33,180
Views
628
CrossRef citations to date
0
Altmetric
Full Critical Review

Additive manufacturing of metallic components by selective electron beam melting — a review

Pages 361-377 | Received 30 Jul 2015, Accepted 05 Apr 2016, Published online: 09 May 2016

References

  • B. Vayre, F. Vignat and F. Villeneuve: ‘Metallic additive manufacturing: state-of-the-art review and prospects', Mech. Ind., 2012, 13, 89–96. doi: 10.1051/meca/2012003
  • D. D. Gu, W. Meiners, K. Wissenbach and R. Poprawe: ‘Laser additive manufacturing of metallic components: materials, processes and mechanisms', Int. Mat. Rev., 2012, 57, (3), 133–164. doi: 10.1179/1743280411Y.0000000014
  • K. V. Wong and A. Hernandez: ‘A review of additive manufacturing’, ISRN Mech. Eng., 2012, 2012, 1–10. doi: 10.5402/2012/208760
  • D. Brackett, I. Ashcroft and R. Hague: ‘Topology optimization for additive manufacturing’, Proc. SFF Symp. Austin Texas, 2011, 348–362.
  • M. Sigl, S. Lutzmann and M. F. Zaeh: ‘Transient physical effects in electron beam sintering’, Proc. SFF Symp. Austin Texas, 2006, 397–405.
  • M. Kahnert, S. Lutzmann and M. F. Zaeh: ‘Layer formations in electron beam sintering’, Proc. SFF Symp. Austin Texas, 2007, 88–99.
  • H. P. Tang, G. Y. Yang, W. P. Jia, W. W. He, S. L. Lu and M. Qian: ‘Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting’, Mat. Sci. Eng. A, 2015, 636, 103–107. doi: 10.1016/j.msea.2015.03.079
  • C. Guo, F. Lin, W. J. Ge and J. Zhang: ‘Development of novel EBSM system for high-tech material additive manufacturing research’, SFF Symp. Texas, 2014, 298–308.
  • X. Gong, T. Anderson and K. Chou: ‘Review on powder-based electron beam additive manufacturing technology’, Manufact. Rev., 2014, 1, 1–12. doi: 10.1051/mfreview/2014001
  • L. E. Murr, E. Martinez, K. N. Amato, S. Gaytan, J. Hernandez, D. A. Ramirez, P. W. Shindo, F. Medina and R. B. Wicker: ‘Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science’, J. Mater. Res. Technol., 2012, 1, (1), 42–54. doi: 10.1016/S2238-7854(12)70009-1
  • J. Milberg and M. Sigl: ‘Electron beam sintering of metal powder’, Prod. Eng. Res. Devel., 2008, 2, 117–122. doi: 10.1007/s11740-008-0088-2
  • M. Lodes, R. Guschlbauer and C. Körner: ‘Process development for the manufacturing of 99.94% pure copper via selective electron beam melting’, Mater. Lett., 2015, 143, (15), 298–301. doi: 10.1016/j.matlet.2014.12.105
  • J. Schwerdtfeger and C. Körner: ‘Selective electron beam melting of Ti-48Al-2Nb-2Cr: microstructure and aluminium loss', Intermetallics, 2014, 49, 29–35. doi: 10.1016/j.intermet.2014.01.004
  • C. Guo, F. Lin and W. Ge: ‘Study on the fabrication process of 316L stainless steel via electron beam selective melting’, J. Mech. Eng., 2014, 50, (21), 152–158. doi: 10.3901/JME.2014.21.152
  • L. M. Sochalski-Kolbus, E. A. Payzant, P. A. Cornwell, T. R. Watkins, S. S. Babu, R. R. Dehoff, M. Lorenz, O. Ovchinnikova and C. Duty: ‘Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering’, Met. Mater. Trans. A: Phys. Metall. Mater. Sci., 2015, 46, 1419–1432. doi: 10.1007/s11661-014-2722-2
