2,511
Views
100
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS) – a review

, &
Pages 1-31 | Received 21 Jul 2015, Accepted 05 Apr 2016, Published online: 09 May 2016

References

  • M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. Mac Dowell, J. R. Fernandez, M.-C. Ferrari, R. Gross, J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R. T. J. Porter, M. Pourkashanian, G. T. Rochelle, N. Shah, J. G. Yao and P. S. Fennell: ‘Carbon capture and storage update’, Energy Environ. Sci., 2014, 7, (1), 130–189. doi: 10.1039/C3EE42350F
  • OECD Publishing and International Energy Agency, Energy Technology Perspectives 2010. Scenarios and Strategies to 2050. (2010): Organisation for Economic Co-operation and Development.
  • A. Dugstad, M. Halseid and B. Morland: ‘Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines', Energy Procedia, 2013, 37, 2877–2887.
  • Y.-S. Choi, S. Nešić and D. Young: ‘Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2−water environments', Environ. Sci. Technol., 2010, 44, 23, 9233–9238.
  • J. Watt: ‘Carbon dioxide transport infrastructure—key learning and critical issues', J. Pipeline Eng., 2010, 9, 213–222.
  • Office of Pipeline Safety (OPS) within the U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration. “Pipeline incident 20 Year trends,” [Online], Available at: http://www.phmsa.dot.gov/pipeline/library/datastatistics/pipelineincidenttrends, Accessed on: 11th March 2015.
  • K. Johnson, H. Holt, K. Helle and O. K. Sollie: ‘Mapping of potential HSE issues related to large-scale capture, transport and storage of CO2 (Det Norsk Veritas, Horvik. Norway)’, 2008.
  • J. Gale and J. Davison: ‘Transmission of CO2—safety and economic considerations', Energy, 2004, 29, (9–10), 1319–1328.
  • J. M. West: ‘Design and operation of a supercritical CO2 pipeline—Compression system SACROC unit, Scurry County, Texas', SPE Permian Basin Oil Recovery Conference, Midland, Texas 1974.
  • F. W. Schremp and G. R. Roberson: ‘Effect of supercritical carbon dioxide (CO2) on construction materials', SPE J., 1975, 15, (3), 227–233.
  • T. E. Gill: ‘Ten years of handling CO2 for SACROC unit’, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana 1982.
  • L. E. Newton Jr. and R. A. McClay: ‘Corrosion and operational problems, CO2 project, SACROC unit’, SPE Permian Basin Oil and Gas Recovery Conference, Midland, Texas 1977.
  • A. Oosterkamp and J. Ramsen: ‘ State-of-the-art overview of CO2 pipeline transport with relevance to offshore pipelines’ , Polytech Report No: POL-O-2007–138-A, 2008.
  • Kinder Morgan: ‘ CO2 Transportation pipelines', [Online], Available at: http://www.kindermorgan.com/business/co2/transport.cfm. Accessed on 11th March 2015.
  • D. E. McCollough and R. L. Stiles: ‘Operation of the central basin CO2 pipeline system’, SPE California Regional Meeting, Ventura, California, 1987.
  • E. de Visser, C. Hendriks, M. Barrio, M. J. Mølnvik, G. de Koeijer, S. Liljemark and Y. Le Gallo: ‘Dynamis CO2 quality recommendations', Int. J. Greenhouse Gas Control, 2008, 2, (4), 478–484.
  • T. Maldal and I. Tappel: ‘CO2 underground storage for Snøhvit gas field development’, Energy, 2004, 29, (9), 1403–1411.
  • S. Walspurger and H. A. J. V. Dijk: ‘ EDGAR CO2 purity: type and quantities of impurities related to CO2 point source and capture technology: a literature study’, ECN-E-12–054, 2012.
  • A. Prelipceanu, H. Kaballo and U. Kerestecioglu: ‘Linde rectisol wash process', 2nd International Freiberg Conference on IGCC & XtL Technologies, Freiberg, Germany, 2007.
  • European Communities Report: Implementation of directive 2009/31/EC on the geological storage of carbon dioxide, ISBN-13 978-92-79-19834-2, 2011 , 66.
