1,534
Views
72
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems

, &
Pages 57-77 | Received 18 Dec 2015, Accepted 09 May 2016, Published online: 11 Aug 2016

References

  • C. Drake, S. Deshpande, D. Bera and S. Seal: ‘Metallic nanostructured materials based sensors’, Int. Mater. Rev., 2007, 52, 289–317. doi: 10.1179/174328007X212481
  • O. Germershaus, T. Lühmann, J.-C. Rybak, J. Ritzer and L. Meinel: ‘Application of natural and semi-synthetic polymers for the delivery of sensitive drugs’, Int. Mater. Rev., 2015, 60, 101–131. doi: 10.1179/1743280414Y.0000000045
  • Y. He, C. H. Fan and S.-T. Lee: ‘Silicon nanostructures for bioapplications’, Nano Today, 2010, 5, 282–295. doi: 10.1016/j.nantod.2010.06.008
  • J. Weber, R. Singhal, S. Zekri and A. Kumar: ‘One-dimensional nanostructures: fabrication, characterisation and applications’, Int. Mater. Rev., 2008, 53, 235–255. doi: 10.1179/174328008X348183
  • M. Terrones: ‘Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications’, Int. Mater. Rev., 2004, 49, 325–377. doi: 10.1179/174328004X5655
  • C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck: ‘Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism’, Nature, 1992, 359, 710–712. doi: 10.1038/359710a0
  • Q. J. He and J. L. Shi: ‘Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility’, J. Mater. Chem., 2011, 21, 5845–5855. doi: 10.1039/c0jm03851b
  • F. Lu, S. H. Wu, Y. Hung and C. Y. Mou: ‘Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles’, Small, 2009, 5, 1408–1413. doi: 10.1002/smll.200900005
  • K. Ikari, K. Suzuki and H. Imai: ‘Grain size control of mesoporous silica and formation of bimodal pore structures’, Langmuir, 2004, 20, 11504–11508. doi: 10.1021/la0483717
  • Y. S. Lin and C. L. Haynes: ‘Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity’, J. Am. Chem. Soc., 2010, 132, 4834–4842. doi: 10.1021/ja910846q
  • W. Xu, Q. Gao, Y. Xu, D. Wu, Y. Sun, W. Shen and F. Deng: ‘Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres’, Powder Technol., 2009, 191, 13–20. doi: 10.1016/j.powtec.2008.09.001
  • L. Pan, Q. He, J. Liu, Y. Chen, M. Ma, L. Zhang and J. Shi: ‘Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles’, J. Am. Chem. Soc., 2012, 134, 5722–5725. doi: 10.1021/ja211035w
  • Q. He, X. Cui, F. Cui, L. Guo and J. Shi: ‘Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition’, Microporous Mesoporous Mater., 2009, 117, 609–616. doi: 10.1016/j.micromeso.2008.08.004
  • H. Vallhov, S. Gabrielsson, M. Strømme, A. Scheynius and A. E. Garcia-Bennet: ‘Mesoporous silica particles induce size dependent effects on human dendritic cells’, Nano Lett., 2007, 7, 3576–3582. doi: 10.1021/nl0714785
  • Q. J. He, Z. W. Zhang, F. Gao, Y. P. Li and J. L. Shi: ‘In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation’, Small, 2011, 7, 271–280. doi: 10.1002/smll.201001459
  • T.-W. Kim, P.-W. Chung and V. S.-Y. Lin: ‘Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size’, Chem. Mater., 2010, 22, 5093–5104. doi: 10.1021/cm1017344
  • H. Yamada, C. Urata, Y. Aoyama, S. Osada, Y. Yamauchi and K. Kuroda: ‘Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems’, Chem. Mater., 2012, 24, 1462–1471. doi: 10.1021/cm3001688
  • R. I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs and A. E. Ostafin: ‘Synthesis of nanoscale mesoporous silica spheres with controlled particle size’, Chem. Mater., 2002, 14, 4721–4728. doi: 10.1021/cm0204371