  • M. Ramsperger, L. Mújica Roncery, I. Lopez-Galilea, R. F. Singer, W. Theisen and C. Körner: ‘Solution heat treatment of the single crystal nickel-base superalloy CMSX-4 fabricated by selective electron beam melting’, Adv. Eng. Mat., 2015, 17, (10), 1486–1493. doi: 10.1002/adem.201500037
  • H. P. Tang, M. Qian, N. Liu, X. Z. Zhang, G. Y. Yang and J. Wang: ‘Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting’, JOM, 2015, 67, (3), 555–563. doi: 10.1007/s11837-015-1300-4
  • L. E. Murr: ‘Metallurgy of additive manufacturing: examples from electron beam melting’, Addit. Manufact., 2015, 5, 40–53. doi: 10.1016/j.addma.2014.12.002
  • H. E. Helmer, C. Körner and R. F. Singer: ‘Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: processing window and microstructure’, J. Mat. Res., 2014, 29, (17), 1987–1996. doi: 10.1557/jmr.2014.192
  • T. E. Everhart and P. H. Hoff: ‘Determination of kilovoltelectron energy dissipation vs penetration distance in solid materials', J. Appl. Phys., 1971, 42, (13), 5837–5846. doi: 10.1063/1.1660019
  • A. Klassen, A. Bauerreiß and C. Körner: ‘Modelling of electron beam absorption in complex geometries', J. Phys. D: Appl. Phys., 2014, 47, (6), 065307. doi: 10.1088/0022-3727/47/6/065307
  • T. Scharowsky, F. Osmanlic, R. F. Singer and C. Körner: ‘Melt pool dynamics during selective electron beam melting’, Appl. Phys. A, 2014, 114, 1303–1307. doi: 10.1007/s00339-013-7944-4
  • A. Bauereiß, T. Scharowsky and C. Körner: ‘Defect generation and propagation mechanism during additive manufacturing by selective beam melting’, J. Mat. Proc. Tech., 2014, 214, 2422–2528. doi: 10.1016/j.jmatprotec.2014.05.002
  • S. Tammas-Williams, H. Zhao, F. Leonard, F. Derguti, I. Todd and P. B. Prangnell: ‘XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by selective electron beam melting’, Mater. Charact., 2015, 102, 47–61. doi: 10.1016/j.matchar.2015.02.008
  • C. Körner, H. E. Helmer, A. Bauereiß and R. F. Singer: ‘Tailoring the grain structure of IN718 during selective electron beam melting’, Proc. Eurosuperalloys 2014, MATEC Web of Conferences, 2014, 14, 08001.
  • N. Hrabe and T. Quinn: ‘Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM). Part 1: distance from build plate and part size’, Mater. Sci. Eng. A, 2013, 573, (20), 264–270. doi: 10.1016/j.msea.2013.02.064
  • L. E. Murr, E. V. Exquivel, S. A. Quinones, S. M. Gaytan, M. I. Lopez, E. Y. Martinez, F. Medina, D. H. Hernandez, E. Martinez, J. L. Martinez, S. W. Stafford, D. K. Brown, T. Hoppe, W. Meyers, U. Lindhe and R. B. Wicker: ‘Microstructures and mechanical properties of electron beam rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V’, Mater. Charact., 2009, 60, 2, 96–105. doi: 10.1016/j.matchar.2008.07.006
  • T. Scharowsky, V. Jüchter, R. F. Singer and C. Körner: ‘Influence of the scanning strategy on the microstructure and mechanical properties in selective electron beam melting of Ti–6Al–4V’, Adv. Eng. Mat., 2015, 17, 11. doi: 10.1002/adem.201400542
  • S. Biamino, B. Klöden, T. Weißgärber, B. Kieback and U. Ackelid: ‘Titanium aluminides for automotive applications processed by electron beam melting’, Proc. Word PM, 2014, 3, 96–103.
