743. https://doi.org/10.1080/09500693.2020.1727060
  • Eastwood, J. L., Sadler, T. D., Zeidler, D. L., Lewis, A., Amiri, L., & Applebaum, S. (2012). Contextualizing nature of science instruction in socioscientific issues. International Journal of Science Education, 34(15), 2289–2315. https://doi.org/10.1080/09500693.2012.667582
  • Falk, J. H., Dierking, L. D., Osborne, J., Wenger, M., Dawson, E., & Wong, B. (2015). Analyzing science Education in the United Kingdom: Taking a system-wide approach. Science Education, 99(1), 145–173. https://doi.org/10.1002/sce.21140
  • Feng, L. (2012). Teacher and student responses to interdisciplinary aspects of sustainability education: What do we really know? Environmental Education Research, 18(1), 31–43. https://doi.org/10.1080/13504622.2011.574209
  • Foster, J. (2002). Sustainability, higher education and the learning society. Environmental Education Research, 8(1), 35–41. https://doi.org/10.1080/13504620120109637
  • Fowler, S. R., Zeidler, D. L., & Sadler, T. D. (2009). Moral sensitivity in the context of socioscientific issues in high school science students. International Journal of Science Education, 31(2), 279–296. https://doi.org/10.1080/09500690701787909
  • Frade, C., & Da Rocha Falcão, J. T. (2008). Exploring connections between tacit knowing And situated learning perspectives. In A. Watson & P. Winbourne (Eds.), The context of mathematics education (pp. 205–231). Springer US. https://doi.org/10.1007/978-0-387-71579-7_10
  • Gardner, G. E., Forrester, J. H., Jeffrey, P. S., Ferzli, M., & Shea, D. (2015). Authentic science research opportunities: How do undergraduate students begin integration into a science community of practice? Journal of College Science Teaching, 44(4), 61–65. http://www.jstor.org/stable/43631866. https://doi.org/10.2505/4/jcst15_044_04_61
  • Grohs, J. R., Kirk, G. R., Soledad, M. M., & Knight, D. B. (2018). Assessing systems thinking: A tool to measure complex reasoning through ill-structured problems. Thinking Skills and Creativity, 28, 110–130. https://doi.org/10.1016/j.tsc.2018.03.003
  • Hacioglu, Y., & Gulhan, F. (2021). The effects of STEM education on the 7th grade students’ critical thinking skills and STEM perceptions. Journal of Education in Science, Environment and Health, 7(2), 139–155. https://doi.org/10.21891/jeseh.771331
  • Hardins, G. (1968). The tragedy of the commons. Science, 162(3859), 1243–1248. https://doi.org/10.1126/science.162.3859.1243
  • Hatano, G., & Inagaki, K. (1984). Two courses of expertise. Research and Clinical Center for Child Development, 83(Annual report), 27–36.
  • Hemmler, V. L., Kenney, A. W., Langley, S. D., Callahan, C. M., Gubbins, E. J., & Holder, S. (2022). Beyond a coefficient: An interactive process for achieving inter-rater consistency in qualitative coding. Qualitative Research, 22(2), 194–219. https://doi.org/10.1177/1468794120976072
  • Holyoak, K. (2011). The cognitive neuroscience of creativity: A critical review. Creative Research Journal, 23(2), 137–154. https://doi.org/10.1080/10400419.2011.571191
  • Khishfe, R., & Lederman, N. (2006). Teaching nature of science within a controversial topic: Integrated versus nonintegrated. Journal of Research in Science Teaching, 43(4), 395–418. https://doi.org/10.1002/tea.20137
  • Kolsto, S. D. (2001). To trust or not to trust, … ‘- pupils’ ways of judging information encountered in a socio-scientific issue. International Journal of Science Education, 23(9), 877–901. https://doi.org/10.1080/09500690117217
  • Lave, J., & Wenger, E. (2011). Situated learning: Legitimate peripheral participation (24th ed.). Cambridge University Press.
  • Lee, H., Lee, H., & Zeidler, D. (2020). Examining tensions in the socioscientific issues classroom: Students’ border crossings into a new culture of science. Journal of Research in Science Teaching, 57(5), 672–694. https://doi.org/10.1002/tea.21600
  • Lemke, J. L. (2001). Articulating communities: Sociocultural perspectives on science education. Journal of Research in Science Teaching, 38(3), 296–316. Go to ISI://WOS:000167159800003. https://doi.org/10.1002/1098-2736(200103)38:3<296::AID-TEA1007>3.0.CO;2-R
  • Maani, K. (2013). Decision-making for climate change adaptation: A systems thinking approach (Vol. 100). National Climate Change Adaptation Research Facility.
  • Maani, K. E., & Maharaj, V.. (2002). Links between systems thinking and complex problem solving–further evidence.. The 20th International Conference of the System Dynamics Society, Palermo, Italy, July 28-August 1, 2002.
  • Marrero, M. E., Gunning, A. M., & Germain-Williams, T. (2014). What is STEM education? Global Education Review, 1(4).
  • Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799–822. https://doi.org/10.1002/sce.21522
  • Mayer, R. E., & Wittrock, M. C. (1996). Problem-solving transfer. In David C. Berliner & Robert C. Calfee (Eds.), Handbook of educational psychology (pp. 47–62). Simon & Schuster Macmillan.
  • Merriam, S. B., & Grenier, R. S. (2019). Qualitative research in practice: Examples for discussion and analysis. John Wiley & Sons.