  • E. Ghavanloo, S. A. Fazelzadeh and H. Rafii-Tabar: ‘Analysis of radial breathing-mode of nanostructures with various morphologies: a critical review’, Int. Mater. Rev., 2015, 60, 312–329. doi: 10.1179/1743280415Y.0000000002
  • K. Anselme and M. Bigerelle: ‘Role of materials surface topography on mammalian cell response’, Int. Mater. Rev., 2011, 56, 243–266. doi: 10.1179/1743280411Y.0000000001
  • N. J. Hao, L. F. Li and F. Q. Tang: ‘Shape matters when engineering mesoporous silica-based nanomedicines’, Biomater. Sci., 2016, 4, 575–591. doi: 10.1039/C5BM00589B
  • X. W. Lou, L. A. Archer and Z. C. Yang: ‘Hollow micro-/nanostructures: synthesis and applications’, Adv. Mater., 2008, 20, 3987–4019. doi: 10.1002/adma.200800854
  • Q. Cai, Z. S. Luo, W. Q. Pang, Y. W. Fan, X. H. Chen and F. Z. Cui: ‘Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium’, Chem. Mater., 2001, 13, 258–263. doi: 10.1021/cm990661z
  • X. L. Pang, J. N. Gao and F. Q. Tang: ‘Controlled preparation of rod- and top-like MCM-41 mesoporous silica through one-step route’, J. Non-Crystalline Solids, 2005, 351, 1705–1709. doi: 10.1016/j.jnoncrysol.2005.03.044
  • E. M. Björk, F. Söderlind and M. Odén: ‘Tuning the shape of mesoporous silica particles by alterations in parameter space: from rods to platelets’, Langmuir, 2013, 29, 13551–13561. doi: 10.1021/la403201v
  • D. Sen Karaman, D. Desai, R. Senthilkumar, E. M. Johansson, N. Råtts, M. Odén, J. E. Eriksson, C. Sahlgren, D. M. Toivola and J. M. Rosenholm: ‘Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization’, Nanoscale Res. Lett., 2012, 7, 358. doi: 10.1186/1556-276X-7-358
  • Y. Lu, D. L. Slomberg, B. Sun and M. H. Schoenfisch: ‘Shape- and nitric oxide flux-dependent bactericidal activity of nitric oxide-releasing silica nanorods’, Small, 2013, 9, 2189–2198. doi: 10.1002/smll.201201798
  • H. Jin, Z. Liu, T. Ohsuna, O. Terasaki, Y. Inoue, K. Sakamoto, T. Nakanishi, K. Ariga and S. Che: ‘Control of morphology and helicity of chiral mesoporous silica’, Adv. Mater., 2006, 18, 593–596. doi: 10.1002/adma.200502038
  • X. L. Pang and F. Q. Tang: ‘Morphological control of mesoporous materials using inexpensive silica sources’, Microporous Mesoporous Mater., 2005, 85, 1–6. doi: 10.1016/j.micromeso.2005.06.012
  • H. M. Chen and J. H. He: ‘Fine control over the morphology and structure of mesoporous silica nanomaterials by a dual-templating approach’, Chem. Commun., 2008, 44, 4422–4424. doi: 10.1039/b807787h
  • X. Lin, N. Zhao, P. Yan, H. Hu and F.-J. Xu: ‘The shape and size effects of polycation functionalized silica nanoparticles on gene transfection’, Acta Biomater., 2014, 11, 381–392. doi: 10.1016/j.actbio.2014.09.004
  • G. Lelong, S. Bhattacharyya, S. Kline, T. Cacciaguerra, M. A. Gonzalez and M. L. Saboungi: ‘Effect of surfactant concentration on the morphology and texture of MCM-41 materials’, J. Phys. Chem. C, 2008, 112, 10674–10680. doi: 10.1021/jp800898n
  • S. P. Naik, S. P. Elangovan, T. Okubo and I. Sokolov: ‘Morphology control of mesoporous silica particles’, J. Phys. Chem. C, 2007, 111, 11168–11173. doi: 10.1021/jp072184a
  • H. Meng, S. Yang, Z. X. Li, T. Xia, J. Chen, Z. X. Ji, H. Y. Zhang, X. Wang, S. J. Lin, C. Huang, Z. H. Zhou, J. I. Zink and A. E. Nel: ‘Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism’, ACS Nano, 2011, 5, 4434–4447. doi: 10.1021/nn103344k
  • T. Yu, A. Malugin and H. Ghandehari: ‘Impact of silica nanoparticle design on cellular toxicity and hemolytic activity’, ACS Nano, 2011, 5, 5717–5728. doi: 10.1021/nn2013904