  • V. Jüchter, T. Scharowsky, R. F. Singer and C. Körner: ‘Processing window and evaporation phenomena for Ti–6Al–4V produced by selective electron beam melting’, Acta Mater., 2014, 76, (1), 252–258. doi: 10.1016/j.actamat.2014.05.037
  • C. Guo, W. Ge and F. Lin: ‘Effects of scanning parameters on material deposition during electron beam selective melting of Ti-6Al-4V powder’, J. Mater. Proc. Technol., 2015, 217, 148–157. doi: 10.1016/j.jmatprotec.2014.11.010
  • A. Strondl, R. Fischer, G. Frommeyer and G. Schneider: ‘Investigations of MX and gamma'/gamma'‘ precipitates in the nickel-based superalloy 718 produced by electron beam melting’, Mater. Sci. Eng. A, 2008, 480, 138–147. doi: 10.1016/j.msea.2007.07.012
  • A. A. Antonysamy, J. Meyer and P. B. Prangnell: ‘Effect of build geometry on the beta-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting’, Mater. Charact., 2013, 84, 153–168. doi: 10.1016/j.matchar.2013.07.012
  • H. E. Helmer, N. Hartmann, C. Körner and R. F. Singer: ‘Relation between processing strategy, grain structure and mechanical properties in superalloy Inconel 718 processed by selective electron beam melting’, Proc. DDMC Berlin Fraunhofer, 2014.
  • S. S. Al-Bermani, M. L. Blackmore, W. Zhang and I. Todd: ‘The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V’, Metal. Mater. Trans. A, 2012, 41, 3422–3434. doi: 10.1007/s11661-010-0397-x
  • W. J. Sames, K. A. Unocic, R. R. Dehoff, T. Lolla and S. Babu: ‘Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting’, J. Mat. Res., 2014, 29, (17), 1920–1930. doi: 10.1557/jmr.2014.140
  • A. Strondl, M. Palm, J. Gnauk and G. Frommeyer: ‘Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM)’, Mater. Sci. Technol., 2009, 26, 876–883.
  • A. Safdar, H. Z. He, L-Y. Wei, A. Snis and L. E. Chavez de Paz: ‘Effect of process parameters settings and thickness on surface roughness of EBM produced Ti-6Al-4V’, Rapid Prototyping J., 2012, 18, (5), 401–408. doi: 10.1108/13552541211250391
  • W. O. Syam, H. A. Al-Shehri, A. M. Al-Ahmari, K. A. Al-Awzzan and M. A. Mannan: ‘Preliminary fabrication of thin-wall structure of Ti6Al4V for dental restoration by electron beam melting’, Rapid Prototyping J., 2012, 18, (3), 230–240. doi: 10.1108/13552541211218180
  • M. Jamshidinia and R. Kovacevic: ‘The influence of heat accumulation on the surface roughness in powder-bed additive manufacture’, Surf. Topogr.: Metrol. Prop., 2015, 3, (1), 014003. doi: 10.1088/2051-672X/3/1/014003
  • S. M. Gaytan, L. E. Murr, E. Martinez, J. L. Martinez, B. I. Machado, D. A. Ramirez, F. Medina, S. Collins and R. B. Wicker: ‘Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting’, Metal. Mater. Trans. A, 2010, 41, 3216–3227. doi: 10.1007/s11661-010-0388-y
  • S. M. Gaytan, L. E. Murr, D. A. Ramirez, B. I. Machado, E. Martinez, D. H. Hernandez, J. L. Martinez, F. Medina and R. B. Wicker: ‘A TEM study of cobalt-base alloy prototypes fabricated by EBM’, Mater. Sci. Appl., 2011, 2, (5), 355–363.
  • S.-H. Sun, Y. Koizumi, S. Kurosu, Y.-P. Li, H. Matsumoto and A. Chiba: ‘Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting’, Acta Mater., 2014, 64, 154–168. doi: 10.1016/j.actamat.2013.10.017
  • S.-H. Sun, Y. Koizumi, S. Kurosu, Y.-P. Li and A. Chiba: ‘Phase and grain size inhomogeniety and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting’, Acta Mater., 2015, 86, 305–318. doi: 10.1016/j.actamat.2014.11.012
  • P. Frigola, O. A. Harrysson, T. J. Horn, H. A. West, R. L. Aman, J. M. Rigsbee, D. A. Ramirez, L. E. Murr, F. Medina, R. B. Wicker and E. Rodriguez: ‘Fabricating copper components with electron beam melting’, Adv. Mater. Proc., 2014, 152, 20–24.