  • A. Aspelund and K. Jordal: ‘Gas conditioning—The interface between CO2 capture and transport’, Int. J. Greenhouse Gas Control, 2007, 1, (3), 343–354.
  • G. Pipitone and O. Bolland: ‘Power generation with CO2 capture: technology for CO2 purification’, Int. J. Greenhouse Gas Control, 2009, 3, (5), 528–534.
  • R. Thodla, A. Francois and N. Sridhar: ‘Materials performance in supercritical CO2 environments', CORROSION 2009, Atlanta, GA, NACE, 2009.
  • K. R. Kanimozhi, S. Papavinasam, R. Shyamala and J. Li: ‘Effect of monoethanolamine (MEA) on the corrosion rates of carbon steels and stainless steels in CO2 saturated NaCl solutions', CORROSION 2014, San Antonio, TX, NACE.
  • A. Dugstad, S. Clausen and B. Morland: ‘Transport of dense phase CO2 in C-steel pipelines—when is corrosion an issue?’ CORROSION 2011, Houston, TX, NACE, 2011.
  • M. Halseid, A. Dugstad and B. Morland: ‘Corrosion and bulk phase reactions in CO2 transport pipelines with impurities: review of recent published studies', Energy Procedia, 2014, 63, 2557–2569.
  • Y.-S. Choi and S. Nešić: ‘Effect of water content on the corrosion behavior of carbon steel in supercritical CO2 phase with impurities', CORROSION 2011, Houston, TX, NACE, 2011.
  • I. S. Cole, P. Corrigan, S. Sim and N. Birbilis: ‘Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem?’, Int. J. Greenhouse Gas Control, 2011, 5, (4), 749–756.
  • T. Lazic, E. Oko and M. Wang: ‘Case study on CO2 transport pipeline network design for humber region in the UK’, Proc. Inst. Mech. Eng. E: J. Process Mech. Eng., 2013, 228, (3), 210–225.
  • P. N. Seevam, J. M. Race, M. J. Downie and P. Hopkins: ‘Transporting the next generation of CO2 for carbon, capture and storage: the impact of impurities on supercritical CO2 pipelines', 7th International Pipeline Conference, Calgary, Alberta, 2008, Canada, American Society of Mechanical Engineers.
  • H. Li and J. Yan: ‘Impact of impurities in CO2-fluids on CO2 transport process', ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain, American Society of Mechanical Engineers, 2006.
  • S. Foltran, M. E. Vosper, N. B. Suleiman, A. Wriglesworth, J. Ke, T. C. Drage, M. Poliakoff and M. W. George: ‘Understanding the solubility of water in carbon capture and storage mixtures: An FTIR spectroscopic study of H2O + CO2 + N2 ternary mixtures', Int. J. Greenhouse Gas Control, 2015, 35, 131–137.
  • S. Sim, I. S. Cole, F. Bocher, P. Corrigan, R. P. Gamage, N. Ukwattage and N. Birbilis: ‘Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines', Int. J. Greenhouse Gas Control, 2013, 17, 534–541.
  • A. S. Ruhl and A. Kranzmann: ‘Investigation of corrosive effects of sulphur dioxide, oxygen and water vapour on pipeline steels', Int. J. Greenhouse Gas Control, 2013, 13, (0), 9–16.
  • A. S. Ruhl, A. Goebel and A. Kranzmann: ‘Corrosion behavior of various steels for compression, transport and injection for carbon capture and storage’, Energy Procedia, 2012, 23, (0), 216–225.
  • A. S. Ruhl and A. Kranzmann: ‘Corrosion behavior of various steels in a continuous flow of carbon dioxide containing impurities', Int. J. Greenhouse Gas Control, 2012, 9, (0), 85–90.
  • F. Pessu, R. Barker and A. Neville: ‘The influence of pH on localized corrosion behavior of X65 carbon steel in CO2-saturated brines', CORROSION 2015, San Antonio, TX, NACE, 2015.
  • R. Barker, X. Hu, A. Neville and S. Cushnaghan: ‘Empirical prediction of carbon-steel degradation rates on an offshore oil and gas facility: predicting CO2 erosion-corrosion pipeline failures before they occur’, SPE J., 2014, 19, (3), 425–436.
