65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Addressing socio-scientific issues with interactive concept cartoons: design of a web-based educational instrument

ORCID Icon, ORCID Icon & ORCID Icon
Received 30 Oct 2023, Accepted 05 May 2024, Published online: 20 May 2024

References

  • Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22(9), 2087–2107. https://doi.org/10.1007/s11191-012-9520-2
  • Abrahams, I., & Reiss, M.J. (2015). The assessment of practical skills. School Science Review, 96 (357), 40-44.
  • Allchin, D., Andersen, H. M., & Nielsen, K. (2014). Complementary approaches to teaching nature of science: Integrating student inquiry, historical cases, and contemporary cases in classroom practice. Science Education, 98(3), 461–486. https://doi.org/10.1002/sce.21111
  • Andriessen, J. E. B. (2006). Arguing to learn. In K. Sawyer (Ed.), Handbook of the learning sciences (pp. 443–459). Cambridge University Press.
  • Baker, M. J. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notions. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Confronting cognitions: Arguing to learn (pp. 1–17). Kluwer Academic Publishers.
  • Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65–79. https://doi.org/10.1016/j.compedu.2013.08.003
  • Birisci, S., Metin, M., & Karakas, M. (2010). Pre-service elementary teachers’ views on concept cartoons: A sample from Turkey. Middle-East Journal of Scientific Research, 5(2), 91–97.
  • Bredeweg, B., Liem, J., Beek, W., Linnebank, F., Gracia, J., Lozano, E., Wißner, M., Bühling, R., Salles, P., Noble, R., Zitek, A., Borisova, P., & Mioduser, D. (2013). DynaLearn – an intelligent learning environment for learning conceptual knowledge. AI Magazine, 34(4), 46–65.
  • Bredeweg, B., Kragten, M., Holt, J., Kruit, P., van Eijck, T., Pijls, M., Bouwer, A., Sprinkhuizen, M., Jaspar, E., & de Boer, M. (2023). Learning with interactive knowledge representations. Applied Sciences, 13(9), 5256.
  • Bryce, T. G. K., & Gray, D. S. (2004). Tough acts to follow: The challenges to science teachers presented by biotechnological progress. International Journal of Science Education, 26(6), 717–733. https://doi.org/10.1080/0950069032000138833
  • Buitrago, M., & Chiappe, A. (2019). Representation of knowledge in digital educational environments: A systematic review of literature. Australasian Journal of Educational Technology, 35(4), 4. https://doi.org/10.14742/ajet.4041
  • Byford, J., Lennon, S., & Russell, W. B. (2009). Teaching controversial issues in the social studies: A research study of high school teachers. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 82(4), 165–170.
  • Chen, Y. C., Park, S., & Hand, B. (2016). Examining the use of talk and writing for students' development of scientific conceptual knowledge through constructing and critiquing arguments. Cognition and Instruction, 34(2), 100–147.
  • Chen, L., & Xiao, S. (2021). Perceptions, challenges and coping strategies of science teachers in teaching socioscientific issues: A systematic review. Educational Research Review, 32, 100377. https://doi.org/10.1016/j.edurev.2020.100377
  • Chin, C., & Teou, L. Y. (2009). Using concept cartoons in formative assessment: Scaffolding students’ argumentation. International Journal of Science Education, 31(10), 1307–1332. https://doi.org/10.1080/09500690801953179
  • Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091. https://doi.org/10.1002/sce.20164
  • Devolder, A., van Braak, J., & Tondeur, J. (2012). Supporting self-regulated learning in computer-based learning environments: Systematic review of effects of scaffolding in the domain of science education. Journal of Computer Assisted Learning, 28(6), 557–573. https://doi.org/10.1111/j.1365-2729.2011.00476.x
  • Eberbach, C., & Crowley, K. (2009). From everyday to scientific observation: How children learn to observe the biologist’s world. Review of Educational Research, 79(1), 39–68. https://doi.org/10.3102/0034654308325899
  • Edelsbrunner, P. A., Schalk, L., Schumacher, R., & Stern, E. (2018). Variable control and conceptual change: A large-scale quantitative study in elementary school. Learning and Individual Differences, 66, 38–53. https://doi.org/10.1016/j.lindif.2018.02.003
  • Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399–483. https://doi.org/10.1207/S1532690XCI2004_1
  • Eppler, M. J. (2006). A comparison between concept maps, mind maps, conceptual diagrams, and visual metaphors as complementary tools for knowledge construction and sharing. Information Visualization, 5(3), 202–210. https://doi.org/10.1057/palgrave.ivs.9500131
  • Fiorella, L., & Mayer, R. E. (2016). Eight ways to promote generative learning. Educational Psychology Review, 28(4), 717–741. http://www.jstor.org/stable/44955362
  • Han, J., Kim, K. H., Rhee, W., & Cho, Y. H. (2021). Learning analytics dashboards for adaptive support in face-to-face collaborative argumentation. Computers & Education, 163, 104041. https://doi.org/10.1016/j.compedu.2020.104041
  • Hand, B., Chen, Y. C., & Suh, J. K. (2021). Does a knowledge generation approach to learning benefit students? A systematic review of research on the science writing heuristic approach. Educational Psychology Review, 33(2), 535–577. https://doi.org/10.1007/s10648-020-09550-0
  • Handayani, R. A. D., & Triyanto, S. P. (2022). Seventh-grade students’ conceptions of climate change, global warming, and the greenhouse effect. Journal of Geoscience Education, 70(4), 490–500. https://doi.org/10.1080/10899995.2021.1989941
  • Ho, L.-C., McAvoy, P., Hess, D., & Gibbs, B. (2017). Teaching and learning about controversial issues and topics in the social studies. In M. M. Manfra & C. M. Bolick (Eds.), The Wiley handbook of social studies research (pp. 321–335). Wiley-Blackwell.