  • D. A. Ramirez, L. E. Murr, E. Martinez, D. H. Hernandez, J. L. Martinez, B. I. Machado, F. Medina, P. Frigola and R. B. Wicker: ‘Novel precipitate-microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting’, Acta Mater., 2011, 59, (10), 4088–4099. doi: 10.1016/j.actamat.2011.03.033
  • D. A. Ramirez, L. E. Murr, S. J. Li, Y. X. Tian, E. Martinez, J. L. Martinez, B. I. Machado, S. M. Gaytan, F. Medina and R. B. Wicker: ‘Open-cellular copper structures fabricated by additive manufacturing using electron beam melting’, Mater. Sci. Eng. A, 2011, 528, (16–17), 5379–5386. doi: 10.1016/j.msea.2011.03.053
  • L. E. Murr, E. Martinez, X. Pan, C. Meng, J. Yang, S. Li, F. Yang, Q. Xu, J. Hernandez, W. Zhu, S. M. Gaytan, F. Medina and R. B. Wicker: ‘Microstructure and properties of solid and reticulated mesh components of pure iron fabricated by electron beam melting’, J. Mater. Res. Technol., 2013, 2, (4), 376–385. doi: 10.1016/j.jmrt.2013.10.002
  • H. B. Qi, Y. N. Yan, F. Lin, W. He and R. J. Zhang: ‘Direct metal part forming of 316L stainless steel powder by electron beam selective melting’, J. Eng. Manuf., 2006, 220, (11), 1845–1853. doi: 10.1243/09544054JEM438
  • G. J. Gibbons and R. G. Hansell: ‘Direct tool steel injection mould inserts through the Arcam EBM free-form fabrication process', Assembly Automation, 2005, 25, (4), 300–305.
  • L.-E. Rännar, A. Glad and C.-G. Gustafson: ‘Efficient cooling with tool inserts manufactured by electron beam melting’, Rapid Prototyping J., 2007, 13, (3), 128–135. doi: 10.1108/13552540710750870
  • D. Cormier, O. Harrysson and H. West: ‘Characterization of H13 steel produced via electron beam melting’, Rapid Prototyping J., 2004, 10, (1), 35–41. doi: 10.1108/13552540410512516
  • E. Martinez, L. E. Murr, J. Hernandez, X. Pan, K. Amato, P. Frigola, C. Terrazas, S. Gaytan, E. Rodriguez, F. Medina and R. B. Wicker: ‘Microstructures of niobium components fabricated by electron beam melting’, Metallogr. Microstruct. Anal., 2013, 2, 183–189. doi: 10.1007/s13632-013-0073-9
  • L. E. Murr, E. Martinez, X. M. Pan, S. M. Gaytan, J. A. Castrob, C. A. Terrazas, F. Medina, R. B. Wicker and D. H. Abbott: ‘Microstructures of rene 142 nickel-based superalloy fabricated by electron beam melting’, Acta Mater., 2013, 61, 4289–4296. doi: 10.1016/j.actamat.2013.04.002
  • N. Hrabe and T. Quinn: ‘Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM). part 2: energy input, orientation, and location’, Mater. Sci. Eng. A, 2013, 573, (20), 271–277. doi: 10.1016/j.msea.2013.02.065
  • S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese and P. Gennaro: ‘Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation’, Intermetallics, 2011, 19, (6), 776–781. doi: 10.1016/j.intermet.2010.11.017
  • D. Cormier, O. Harrysson, T. Mahale and H. West: ‘Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders', Res. Lett. Mater. Sci., 2007, Article ID 34737, 4 p. doi:10.1155/2007/34737.