  • R. Barker, X. Hu, A. Neville and S. Cushnaghan: ‘Inhibition of flow-induced corrosion and erosion-corrosion for carbon steel pipe work from an offshore oil and gas facility’, Corrosion, 2012, 69, (2), 193–203.
  • M. Nordsveen, S. Nešic, R. Nyborg and A. Stangeland: ‘A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: theory and verification’, Corrosion, 2003, 59, (5), 443–456.
  • S. Nešić, J. Postlethwaite and S. Olsen: ‘An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions', Corrosion, 1996, 52, (4), 280–294.
  • M. Kermani and A. Morshed: ‘Carbon dioxide corrosion in oil and gas production—a compendium’, Corrosion, 2003, 59, (8), 659–683.
  • F. Pessu, R. Barker and A. Neville: ‘Early stages of pitting corrosion of UNS K03014 carbon steel in sour corrosion environments: The influence of CO2, H2S and temperature’, CORROSION 2015, San Antonio, TX, NACE, NACE International, 2015.
  • Y.-S. Choi, D. Young, S. Nešić and L. G. S. Gray: ‘Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: A literature review’, Int. J. Greenhouse Gas Control, 2013, 16, 70–77.
  • Z. Cui, S. Wu, S. Zhu and X. Yang: ‘Study on corrosion properties of pipelines in simulated produced water saturated with supercritical CO2’, Appl. Surf. Sci., 2006, 252, (6), 2368–2374.
  • B. R. Linter and G. T. Burstein: ‘Reactions of pipeline steels in carbon dioxide solutions', Corros. Sci., 1999, 41, (1), 117–139.
  • S. Nesic: ‘Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines', Energy Fuels, 2012, 26, (7), 4098–4111.
  • C. deWaard and D. E. Milliams: ‘Carbonic acid corrosion of steel’, Corros. Sci., 1975, 31, 5, 131–135.
  • T. Tran, B. Brown and S. Nesic: ‘Corrosion of mild steel in an aqueous CO2 environment—basic electrochemical mechanisms revisited’, CORROSION 2015, Dallas, TX, NACE, 2015.
  • M. Singer, L. Chong, A. Mohsen and A. Jenkins: ‘Top of line corrosion—Part 1: Review of the mechanism and laboratory experience’, CORROSION 2014, San Antonio, TX, NACE, 2014.
  • S. Nesic: ‘Key issues related to modelling of internal corrosion of oil and gas pipelines—A review’, Corros. Sci., 2007, 49, (12), 4308–4338.
  • J. Garside. ‘ Advances in the characterization of crystal growth’, AIChE symposium series: American institute of chemical engineers, 1984, vol. 80, 240, 23–38.
  • A. Dugstad: ‘Fundamental Aspects of CO2 metal loss corrosion—Part 1: Mechanism’, CORROSION 2006, San Diego, CA: NACE, 2006.
  • W. Sun, S. Nešić and R. C. Woollam: ‘The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit’, Corros. Sci., 2009, 51, (6), 1273–1276.
  • N. R. Rosli, Y.-S. Choi and D. Young: ‘Impact of oxygen ingress in CO2 corrosion of mild steel’, CORROSION 2014, San Antonio, TX, NACE, 2014.
  • F. Farelas, B. Brown and S. Nešić: ‘Iron carbide and its influence on the formation of protective iron carbonate in CO2 corrosion of mild steel’, CORROSION 2013, Orlando, FL, NACE, 2013.
  • J. E. Wong and N. Park: ‘Further investigation on the effect of corrosion inhibitor actives on the formation of iron carbonate on carbon steel’, CORROSION 2009, Atlanta, GA, NACE, 2009.
  • J. E. Wong and N. Park: ‘Effect of corrosion inhibitor active components on the growth of iron carbonate scale under CO2 conditions', CORROSION 2008, New Orleans, LA, NACE, 2008.
  • W. Sun and S. Nešic: ‘Kinetics of corrosion layer formation: part 1-iron carbonate layers in carbon dioxide corrosion’, Corrosion, 2008, 64, (4), 334–346.
