120
Views
0
CrossRef citations to date
0
Altmetric
Articles

Lattice expansion and phase stability in nanocrystalline titanium thin films

ORCID Icon
Pages 330-340 | Received 09 Oct 2020, Accepted 25 May 2021, Published online: 22 Jun 2021

References

  • H. Gleiter, Nanocrystalline materials. Acta Mater. 33 (1989), pp. 223–315.
  • H. Gleiter, Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48 (2000), pp. 1–29.
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials. Philos. Mag. Lett. 83 (2003), pp. 385–393.
  • Y. Kuru, M. Wohlschlogel, U. Welzel, and E.J. Mittemeijer, Crystallite size dependence of the coefficient of thermal expansion of metals. Appl. Phys Lett. 90 (2007), pp. 243113-1-3.
  • W.H. Zhong, C.Q. Sun, and S. Li, Size effect on the magnetism of nanocrystalline Ni films at ambient temperature. Solid State Commun. 130 (2004), pp. 603–606.
  • M.J. Zehetbauer, and Y.T. Zhu, Bulk Nanostructured Materials, Wiley-VCH, Wein-heim, 2009.
  • H.J. Fecht, Thermodynamic properties and stability of grain boundaries in metals based on the universal equation of state at negative pressure. Acta Metall. Mater. 38 (1990), pp. 1927–1932.
  • M. Wagner, Structure and thermodynamic properties of nanocrystalline metals. Phys Rev B. 45 (1992), pp. 635–639.
  • Y.H. Zhao, H.W. Sheng, and K. Lu, Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition. Acta Mater. 49 (2001), pp. 365–375.
  • K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51 (2003), pp. 5743–5774.
  • G. Apai, J.F. Hamilton, J. Stohr, and A. Thompson, Extended X-ray—absorption fine structure of small Cu and Ni clusters: binding-energy and bond-length changes with cluster size. Phys. Rev. Lett. 43 (1979), pp. 165–169.
  • C.W. Mays, J.S. Vermaak, and D. Kuhlmann, On surface stress and surface tension: II. Determination of the surface stress of gold. Surf. Sci. 12 (1968), pp. 134–140.
  • X.F. Yu, X. Liu, K. Zhang, and Z.Q. Hu, The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique. J. Phys. Condens Matter. 11 (1999), pp. 937–944.
  • R. Birringer, and P. Zimmer, Grain-and phase-boundary stress effects in nanocrystalline materials. Acta Mater. 57 (2009), pp. 1703–1716.
  • P. Lamparter, and E.J. Mittemeijer, The microstructure of ball milled nanocrystalline vanadium; variation of the crystal imperfection and the lattice parameter. Int. J. Mater. Res. 98 (2007), pp. 485–495.
  • M.Y. Gamarnik, Change of lattice parameters in highly disperse nickel powders. Phys. Status Solidi B. 168 (1991), pp. 389–395.
  • K. Heinemann, and H. Poppa, In-situ TEM evidence of lattice expansion of very small supported palladium particles. Surf. Sci. 156 (1985), pp. 265–274.
  • J.S. Vermaak, C.W. Mays, and D. Kuhlmann, On surface stress and surface tension: I. Theoretical considerations. Surf. Sci. 12 (1968), pp. 128–133.
  • G.S. Okram, K.N. Devi, H. Sanatombi, A. Soni, V. Ganesan, and D.M. Phase, Grain size effect on lattice of Ni nanocrystals prepared through polyol method. J. Nanosci. Nanotechnol. 8 (2008), pp. 4127–4131.
  • X.D. Liu, H.Y. Zhang, K. Lu, and Z.Q. Hu, The lattice expansion in nanometre-sized Ni polycrystals. J. Phys.: Condens. Mater. 6 (1994), pp. L497–L501.
  • K. Lu, and M.L. Sui, An explanation to the abnormal Hall-Petch relation in nanocrystalline materials. Scr. Metall. Mater. 28 (1993), pp. 1465–1470.
  • W. Qin, Z.H. Chen, P.Y. Huang, and Y.H. Zhuang, Crystal lattice expansion of nanocrystalline materials. J. Alloys Compd. 292 (1999), pp. 230–232.
  • K. Lu, and N.X. Sun, Grain-boundary enthalpy of nanocrystalline selenium. Philos. Mag. Lett. 75 (1997), pp. 389–395.
  • M.P. Diehm, A.P. goston, and K. Albe, Size-dependent lattice expansion in nanoparticles: reality or anomaly? Chem Phys Chem. 13 (2012), pp. 2443–2454.
  • G.K. Rane, U. Welzel, S.R. Meka, and E.J. Mittemeijer, Non-monotonic lattice parameter variation with crystallite size in nanocrystalline solids. Acta Mater. 61 (2013), pp. 4524–4533.
  • J. Sheng, G.K. Rane, U. Welzel, and E.J. Mittemeijer, The lattice parameter of nanocrystalline Ni as function of crystallite size. Physica E. 43 (2011), pp. 1155–1161.
  • R. Divakar, and V.S. Raghunathan, Characterisation of interfaces in nanocrystalline palladium. Sadhana-Acad P Eng S. 28 (2003), pp. 47–62.
  • D. Nafday, S. Sarkar, P. Ayyub, and T. Saha-Dasgupta, A reduction in particle size generally causes body-centered-cubic metals to expand but face-centered-cubic metals to contract. ACS Nano. 12 (2018), pp. 7246–7252.