  • L. E. Murr, S. M. Gaytan, A. Ceylan, E. Martinez, J. L. Martinez, D. H. Hernandez, B. I. Machado, D. A. Ramirez, F. Medina, S. Collins and R. B. Wicker: ‘Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting’, Acta Mater., 2010, 59, 1887–1894. doi: 10.1016/j.actamat.2009.11.032
  • P. Heinl, A. Rottmair, C. Körner and R. F. Singer: ‘Cellular titanium by selective electron beam melting’, Adv. Eng. Mat., 2007, 10, (9), 360–364. doi: 10.1002/adem.200700025
  • P. Heinl, L. Müller, C. Körner, R. F. Singer and F. A. Müller: ‘Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting’, Acta. Biomater., 2008, 4, (5), 1536–1544. doi: 10.1016/j.actbio.2008.03.013
  • P. Heinl, C. Körner and R. F. Singer: ‘Selective electron beam melting of cellular titanium: mechanical properties', Adv. Eng. Mater., 2008, 10, (9), 882–888. doi: 10.1002/adem.200800137
  • L. E. Murr, S. M. Gaytan, F. Medina, E. Martinez, J. L. Martinez, D. H. Hernandez, B. I. Machado, D. A. Ramirez and R. B. Wicker: ‘Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting’, Mater. Sci. Eng. A, 2010, 527, (7–8), 1861–1868. doi: 10.1016/j.msea.2009.11.015
  • U. Quan, P. Drescher, F. Zhang, E. Burkel and H. Seitz: ‘Cellular Ti6Al4V with carbon nanotube-like structures fabricated by selective electron beam melting’, Rapid Prototyping J., 2014, 20, (6), 541–550. doi: 10.1108/RPJ-05-2013-0050
  • L. E. Murr, S. M. Gaytan, E. Martinez, F. Medina and R. B. Wicker: ‘Next generation orthopaedic implants by additive manufacturing using electron beam melting’, Int. J. Biomat., 2012, 61, (11), 1–14. doi: 10.1155/2012/245727
  • M. Suard, P. Lhuissier, R. Dendievel, J.-J. Blandin, F. Vignat and F. Villeneuve: ‘Towards stiffness prediction of cellular structures made by “electron beam melting” (EBM)’, Powder Metallurgy, 2014, 57, (3), 190–195. doi: 10.1179/1743290114Y.0000000093
  • M. Regis, E. Marin, F. L. Fedrizzi and M. Pressacco: ‘Additive manufacturing of trabecular titanium orthopedic implants', MRS Bulletin, 2015, 40, (2), 137–144. doi: 10.1557/mrs.2015.1
  • N. Ikeo, T. Ishimoto and T. Nakano: ‘Novel powder/solid composites possessing low young’s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications', J. Alloys Comp., 2015, 639, (5), 336–340. doi: 10.1016/j.jallcom.2015.03.141
  • A. Arkudas, G. Pryymachuk, J. P. Beier, L. Weigel, C. Körner, R. F. Singer, O. Beiziffer, E. Polykandriotis, R. E. Horch and U. Kneser: ‘Combination of extrinsic and intrinsic pathways significantly accelerates axial vascularization of bioartificial tissues', Plast. Reconstr. Surg., 2012, 129, 55e–65e. doi: 10.1097/PRS.0b013e3182361f97
  • J. Schwerdtfeger, F. Schury, M. Stingl, F. Wein, R. F. Singer and C. Körner: ‘Mechanical characterisation of a periodic auxetic structure produced by SEBM’, Phys. Status Solidi B, 2012, 249, (7), 1347–1352. doi: 10.1002/pssb.201084211
  • J. Wieding, A. Fritsche, P. Heinl, C. Körner, M. Cornelsen, H. Seitz, W. Mittelmeier and R. Bader: ‘Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions', J. Appl. Biomater. Funct. Mater., 2013, 11, (3), 159–166.