  • W. Sun and S. Nešić: ‘Basics revisited: kinetics of iron carbonate scale precipitation in CO2 corrosion’, CORROSION 2006, San Diego, CA, NACE, 2006.
  • W. Sun, ‘Kinetics of iron carbonate and iron sulfide scale formation in CO2/H2S corrosion’, PhD Thesis, Ohio University, 2006.
  • O. Nafday and S. Nesic: ‘Iron carbonate scale formation and CO2 corrosion in the presence of acetic acid’, CORROSION 2005, Houston, TX, NACE, 2005.
  • A. Dugstad, H. Hemmer and M. Seiersten: ‘Effect of steel microstructure on corrosion rate and protective iron carbonate film formation,’ Corrosion, 2001, 57, (4), 369–378.
  • M. Johnson and M. Tomson: ‘Ferrous carbonate precipitation kinetics and its impact CO2 corrosion’, CORROSION 91, Houston,TX, NACE, 1991.
  • M. L. Johnson, ‘Ferrous carbonate precipitation kinetics—a temperature ramped approach’, PhD Thesis, Rice University, 1991.
  • M. B. Tomson and M. L. Johnson: ‘How ferrous carbonate kinetics impacts oilfield corrosion’, SPE, Anaheim, California, Society of Petroleum Engineers, 1991.
  • J. Greenberg: ‘High temperature kinetics of precipitation and dissolution of ferrous-carbonate’, Master’s Thesis, Rice University, 1987.
  • Y.-S. Choi and S. Nešić: ‘Determining the corrosive potential of CO2 transport pipeline in high pCO2–water environments,’ Int. J. Greenhouse Gas Control, 2011, 5, (4), 788–797.
  • S. Sim, F. Bocher, I. S. Cole, X. B. Chen and N. Birbilis: ‘Investigating the effect of water content in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines,’ Corrosion, 2014, 70, (2), 185–195.
  • Y. Hua, R. Barker and A. Neville: ‘Relating iron carbonate morphology to corrosion characteristics for water-saturated supercritical CO2 systems,’ J. Supercrit. Fluids, 2015, 98, 183–193.
  • A. Dugstad, B. Morland and S. Clausen: ‘Corrosion of transport pipelines for CO2—effect of water ingress', Energy Procedia, 2011, 4, 3063–3070.
  • J. Brown, B. Graver, E. Gulbrandsen, A. Dugstad and B. Morland: ‘Update of DNV recommended practice RP-J202 with focus on CO2 corrosion with impurities', Energy Procedia, 2014, 63, 2432–2441.
  • Y. Hua, R. Barker and A. Neville: ‘Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2’, Int. J. Greenhouse Gas Control, 2014, 31, 48–60.
  • Y. Hua, R. Barker and A. Neville: ‘The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments,’ Appl. Surf. Sci., 2015, 356, 499–511.
  • Y. Hua, R. Barker and A. Neville, ‘Comparison of corrosion behaviour for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2’, J. Supercrit. Fluids, 2015, 97, 224–237.
  • G. Schmitt: ‘Fundamental aspects of CO2 metal loss corrosion. Part II: Influence of different parameters on CO2 corrosion mechanism’, CORROSION 2015, Dallas TX, NACE, NACE International, 2015.
  • I. S. Cole, D. A. Paterson, P. Corrigan, S. Sim and N. Birbilis: ‘State of the aqueous phase in liquid and supercritical CO2 as relevant to CCS pipelines', Int. J. Greenhouse Gas Control, 2012, 7, (0), 82–88.
  • Y. Hua, R. Barker and A. Neville: ‘The influence of SO2 on the tolerbale water content to avoid pipeline corrosion during the transportation of supercritical CO2’, Int. J. Greenhouse Gas Control, 2015, 37, 412–423.
  • Y. Xiang, Z. Wang, X. Yang, Z. Li and W. Ni, ‘The upper limit of moisture content for supercritical CO2 pipeline transport’, J. Supercrit. Fluids, 2012, 67, 14–21.
  • Y. Xiang, Z. Wang, C. Xu, C. Zhou, Z. Li and W. Ni: ‘Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2’, J. Supercrit. Fluids, 2011, 58, (2), 286–294.