  • G.K. Rane, U. Welzel, and E.J. Mittemeijer, Grain growth studies on nanocrystalline Ni powder. Acta Mater. 60 (2012), pp. 7011–7023.
  • D. Hazra, S. Datta, M. Mondal, J. Ghatak, P.V. Satyam, and A.K. Gupta, Thickness dependent lattice expansion in nanogranular Nb thin films. J. Appl. Phys. 103 (2008), pp. 103535-1-5.
  • J. Sheng, U. Welzel, and E.J. Mittemeijer, Nonmonotonic crystallite-size dependence of the lattice parameter of nanocrystalline nickel. Appl. Phys. Lett. 97 (2010), pp. 153109-1-3.
  • R. Banerjee, E. Sperling, A. Thompson, H.L. Fraser, S. Bose, and P. Ayyub, Lattice expansion in nanocrystalline niobium thin films. Appl. Phys. Lett. 82 (2003), pp. 4250–4252.
  • R. Chandra, P. Taneja, J. John, P. Ayyub, G.K. Dey, and S.K. Kulshreshtha, Synthesis and TEM study of nanoparticles and nanocrystalline thin films of silver by high pressure sputtering. Nanostructured Mater. 11 (1999), pp. 1171–1179.
  • G.K. Rane, Microstructure and grain growth of nanosize materials, Max-Planck Institute for intelligent systems, Ph.D. thesis, 2012.
  • Y. Kuru, M. Wohlschlögel, U. Welzel, and E.J. Mittemeijer, Large excess volume in grain boundaries of stressed, nanocrystalline metallic thin films: Its effect on grain-growth kinetics. Appl. Phys. Lett. 95 (2009), pp. 163112.
  • Z.M. Wang J, Y. Wang, L.P.H. Jeurgens, F. Phillipp, and E.J. Mittemeijer, Origins of stress development during metal-induced crystallization and layer exchange: annealing amorphous Ge/crystalline Al bilayers. Acta Mater. 56 (2008), pp. 5047–5057.
  • P.P. Chattopadhyay, P.M.G. Nambissan, S.K. Pabi, and I. Manna, Polymorphic bcc to fcc transformation of nanocrystalline niobium studied by positron annihilation. Phys. Rev. B. 63 (2001), pp. 054107-1-7.
  • P.P. Chatterjee, S.K. Pabi, and I. Manna, An allotropic transformation induced by mechanical alloying. J. Appl. Phys. 86 (1999), pp. 5912–5914.
  • I. Manna, P.P. Chattopadhyay, P. Nandi, F. Banhart, and H.-J. Fecht, Formation of face-centered-cubic titanium by mechanical attrition. J. Appl. Phys. 93 (2003), pp. 1520–1524.
  • G. Grimvall, B. Magyari-Kope, V. Ozolins, and K.A. Persson, Lattice instabilities in metallic elements. Rev. Mod. Phys. 84 (2012), pp. 945–986.
  • H.J. Fecht, Synthesis and properties of nanocrystalline metals and alloys prepared by mechanical attrition. Nanostruct. Mater. 1 (1992), pp. 125–130.
  • I. Manna, P.P. Chattopadhyay, F. Banhart, and H.-J. Fecht, Formation of face-centered-cubic zirconium by mechanical attrition. Appl. Phys. Lett. 81 (2002), pp. 4136–4138.
  • U.M.R. Seelam, and C. Suryanarayana, Mechanically induced fcc phase formation in nanocrystalline hafnium. J. Appl. Phys. 105 (2009), pp. 063524-1-8.
  • C. Song, O. Sakata, L.S.R. Kumara, S. Kohara, A. Yang, K. Kusada, H. Kobayashi, and H. Kitagawa, Size dependence of structural parameters in fcc and hcp Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data. Sci. Rep. 6 (2016), pp. 31400-1-7.
  • J. Chakraborty, K. Kumar, R. Ranjan, S.G. Chowdhury, and S.R. Singh, Thickness-dependent fcc–hcp phase transformation in polycrystalline titanium thin films. Acta Mater. 59 (2011), pp. 2615–2623.
  • A. Guinier, X-Ray Diffraction, Freeman, San Francisco, 1963.
  • G.K. Williamson, and W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1 (1953), pp. 22–31.
  • J.I. Langford, R. Delhez, T.H. de Keijser, and E.J. Mittemeijer, Profile analysis for microcrystalline properties by the Fourier and other methods. Aust. J. Phys. 41 (1988), pp. 173–187.
  • J. Chakraborty, K. Kishor Kumar, S. Mukherjee, and S.K. Ray, Stress, texture and microstructure of zirconium thin films probed by X-ray diffraction. Thin Solid Films 516 (2008), pp. 8479–8486.
  • A. Aguayo, G. Murrieta, and R. de Coss, Elastic stability and electronic structure of fcc Ti, Zr, and Hf: a first-principles study. Phys. Rev. B. 65 (2002), pp. 092106-1-4.
  • W. Qin, T. Nagase, Y. Umakoshi, and J.A. Szpunar, Lattice distortion and its effects on physical properties of nanostructured materials. J. Phys.: Condense. Matter. 19 (2007), pp. 236217-1-8.
  • J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante, Universal features of the equation of state of metals. Phys. Rev. B. 29 (1984), pp. 2963–2969.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.