247
Views
1
CrossRef citations to date
0
Altmetric
Articles

Microstructural evolution and grain-growth kinetics of Al0.2CoCrFeNi high-entropy alloy

, &
Pages 444-454 | Received 27 Apr 2021, Accepted 26 Aug 2021, Published online: 29 Sep 2021

References

  • T. Watanabe, Grain boundary design for desirable mechanical properties. J. Phys. Colloq. 49 (1988), pp. C5-507–C5-519.
  • I. Andersenj, and O. Grong, Analytical modelling of grain growth in metals and alloys in the presence of growing and dissolving precipitates-1. normal grain growth. Acta Metall. Mater. 43 (1995), pp. 2673–2688.
  • H.V. Atkinson, Theories of normal grain growth in pure single phase systems. Acta Metall. 36 (1988), pp. 469–491.
  • A. Rollett, F. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena: Second Edition, Pergamon, 2004 1–628.
  • M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Computer simulation of grain growth-I. kinetics. Acta Metall. 32 (1984), pp. 783–791.
  • C.M.F. Rae, and D.A. Smith, On the mechanisms of grain boundary migration. Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 41 (1980), pp. 477–492.
  • J.E. Burke, and D. Turnbull, Recrystallization and grain growth. Prog. Met. Phys. 3 (1952) p.220–244.
  • I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, and N. Tsuji, Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater. Sci. Eng. A 675 (2016), pp. 99–109.
  • D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, Exploration and development of high entropy alloys for structural applications. Entropy 16 (2014), pp. 494–525.
  • D.B. Miracle, and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122 (2017), pp. 448–511.
  • M. Wang, H. Cui, Y. Zhao, C. Wang, N. Wei, X. Gao, and Q. Song, A simple strategy for fabrication of an FCC-based complex concentrated alloy coating with hierarchical nanoprecipitates and enhanced mechanical properties. Mater. Sci. Eng. A 762 (2019), pp. 138071.
  • Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, and T. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124 (2017), pp. 143–150.
  • Y. Lu, Y. Dong, H. Jiang, Z. Wang, Z. Cao, S. Guo, T. Wang, T. Li, and P.K. Liaw, Promising properties and future trend of eutectic high entropy alloys. Scr. Mater. 187 (2020), pp. 202–209.
  • M. Wang, H. Cui, Y. Zhao, C. Wang, N. Wei, Y. Zhao, X. Zhang, and Q. Song, Enhanced strength and ductility in a spark plasma sintered CoCrCu0·5NiAl0.5 high-entropy alloy via a double-step ball milling approach for processing powders. Mater. Des. 180 (2019), pp. 107893.
  • Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li, A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 4 (2014), pp. 6200.
  • C.C. Juan, C.Y. Hsu, C.W. Tsai, W.R. Wang, T.S. Sheu, J.W. Yeh, and S.K. Chen, On microstructure and mechanical performance of AlCoCrFeMo0. 5Nix high-entropy alloys. Intermetallics 32 (2013), pp. 401–407.
  • M. Wang, Y. Lu, G. Zhang, H. Cui, D. Xu, N. Wei, and T. Li, A novel high-entropy alloy composite coating with core-shell structures prepared by plasma cladding. Vacuum 184 (2021), pp. 109905.
  • Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, and T. Li, A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J. Mater. Sci. Technol. 35 (2019), pp. 369–373.
  • C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen, Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J. Alloys Compd. 486 (2009), pp. 427–435.
  • I.S. Wani, T. Bhattacharjee, S. Sheikh, I.T. Clark, M.H. Park, T. Okawa, S. Guo, P.P. Bhattacharjee, and N. Tsuji, Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 84 (2017), pp. 42–51.
  • S. Gorsse, M.H. Nguyen, O.N. Senkov, and D.B. Miracle, Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data Br. 21 (2018), pp. 2664–2678.
  • A. Paul, Comments on “sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys” by K.Y. Tsai, M.H. Tsai and J.W. Yeh, Acta materialia 61 (2013) 4887–4897. Scr. Mater. 135 (2017), pp. 153–157.
  • J. Dąbrowa, M. Zajusz, W. Kucza, G. Cieślak, K. Berent, T. Czeppe, T. Kulik, and M. Danielewski, Demystifying the sluggish diffusion effect in high entropy alloys. J. Alloys Compd. 783 (2019), pp. 193–207.
  • W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26 (2012), pp. 44–51.
  • W.R. Wang, W.L. Wang, and J.W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589 (2014), pp. 143–152.
  • D. Li, and Y. Zhang, The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70 (2016), pp. 24–28.
  • T. Cao, J. Shang, J. Zhao, C. Cheng, R. Wang, and H. Wang, The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys. Mater. Lett. 164 (2016), pp. 344–347.
  • P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai, and J.W. Yeh, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 587 (2014), pp. 544–552.
  • M.I. Mendelson, Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc. 52 (1969), pp. 443–446.
  • W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Grain growth and the Hall-petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68 (2013), pp. 526–529.
  • B. Gwalani, R. Salloom, T. Alam, S.G. Valentin, X. Zhou, G. Thompson, S.G. Srinivasan, and R. Banerjee, Composition-dependent apparent activation-energy and sluggish grain-growth in high entropy alloys. Mater. Res. Lett. 7 (2019), pp. 267–274.
  • J. Burke, and T.R. Ramachandran, Self-diffusion in aluminum at low temperatures. Metall. Trans. 3 (1972), pp. 147–155.
  • F.E. Jaumot, Self-Diffusion in cobalt*. Phys. Rev. 82 (1950), pp. 72–74.
  • F.S. Buffington, K. Hirano, and M. Cohen, Self diffusion in iron. Acta Metall. 9 (1961), pp. 434–439.
  • K. Maier, H. Mehrer, E. Lessmann, and W. Schüle, Self-diffusion in nickel at low temperatures. Phys. Status Solidi. 78 (1976), pp. 689–698.
  • J. Askill, and D.H. Tomlin, Self-diffusion in chromium. Philos. Mag. 11 (1965), pp. 467–474.
  • T.H. Chuang, C.H. Tsai, H.C. Wang, C.C. Chang, C.H. Chuang, J. Der Lee, and H.H. Tsai, Effects of annealing twins on the grain growth and mechanical properties of Ag-8Au-3Pd bonding wires. J. Electron. Mater. 41 (2012), pp. 3215–3222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.