  • Y. Hua, R. Barker and A. Neville: ‘Understanding the influence of SO2 and O2 on the corrosion of carbon steel in water-saturated supercritical CO2’, Corrosion, 2014, 71, (5), 667–683.
  • A. S. Ruhl and A. Kranzmann: ‘Investigation of pipeline corrosion in pressurized CO2 containing impurities', Energy Procedia, 2013, 37, 31E31–33136.
  • F. Farelas, Y. S. Choi and S. Nešić: ‘Effects of CO2 phase change, SO2 content and flow on the corrosion of CO2 transmission pipeline steel’, CORROSION 2012, Salt Lake City, UT, NACE, 2012.
  • Y. Xiang, Z. Wang, Z. Li and W. Ni: ‘Effect of temperature on corrosion behaviour of X70 steel in high pressure CO2/SO2/O2/H2O environments', Corros. Eng. Sci. Technol., 2013, 48, (2), 121–129.
  • Y. Xiang, Z. Wang, Z. Li and W. D. Ni: ‘Effect of exposure time on the corrosion rates of X70 steel in supercritical CO2/SO2/O2/H2O Environments', Corrosion, 2012, 69, (3), 251–258.
  • F. Farelas, Y. S. Choi and S. Nešić: ‘Corrosion behavior of API 5L X65 carbon steel under supercritical and liquid carbon dioxide phases in the presence of water and sulfur dioxide’, Corrosion, 2012, 69, (3), 243–250.
  • B. Paschke and A. Kather: ‘Corrosion of pipeline and compressor materials due to impurities in separated CO2 from fossil-fuelled power plants', Energy Procedia, 2012, 23, 207–215.
  • A. S. Ruhl and A. Kranzmann: ‘Corrosion in supercritical CO2 by diffusion of flue gas acids and water’, J. Supercrit. Fluids, 2012, 68, 81–86.
  • B. Brown, S. R. Parakala and S. Nešić: ‘CO2 corrosion in the presence of trace amounts of H2S', CORROSION 2004, New Orleans, LA, NACE, 2004.
  • K. Videm and J. Kvarekvål: ‘Corrosion of carbon steel in carbon dioxide-saturated solutions containing small amounts of hydrogen sulfide’, Corrosion, 1995, 51, (4), 260–269.
  • Y. Zheng, J. Ning, B. Brown and S. Nešić: ‘Electrochemical model of mild steel in a mixed H2S/CO2 aqueous environment in the absence of protective corrosion product layers', Corrosion, 2015, 71, (3), 316–325.
  • H. Ma, X. Cheng, G. Li, S. Chen, Z. Quan, S. Zhao and L. Niu: ‘The influence of hydrogen sulfide on corrosion of iron under different conditions', Corros. Sci., 2000, 42, (10), 1669–1683.
  • D. W. Shoesmith, P. Taylor, M. G. Bailey and D. G. Owen: ‘The formation of ferrous monosulfide polymorphs during the corrosion of iron by aqueous hydrogen sulfide at 21 C’, J. Electrochem. Soc., 1980, 127, 5, 1007–1015.
  • W. Sun and S. Nešic: ‘A mechanistic model of uniform hydrogen sulfide/carbon dioxide corrosion of mild steel’, Corrosion, 2009, 65, (5), 291–307.
  • S. N. Smith and E. J. Wright: ‘Prediction of minimum H2S levels required for slightly sour corrosion’, CORROSION 94, Houston, TX, NACE, 1994.
  • P. Marcus and E. Protopopoff: ‘Potential-pH diagrams for adsorbed species application to sulfur adsorbed on iron in water at 25° and 300°C’, J. Electrochem. Soc., 1990, 137, (9), 2709–2712.
  • Y.-S. Choi, S. Hassani, T. N. Vu and S. Nesic: ‘Effect of H2S on the corrosion behavior of pipeline steels in supercritical and liquid CO2 environments', CORROSION 2015, Dallas, TX, NACE, 2015.
  • F. Corvo, J. Reyes, T. Pérez and A. Castañeda: ‘Role of NOx in materials corrosion and degradation’, Rev. CENIC Cien. Química., 2010, 41, 1–10.
