373
Views
1
CrossRef citations to date
0
Altmetric
Articles

Hypercooling limit and physical properties of liquid MoNbReTaW refractory high-entropy alloy

ORCID Icon, &
Pages 312-319 | Received 11 Feb 2021, Accepted 18 May 2021, Published online: 03 Jun 2021

References

  • O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory high-entropy alloys. Intermetallics 18 (2010), pp. 1758–1765.
  • O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19 (2011), pp. 698–706.
  • D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122 (2017), pp. 448–511.
  • S.L. Wei, S.J. Kim, J. Kang, Y. Zhang, Y. Zhang, T. Furuhara, E.S. Park, and C.C. Tasan, Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nature Mater. 19 (2020), pp. 1175–1181.
  • O. El-Atwani, N. Li, M. Li, A. Devaraj, J.K.S. Baldwin, M.M. Schneider, D. Sobieraj, J.S. Wróbel, D. Nguyen-Manh, S.A. Maloy, and E. Martinez, Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci. Adv. 5 (2019), p. 9.
  • E. Osei-Agyemang and G. Balasubramanian, Effect of oxidation on the thermal expansion of a refractory multicomponent alloy. Philos. Mag. Lett. 101 (2021), pp. 173–182.
  • K. Jin, S. Mu, K. An, W.D. Porter, G.D. Samolyuk, G.M. Stocks, and H. Bei, Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys. Mater. Design 117 (2017), pp. 185–192.
  • G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E.P. George, Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 623 (2015), pp. 348–353.
  • A.K. Gangopadhyay, M.E. Blodgett, M.L. Johnson, A.J. Vogt, N.A. Mauro, and K.F. Kelton, Thermal expansion measurements by x-ray scattering and breakdown of Ehrenfest’s relation in alloy liquids. Appl. Phys. Lett. 104 (2014), p. 191907.
  • K. Guruvidyathri, M. Vaidya, and B.S. Murty, Challenges in design and development of high entropy alloys: a thermodynamic and kinetic perspective. Scripta Mater. 188 (2020), pp. 37–43.
  • O.N. Senkov, S. Gorsse, and D.B. Miracle, High temperature strength of refractory complex concentrated alloys. Acta Mater. 175 (2019), pp. 394–405.
  • S. Marik, M. Varghese, K.P. Sajilesh, D. Singh, and R.P. Singh, Superconductivity in equimolar Nb-Re-Hf-Zr-Ti high entropy alloy. J. Alloys Compd. 769 (2018), pp. 1059–1063.
  • L. Hu, L. Wang, M.J. Lin, and B. Wei, Single crystal growth and chemical disorder trapping of refractory MoNbReTaW high-entropy alloy solidified under electrostatic levitation state. Metall. Mater. Trans. A 52A (2021), pp. 167–180.
  • S.K. Chung, D.B. Thiessen, and W.K. Rhim, A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials. Rev. Sci. Instrum. 67 (1996), pp. 3175–3181.
  • A.J. Rulison and W.K. Rhim, A noncontact measurement technique for the specific heat and total hemispherical emissivity of undercooled refractory materials. Rev. Sci. Instrum. 65 (1994), pp. 695–700.
  • G.W. Lee, S. Jeon, C. Park, and D.H. Kang, Crystal–liquid interfacial free energy and thermophysical properties of pure liquid Ti using electrostatic levitation: hypercooling limit, specific heat, total hemispherical emissivity, density, and interfacial free energy. J. Chem. Thermodyn. 63 (2013), pp. 1–6.
  • R. Busch, Y.J. Kim, W.L. Johnson, A.J. Rulison, W.K. Rhim, and D. Isheim, Hemispherical total emissivity and specific-heat capacity of deeply undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts. Appl. Phys. Lett. 66 (1995), pp. 3111–3113.
  • G. Wilde, G.P. Görler, and R. Willnecker, Hypercooling of completely miscible alloys. Appl. Phys. Lett. 69 (1996), pp. 2995–2997.
  • S. Mukherjee, J. Schroers, Z. Zhou, W.L. Johnson, and W.K. Rhim, Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 52 (2004), pp. 3689–3695.
  • V. Wessels, A.K. Gangopadhyay, K.K. Sahu, R.W. Hyers, S.M. Canepari, J.R. Rogers, M.J. Kramer, A.I. Goldman, D. Robinson, J.W. Lee, J.R. Morris, and K.F. Kelton, Rapid chemical and topological ordering in supercooled liquid Cu46Zr54. Phys. Rev. B 83 (2011), p. 094116.
  • O. Kubaschewski, C.B. Alcock, and P.J. Spencer, Materials Thermochemistry, 6th ed., Pergamon, New York, 1993.
  • S. Mukherjee, Z.H. Zhou, W.L. Johnson, and W.K. Rhim, Thermophysical properties of Ni–Nb and Ni–Nb–Sn bulk metallic glass-forming melts by containerless electrostatic levitation processing. J. Non-Cryst. Solids 337 (2004), pp. 21–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.