  • Mylopoulos, M., Kulasegaram, K., & Woods, N. N. (2018). Developing the experts we need: Fostering adaptive expertise through education. Journal of Evaluation in Clinical Practice, 24(3), 674–677. https://doi.org/10.1111/jep.12905
  • NGSS. (2022). HS-ESS3-3 earth and human activity. Retrieved January 8 from https://www.nextgenscience.org/pe/hs-ess3-3-earth-and-human-activity
  • NSTA. (2020). Position statement: nature of science. National Science Teacher Association. Retrieved April 4 from https://www.nsta.org/nstas-official-positions/nature-science
  • Paewai, S. R., Meyer, L. H., & Houston, D. J. (2007). Problem solving academic workloads management: A university Response1. Higher Education Quarterly, 61(3), 375–390. https://doi.org/10.1111/j.1468-2273.2007.00360.x
  • Peters, B. G. (2017). What is so wicked about wicked problems? A conceptual analysis and a research program. Policy and Society, 36(3), 385–396. https://doi.org/10.1080/14494035.2017.1361633
  • Prather, K. A., Wang, C. C., & Schooley, R. T. (2020). Reducing transmission of SARS-CoV-2. Science, 368(6498), 1422–1424. https://doi.org/10.1126/science.abc6197
  • Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155–169. https://doi.org/10.1007/BF01405730
  • Roth, W.-M., & Lee, S. (2004). Science education as/for participation in the community. Science Education, 88(2), 263–291. https://doi.org/10.1002/sce.10113
  • Ruiz-Primo, M. A. (2009). Towards a framework for assessing 21st century science skills. Workshop on Exploring the Intersection of Science Education and the Development of 21st Century Skills, Washington, DC.
  • Sadler, T. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45(1), 1–42. https://doi.org/10.1080/03057260802681839
  • Sadler, T. (2011). Socio-scientific issues in the classroom: Teaching, learning and research (Vol. 39). Springer Science & Business Media.
  • Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371–391. https://doi.org/10.1007/s11165-006-9030-9
  • Sadler, T. D., & McKinney, L. (2010). Scientific research for Undergraduate Students: A review of the literature. Part of a Special Issue: Research and Teaching, 39(5), 43–49. http://search.ebscohost.com/login.aspx?direct=true&db=ofs&AN=508161821&lang=zh-tw&site=ehost-live
  • Sawyer, K. (2011). The cognitive neuroscience of creativity: A critical review. Creativity Research Journal, 23(2), 137–154. https://doi.org/10.1080/10400419.2011.571191
  • Schwab, K., & Zahid, S. (2020, October). The future of jobs report 2020.
  • Senge, P. M. (1990). The fifth discipline: The art and practice of the learning organization. Doubleday.
  • Shih, P.-K., Lin, C.-H., Wu, L. Y., & Yu, C.-C. (2021). Learning ethics in AI—teaching non-engineering undergraduates through situated learning. Sustainability, 13(7), Article 3718. https://www.mdpi.com/2071-1050/13/7/3718. https://doi.org/10.3390/su13073718
  • Soland, J., Hamilton, L. S., & Stecher, B. M. (2013). Measuring 21st century competencies. Global Cities Education Network Report, 2013, 1–68.
  • Stocker, T. (2014). Climate change 2013: The physical science basis: Working group I contribution to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.
  • Talanquer, V., Bucat, R., Tasker, R., & Mahaffy, P. G. (2020). Lessons from a pandemic: Educating for complexity, change, uncertainty, vulnerability, and resilience. Journal of Chemical Education, 97(9), 2696–2700. https://doi.org/10.1021/acs.jchemed.0c00627
  • Tang, S., Mao, Y., Jones, R. M., Tan, Q., Ji, J. S., Li, N., Shen, J., Lv, Y., Pan, L., Ding, P., Wang, X., Wang, Y., MacIntyre, C. R., & Shi, X. (2020). Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environment International, 144, 106039–106039. https://doi.org/10.1016/j.envint.2020.106039
  • Turner, B. L., Wuellner, M., Cortus, E., & Chumbley, S. B. (2022). A multi-university cohort model for teaching complex and interdisciplinary problem-solving using system dynamics. Systems Research and Behavioral Science, 39(2), 185–199. https://doi.org/10.1002/sres.2778
  • Verhoeff, R. P., Knippels, M.-C. P. J., Gilissen, M. G. R., & Boersma, K. T. (2018). The theoretical nature of systems thinking. Perspectives on systems thinking in biology Education [Conceptual analysis]. Frontiers in Education, 3, Article 40. https://doi.org/10.3389/feduc.2018.00040
  • Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29(11), 1387–1410. https://doi.org/10.1080/09500690601068095
  • Ward, A. R. (2016). Modeling authentic STEM research: A systems thinking perspective. In R. A. Duschl, & A. S. Bismack (Eds.), Reconceptualizing STEM education: The central role of practices (pp. 101–114). Routledge.
  • Wenger, E., McDermott, R. A., & Snyder, W. (2002). Cultivating communities of practice: A guide to managing knowledge. Harvard Business Press.
  • Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). Sage.
  • Yoon, S. A. (2008). An evolutionary approach to harnessing complex systems thinking in the science and technology classroom. International Journal of Science Education, 30(1), 1–32. https://doi.org/10.1080/09500690601101672
  • Zeidler, D. (2015). Socioscientific issues. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 998–1003). Springer. https://doi.org/10.1007/978-94-007-2150-0_314
  • Zeidler, D. (2016). STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11–26. https://doi.org/10.1007/s11422-014-9578-z
  • Zeidler, D., & Nichols, B. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49–58. https://doi.org/10.1007/BF03173684
  • Zeidler, H., & Sadler, B. C., & D, T. (2019). New directions in socioscientific issues research. Disciplinary and Interdisciplinary Science Education Research, 1(1), Article 11. https://doi.org/10.1186/s43031-019-0008-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.