  • A. Dugstad, M. Halseid and B. Morland: ‘Testing of CO2 specifications with respect to corrosion and bulk phase reactions', Energy Procedia, 2014, 63, 2547–2556.
  • A. Dugstad, M. Halseid, B. Morland and A. O. Sivertsen: ‘Corrosion in dense phase CO2 – the impact of depressurisation and accumulation of impurities', Energy Procedia, 2013, 37, (0), 3057–3067.
  • G. A. Jacobson, S. Kerman, Y.-S. Choi, A. Dugstad, S. Nesic and S. Papavinasam: ‘Pipeline corrosion issues related to carbon capture, transportation, and storage’, Mater. Perform., 2014, 24–31.
  • D. Sandana, M. Dale, E. Charles and J. Race: ‘Transport of gaseous and dense carbon dioxide in pipelines: is there an internal stress corrosion cracking risk?’, CORROSION 2013, Orlando, FL, NACE, 2013.
  • A. Brown, J. Harrison and R. Wilkins: ‘Electrochemical investigations of stress corrosion cracking of plain carbon steel in carbon dioxide–carbon monoxide–water system’, Stress Corros. Crack. Hydrogen Embrittl. Iron Base Alloys, 1973, 686–695.
  • M. Kowaka and S. Nagata: ‘Stress corrosion cracking of mild and low alloy steels in CO–CO2–H2O environments', Corrosion, 1976, 32, (10), 395–401.
  • B. Craig: ‘Materials selection & design: should supercritical CO2 pipelines comply with ANSI/ NACE MR0175/ISO 15156?’, Mater. Perform., 2014, 53, (12), 60–62.
  • ANSI/NACE MR0175/ISO 15156. ‘Petroleum and natural gas industries—materials for use in H2S-containing environments in oil and gas production’, Houston, TX, NACE, 2009.
  • Y. Xiang, Z. Wang, M. Xu, Z. Li and W. Ni: ‘A mechanistic model for pipeline steel corrosion in supercritical CO2–SO2–O2–H2O environments', J. Supercrit. Fluids, 2013, 82, 1–12.
  • F. Ayello, K. Evans, R. Thodla and N. Sridhar: ‘Effect of impurities on corrosion of steel in supercritical CO2’, CORROSION 2010, San Antonio, TX, NACE, 2010.
  • J. Beck, M. Fedkin and S. N. Lvov: ‘Electrochemical corrosion measurements in supercritical carbon dioxide-water systems with and without membrane coating’, ECS Transactions, 2013, 50, (31), 315–334.
  • B. Metz, O. Davidson, H. De Coninck, M. Loos and L. Meyer: ‘IPCC, 2005: IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change’, Cambridge, United Kingdom and New York, NY, USA, 2005, 442 pp.
  • S. Sim, I. S. Cole, Y. S. Choi and N. Birbilis: ‘A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes', Int. J. Greenhouse Gas Control, 2014, 29, (0), 185–199.
  • O. Yevtushenko, R. Bäßler and I. Carrillo-Salgado: ‘Corrosion stability of piping steels in a circulating supercritical impure CO2 environment’, CORROSION 2013, Orlando, FL, NACE, 2013.
  • O. Yevtushenko and R. Ler: ‘Water impact on corrosion resistance of pipeline steels in circulating supercritical CO2 with SO2 and NO2 impurities', CORROSION 2014, San Antonio, TX, NACE, 2014.
  • P. R. Petersen, S. A. Lordo and G. R. McAteer: ‘Choosing a neutralising amine corrosion inhibitor’, Petrol. Technol. Quart., 2004, 9, 121–128.
  • S. Turgoose, G. John, M. Flynn, A. A. Kadir, G. Economopoulos and G. Dicken: ‘Corrosion inhibition in supercritical carbon dioxide systems containing water’, CORROSION 2014, San Antonio, TX, NACE, 2014.
  • A. Dugstad: ‘ Corrosion inhibition in dense phase CO2 transport’, PowerPoint presentation, Presented at the Technology Exchange Group 094X session on state-of-the-art research on corrosion inhibitors in March 2014 in San Antonio, TX, 2014.
  • M. Finšgar and J. Jackson: ‘Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review’, Corros. Sci., 2014, 86, 17–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.