  • N. J. Hao, H. H. Yang, L. F. Li, L. L. Li and F. Q. Tang: ‘The shape effect of mesoporous silica nanoparticles on intracellular reactive oxygen species in A375 cells’, New J. Chem., 2014, 38, 4258–4266. doi: 10.1039/C4NJ00736K
  • S. Huh, J. W. Wiench, J.-C. Yoo, M. Pruski and V. S.-Y. Lin: ‘Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method’, Chem. Mater., 2003, 15, 4247–4256. doi: 10.1021/cm0210041
  • S. Huh, J. W. Wiench, B. G. Trewyn, S. Song, M. Pruski and V. S. Y. Lin: ‘Tuning of particle morphology and pore properties in mesoporous silicas with multiple organic functional groups’, Chem. Commun., 2003, 2, 2364–5. doi: 10.1039/b306255d
  • L. Zhang, S. Z. Qiao, Y. G. Jin, L. N. Cheng, Z. F. Yan and G. Q. Lu: ‘Hydrophobic functional group initiated helical mesostructured silica for controlled drug release’, Adv. Funct. Mater., 2008, 18, 3834–3842. doi: 10.1002/adfm.200800631
  • D. M. Huang, Y. Hung, B. S. Ko, S. C. Hsu, W. H. Chen, C. L. Chien, C. P. Tsai, C. T. Kuo, J. C. Kang, C. S. Yang, C. Y. Mou and Y. C. Chen: ‘Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking’, FASEB J., 2005, 19, 761–772. doi: 10.1096/fj.04-3104com
  • B. G. Trewyn, J. A. Nieweg, Y. N. Zhao and V. S.-Y. Lin: ‘Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration’, Chem. Eng. J., 2008, 137, 23–29. doi: 10.1016/j.cej.2007.09.045
  • N. J. Hao, L. L. Li, Q. Zhang, X. L. Huang, X. W. Meng, Y. Q. Zhang, D. Chen and F. Q. Tang: ‘The shape effect of PEGylated mesoporous silica nanoparticles on cellular uptake pathway in Hela cells’, Microporous Mesoporous Mater., 2012, 162, 14–23. doi: 10.1016/j.micromeso.2012.05.040
  • X. L. Huang, X. Teng, D. Chen, F. Q. Tang and J. Q. He: ‘The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function’, Biomaterials, 2010, 31, 438–448. doi: 10.1016/j.biomaterials.2009.09.060
  • X. L. Huang, L. L. Li, T. L. Liu, N. J. Hao, H. Y. Liu, D. Chen and F. Q. Tang: ‘The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo’, ACS Nano, 2011, 5, 5390–5399. doi: 10.1021/nn200365a
  • N. J. Hao, K. W. Jayawardana, X. Chen and M. Yan: ‘One-step synthesis of amine-functionalized hollow mesoporous silica nanoparticles as efficient antibacterial and anticancer materials’, ACS Appl. Mater. Interfaces, 2015, 7, 1040–1045. doi: 10.1021/am508219g
  • S. O. Obare, N. R. Jana and C. J. Murphy: ‘Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes’, Nano Lett., 2001, 1, 601–603. doi: 10.1021/nl0156134
  • J.-F. Chen, J.-X. Wang, R.-J. Liu, L. Shao and L.-X. Wen: ‘Synthesis of porous silica structures with hollow interiors by templating nanosized calcium carbonate’, Inorg. Chem. Commun., 2004, 7, 447–449. doi: 10.1016/j.inoche.2004.01.003
  • K.-W. Hu, K.-C. Hsu and C.-S. Yeh: ‘pH-Dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging’, Biomaterials, 2010, 31, 6843–6848. doi: 10.1016/j.biomaterials.2010.05.046
  • K. S. Mayya, D. I. Gittins, A. M. Dibaj and F. Caruso: ‘Nanotubes prepared by templating sacrificial nickel nanorods’, Nano Lett., 2001, 1, 727–730. doi: 10.1021/nl015622c
  • B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick and C. N. R. Rao: ‘Oxide nanotubes prepared using carbon nanotubes as templates’, J. Mater. Res., 1997, 12, 604–606. doi: 10.1557/JMR.1997.0089
  • Z. Liang and A. S. Susha: ‘Mesostructured silica tubes and rods by templating porous membranes’, Chem. Eur. J., 2004, 10, 4910–4914. doi: 10.1002/chem.200400005
  • A. Nan, X. Bai, S. J. Son, S. B. Lee and H. Ghandehari: ‘Cellular uptake and cytotoxicity of silica nanotubes’, Nano Lett., 2008, 8, 2150–2154. doi: 10.1021/nl0802741