  • N. W. Hrabe, P. Heinl, R. K. Bordia, C. Körner and R. J. Fernandes: ‘Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting’, Connect. Tissue Res., 2013, 54, (6), 351–360. doi: 10.3109/03008207.2013.822864
  • A. Inayat, J. Schwerdtfeger, H.-J. Freund, C. Körner, R. F. Singer and W. Schwieger: ‘Periodic open-cell foams: pressure drop measurements and modeling of an ideal tetrakaidecahedra packing’, Chem. Eng. Sci., 2011, 66, 2758–2763. doi: 10.1016/j.ces.2011.03.031
  • M. Klumpp, A. Inayat, J. Schwerdtfeger, C. Körner, R. F. Singer, H.-J. Freund and W. Schwieger: ‘Periodic open cellular structures with ideal cubic cell geometry: effect of porosity and cell orientation on pressure drop behavior’, Chem. Eng. J., 2014, 242, 364–378. doi: 10.1016/j.cej.2013.12.060
  • S. Ponader, E. Vairaktaris, P. Heinl, C. V. Wilmowsky, A. Rottmair, C. Körner, R. F. Singer, S. Holst, K. A. Schlegel, F. W. Neukam and E. Nkenke: ‘Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts', J. Biomed. Mater. Res. A, 2008, 84, (4), 1111–1119. doi: 10.1002/jbm.a.31540
  • O. Harrysson, O. Cansizoglu, D. J. Marcellin-Little, D. R. Cormier and H. A. West: ‘Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology’, Mater. Sci. Eng. C, 2008, 28, (3), 366–373. doi: 10.1016/j.msec.2007.04.022
  • L. Yang, O. Harryson, D. Cormier, H. West, H. Gong, and B. Stucker: ‘Additive manufacturing of metal cellular structures: design and fabrication’, JOM, 2015, 67, 608–615. doi: 10.1007/s11837-015-1322-y
  • W. Peters, M. Eypasch, T. Frank, J. Schwerdtfeger, C. Körner, A. Bösmann and P. Wasserscheid: ‘Efficient hydrogen release from perhydro-N-ethylcarbazole using catalyst-coated metallic structures produced by selective electron beam melting’, Energy Environ. Sci., 2015, 8, 641–649. doi: 10.1039/C4EE03461A
  • J. Hernandez, L. E. Murr and K. N. Amato: ‘Microstructures and properties for a superalloy powder mixture processed by electron beam melting’, J. Mater. Sci. Res., 2012, 1, (3), 124–144.
  • K. Puebla, L. E. Murr, S. M. Gaytan, E. Martinez, F. Medina, F. and R. B. Wicker: ‘Effect of melt scan rate on microstructure and macrostructure for electron beam melting of Ti-6Al-4V’, Mater. Sci. Appl., 2012, 3, 259–264.
  • M. Koike, K. Martinez, L. Guo, G. Chahine, R. Kovacevic and T. Okabe: ‘Evaluation of titanium alloy fabricated using electron beam melting system for dental applications', J. Mater. Process. Techol., 2011, 211, 1400–1408. doi: 10.1016/j.jmatprotec.2011.03.013
  • G. V. Joshi, Y. Duan, J. Neidigh, M. Koike, G. Chahine, R. Kovacevic, T. Okabe and J. A. Griggs: ‘Fatigue testing of electron beam-melted Ti-6Al-4V ELI alloy for dental implants', J. Biomed. Mater. Res. B: Appl. Biomater., 2013, 101, (1), 124–130. doi: 10.1002/jbm.b.32825
  • ‘ASM Specialty Handbook: Nickel, Cobalt, and their Alloys', (ed. J. R. Davis); 2000, Materials Park, OH, ASM International. ISBN: 978-0-87170-685-0
  • H. Clemens and H. Kestler: ‘Processing and applications of intermetallic gamma-tiAl-based alloys', Adv. Eng. Mater., 2000, 9, 551–570. doi: 10.1002/1527-2648(200009)2:9<551::AID-ADEM551>3.0.CO;2-U
  • B. P. Bewlaya, M. Weimera, T. Kelly, A. Suzukia and P. R. Subramanian: ‘The science, technology, and implementation of tiAl alloys in commercial aircraft engines', MRS Proc., 2013, 1516, 49–58.