  • Hodgson, C., & Pyle, K. (2010). A literature review of assessment for learning in science. Nefr.
  • Hughes, R. E., & Journell, W. (2023). Facilitating a controversial issues discussion in elementary school about using indigenous sports mascots. The Social Studies, 114(5), 223–240. https://doi.org/10.1080/00377996.2023.2171352
  • Karisan, D., & Zeidler, D. L. (2017). Contextualization of nature of science within the socioscientific issues framework: A review of research. International Journal of Education in Mathematics, Science and Technology, 5(2), 139-152.
  • Kelly, G. J. (2014). Discourse practices in science learning and teaching. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 321–336). Routledge.
  • Keogh, B., & Naylor, S. (1999). Concept cartoons, teaching and learning in science: An evaluation. International Journal of Science Education, 21(4), 431–446. https://doi.org/10.1080/095006999290642
  • Khishfe, R. (2012). Relationship between nature of science understandings and argumentation skills: A role for counterargument and contextual factors. Journal of Research in Science Teaching, 49(4), 489–514. https://doi.org/10.1002/tea.21012
  • Kinchin, I. M. (2014). Concept mapping as a learning tool in higher education: A critical analysis of recent reviews. The Journal of Continuing Higher Education, 62(1), 39–49. https://doi.org/10.1080/07377363.2014.872011
  • Koerber, S., & Osterhaus, C. (2019). Individual differences in early scientific thinking: Assessment, cognitive influences, and their relevance for science learning. Journal of Cognition and Development, 20(4), 510–533. https://doi.org/10.1080/15248372.2019.1620232
  • Kruit, P. M., & Bredeweg, B. (2023). Interactieve concept cartoons [Interactive concept cartoons]. https://conceptcartoons.nl/
  • Law, V., & Chen, C. H. (2016). Promoting science learning in game-based learning with question prompts and feedback. Computers & Education, 103, 134–143. https://doi.org/10.1016/j.compedu.2016.10.005
  • Lederman, N. G., & Lederman, J. S. (2014). Research on teaching and learning of nature of science. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 614–634). New York: Routledge.
  • Martinot, M.J., Kuhlemeier, H.B., Feenstra, H.J.M. (1988). Het meten van affectieve doelen: De validering en normering van de belevingsschaal voor wiskunde (BSW) [Measuring affective goals: The validation and standardization of the experience scale for mathematics (ESM)]. Tijdschrift voor Onderwijsresearch 13 (2), 65–76.
  • McCuin, J. L., Hayhoe, K., & Hayhoe, D. (2014). Comparing the effects of traditional vs. misconceptions-based instruction on student understanding of the greenhouse effect. Journal of Geoscience Education, 62(3), 445–459. https://doi.org/10.5408/13-068.1
  • McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15(2), 153–191. https://doi.org/10.1207/s15327809jls1502_1
  • Mercier, H. (2011). Reasoning serves argumentation in children. Cognitive Development, 26(3), 177–191. https://doi.org/10.1016/j.cogdev.2010.12.001
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.
  • Naylor, S., Keogh, B., & Downing, B. (2007). Argumentation and primary science. Research in Science Education, 37(1), 17–39. https://doi.org/10.1007/s11165-005-9002-5
  • Naylor, S., & Keogh, B. (2013). Concept cartoons: What have we learnt? Journal of Turkish Science Education, 10(1), 3–11.
  • Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576. https://doi.org/10.1080/095006999290570
  • Nieveen, N., & Folmer, E. (2013). Formative evaluation in educational design research. In N. Nieveen & T. Plomp (Eds.), Educational design research (pp. 152–169). SLO.
  • Norris, S., & Phillips, L. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224–240. https://doi.org/10.1002/sce.10066
  • Novak, J. D., & Cañas, A. J. (2006). The theory underlying concept maps and how to construct them. Florida Institute for Human and Machine Cognition, 1(1), 1–31.