  • E. Schwaighofer, H. Clemens, S. Mayer, J. Lindemann, J. Klose, W. Smarsly and V. Güther: ‘Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase gamma-tiAl based alloy’, Intermetallics, 2014, 44, 128–140. doi: 10.1016/j.intermet.2013.09.010
  • J. Gussone, Y.-C. Hagedorn, H. Gherekhloo, G. Kasperovich, T. Merzouk and J. Hausmann: ‘Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures', Intermetallics, 2015, 66, 133–140. doi: 10.1016/j.intermet.2015.07.005
  • M. Filippini, S. Beretta, L. Patriarca, G. Pasquero and S. Sabbadini: ‘Defect tolerance of a gamma titanium aluminide alloy’, Procedia Eng., 2011, 10, 3677–3682. doi: 10.1016/j.proeng.2011.04.605
  • M. Ashby: ‘Mechanical properties of cellular solids', Met. Trans. A, Phys. Metal. Mater. Sci., 1983, 14, 1755–1769. doi: 10.1007/BF02645546
  • T. J. Lu, H. A. Stone and M. F. Ashby: ‘Heat transfer in open-cell metal foams', Acta Mater., 1998, 46, 3619–3635. doi: 10.1016/S1359-6454(98)00031-7
  • A. G. Evans, J. W. Hutchinson and M. F. Ashby: ‘Multifunctionality of cellular metal systems', Progr. Mater. Sci., 1998, 43, 171–121. doi: 10.1016/S0079-6425(98)00004-8
  • J. Schwerdtfeger, F. Wein, G. Leugering, R. F. Singer, C. Körner, M. Stingl and F. Schury: ‘Design of auxetic structures via mathematical optimization’, Adv. Mater., 2011, 23, (22–23), 2650–2654. doi: 10.1002/adma.201004090
  • J. Schwerdtfeger, P. Heinl, R. F. Singer and C. Körner: ‘Auxetic cellular structures through selective electron-beam melting’, Physica Status Solidi B, 2012, 247, (2), 269–272. doi: 10.1002/pssb.200945513
  • Y. Liebold-Ribeiro and C. Körner: ‘Phononic band gaps in periodic cellular materials', Adv. Eng. Mater., 2014, 16, (3), 328–334. doi: 10.1002/adem.201300064
  • S. J. Li, Q. S. Xu, Z. Wang, Y. L. Hou, Y. L. Hao, R. Yang and L. E. Murr: ‘Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method’, Acta Biomater., 2014, 10, 4537–4547. doi: 10.1016/j.actbio.2014.06.010
  • Z. Linxi, Y. Quanzhan, Z. Guirong, Z. Fangxin, S. Gang and Y. Bo: ‘Additive manufacturing technologies of porous metal implants', China Foundry, 2014, 11, (4), 322–331.
  • M. Cronskär, M. Bäckström and L.-E. Rännar: ‘Production of customized hip stem prostheses — a comparison between conventional machining and electron beam melting (EBM)’, Rapid Prototyping J., 2013, 19, (5), 365–372. doi: 10.1108/RPJ-07-2011-0067
  • T. Knorr, P. Heinl, J. Schwerdtfeger, C. Körner, R. F. Singer and B. J. M. Etzold: ‘Process specific catalyst supports-selective electron beam melted cellular metal structures coated with microporous carbon’, Chem. Eng. J., 2012, 181–182, 725–733. doi: 10.1016/j.cej.2011.10.009
  • J. Christensen, M. Kadic, O. Kraft and M. Wegener: ‘Vibrant times for mechanical metamaterials', MRS Commun., 2015, 5, (3), 453–462.
  • H. Mitschke, J. Schwerdtfeger, F. Schury, M. Stingl, C. Körner, R. F. Singer, V. Robins, K. Mecke and G. Schröder-Turk: ‘Finding auxetic frameworks in periodic tesselations', Adv. Mater., 2011, 22–23, 2669–2674. doi: 10.1002/adma.201100268
  • C. Körner and Y. Liebold-Ribeiro: ‘A systematic approach to identify cellular auxetic materials', Smart Mater. Struct., 2015, 24, (2), 025013. doi: 10.1088/0964-1726/24/2/025013
  • T. Bückmann, R. Schittny, M. Thiel, M. Kadic, G. W. Milton and M. Wegener: ‘On three-dimensional dilational elastic metamaterials', New J. Phys., 2014, 16, 033032. doi: 10.1088/1367-2630/16/3/033032