  • Nussbaum, E. M. (2008). Collaborative discourse, argumentation, and learning: Preface and literature review. Contemporary Educational Psychology, 33(3), 345–359. https://doi.org/10.1016/j.cedpsych.2008.06.001
  • OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. OECD Publishing.
  • Okada, A. L. P., Buckingham Shum, S. J., & Sherborne, T. (2014). Knowledge cartography: Software tools and mapping techniques. Springer.
  • Pace, J. L. (2019). Contained risk-taking: Preparing preservice teachers to teach controversial issues in three countries. Theory & Research in Social Education, 47(2), 228–260. https://doi.org/10.1080/00933104.2019.1595240
  • Petit, R., & Verheijen, E. (2015). Toegerust voor de toekomst: Aandacht voor kritische denkvaardigheden en sociaal-culturele vaardigheden in het mbo [Prepared for the future: Focus on critical thinking skills and socio-cultural skills in vocational education]. Expertisecentrum Beroepsonderwijs.
  • Pine, J., Aschbacher, P., Roth, E., Jones, M., McPhee, C., Martin, C., Phelps, S., Kyle, T., & Foley, B. (2006). Fifth graders' science inquiry abilities: A comparative study of students in hands-on and textbook curricula. Journal of Research in Science Teaching, 43(5), 467–484. https://doi.org/10.1002/tea.20140
  • Ratcliffe, M., & Grace, M. (2003). Science education for citizenship: Teaching socio-scientific issues. McGraw-Hill Education (UK).
  • Ryder, J. (2001). Identifying science understanding for functional scientific literacy. Studies in Science Education, 36(1), 1–44. https://doi.org/10.1080/03057260108560166
  • Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536.
  • Schuitema, J., Radstake, H., van de Pol, J., & Veugelers, W. (2018). Guiding classroom discussions for democratic citizenship education. Educational Studies, 44(4), 377–407. https://doi.org/10.1080/03055698.2017.1373629
  • Schuitema, J., Van Boxtel, C., Veugelers, W., & Ten Dam, G. (2011). The quality of student dialogue in citizenship education. European Journal of Psychology of Education, 26(1), 85–107. https://doi.org/10.1007/s10212-010-0038-1
  • Schwichow, M., Osterhaus, C., & Edelsbrunner, P. A. (2020). The relation between the control-of-variables strategy and content knowledge in physics in secondary school. Contemporary Educational Psychology, 63, 101923. https://doi.org/10.1016/j.cedpsych.2020.101923
  • Stichting Leerplanontwikkeling (SLO) [Dutch Institute for Curriculum Development]. (n.d.). Vragenlijst voor docenten na afloop van een les [Questionnaire for teachers after a lesson]. SLO: Enschede.
  • Suthers, D. D., Vatrapu, R., Medina, R., Joseph, S., & Dwyer, N. (2007). Conceptual representations enhance knowledge construction in asynchronous collaboration. In C. Chinn, G. Erkens, & S. Puntambekar (Eds.), The computer supported collaborative learning (CSCL) conference 2007 (pp. 704–713). International Society of the Learning Sciences.
  • Tippett, C. D. (2016). What recent research on diagrams suggests about learningwithrather than learningfromvisual representations in science. International Journal of Science Education, 38(5), 725–746. https://doi.org/10.1080/09500693.2016.1158435
  • Toumey, C., Besley, J., Blanchard, M., Brown, M., Cobb, M., Ecklund, E. H., & Lewenstein, B. (2010). Science in the service of citizens & consumers: The NSF workshop on public knowledge of science. University of South Carolina Nanocenter.
  • van der Mast, O. (2019). Promoting teachers’ ability in teaching controversial issues [Doctoral thesis, University of Amsterdam]. https://scripties.uba.uva.nl/search?id=record_38590
  • Van Merriënboer, J. J., Clark, R. E., & De Croock, M. B. (2002). Blueprints for complex learning: The 4C/ID-model. Educational Technology Research and Development, 50(2), 39–61. https://doi.org/10.1007/BF02504993
  • Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17(4), 285–325. https://doi.org/10.1007/s10648-005-8136-3
  • Veerman, A. L. (2000). Computer-supported collaborative learning through argumentation, University Utrecht [Doctoral dissertation].
  • Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131.
  • Yacoubian, H. A., & Khishfe, R. (2018). Argumentation, critical thinking, nature of science and socioscientific issues: A dialogue between two researchers. International Journal of Science Education, 40(7), 796–807. https://doi.org/10.1080/09500693.2018.1449986
  • Yelland, N., & Masters, J. (2007). Rethinking scaffolding in the information age. Computers & Education, 48(3), 362–382. https://doi.org/10.1016/j.compedu.2005.01.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.