  • H. Scheel, C. Zollfrank and P. Greil: ‘Luminescent silica nanotubes and nanowires: preparation from cellulose whisker templates and investigation of irradiation-induced luminescence’, J. Mater. Res., 2009, 24, 1709–1715. doi: 10.1557/jmr.2009.0224
  • F. Wang and C. Mao: ‘Nanotubes connected to a micro-tank: hybrid micro-/nano-silica architectures transcribed from living bacteria as bioreactors’, Chem. Commun., 2009, 45, 1222. doi: 10.1039/b818652a
  • D. Li, B. Mathew and C. Mao: ‘Biotemplated synthesis of hollow double-layered core/shell titania/silica nanotubes under ambient conditions’, Small, 2012, 8, 3691–3697. doi: 10.1002/smll.201200421
  • B. Cao, H. Xu and C. Mao: ‘Controlled self-assembly of rodlike bacterial pili particles into ordered lattices’, Angew. Chem. Int. Ed., 2011, 123, 6388–6392. doi: 10.1002/ange.201102052
  • J. H. Jung, K. Nakashima and S. Shinkai: ‘Preparation of ultrastable mesoporous silica using a phenanthroline-appended cholesterol organogelator as a template’, Nano Lett., 2001, 1, 145–148. doi: 10.1021/nl000190b
  • F. Wang, S. L. Nimmo, B. Cao and C. Mao: ‘Oxide formation on biological nanostructures via a structure-directing agent: towards an understanding of precise structural transcription’, Chem. Sci., 2012, 3, 2639–2635. doi: 10.1039/c2sc00583b
  • Q. Ji, R. Iwaura and T. Shimizu: ‘Regulation of silica nanotube diameters: sol-gel transcription using solvent-sensitive morphological change of peptidic lipid nanotubes as templates’, Chem. Mater., 2007, 19, 1329–1334. doi: 10.1021/cm0625124
  • M. Numata, K. Sugiyasu, T. Hasegawa and S. Shinkai: ‘Sol–gel reaction using DNA as a template: an attempt toward transcription of DNA into inorganic materials’, Angew. Chem. Int. Ed., 2004, 43, 3279–3283. doi: 10.1002/anie.200454009
  • Y. Le, D. Guo, B. Cheng and J. Yu: ‘Bio-template-assisted synthesis of hierarchically hollow SiO2 microtubes and their enhanced formaldehyde adsorption performance’, Appl. Surf. Sci., 2013, 274, 110–116. doi: 10.1016/j.apsusc.2013.02.123
  • A. Yildirim and M. Bayindir: ‘A porosity difference based selective dissolution strategy to prepare shape-tailored hollow mesoporous silica nanoparticles’, J. Mater. Chem. A, 2015, 3, 3839–3846. doi: 10.1039/C4TA06222A
  • J. A. Champion and S. Mitragotri: ‘Role of target geometry in phagocytosis’, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 4930–4934. doi: 10.1073/pnas.0600997103
  • S. E. A. Gratton, P. A. Ropp, P. D. Pohlhaus, J. C. Luft, V. J. Madden, M. E. Napier and J. M. DeSimone: ‘The effect of particle design on cellular internalization pathways’, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 11613–11618. doi: 10.1073/pnas.0801763105
  • S. D. Shen, T. Gu, D. Sen Mao, X. Z. Xiao, P. Yuan, M. H. Yu, L. Y. Xia, Q. Ji, L. Meng, W. Song, C. Z. Yu and G. Z. Lu: ‘Synthesis of nonspherical mesoporous silica ellipsoids with tunable aspect ratios for magnetic assisted assembly and gene delivery’, Chem. Mater., 2012, 24, 230–235. doi: 10.1021/cm203434k
  • H. Zhang, J. M. Sun, D. Ma, X. H. Bao, A. Klein-Hoffmann, G. Weinberg, D. S. Su and R. Schlögl: ‘Unusual mesoporous SBA-15 with parallel channels running along the short axis’, J. Am. Chem. Soc., 2004, 126, 7440–7441. doi: 10.1021/ja048630e
  • N. J. Hao, L. F. Li and F. Q. Tang: ‘Facile preparation of ellipsoid-like MCM-41 with parallel channels along the short axis for drug delivery and assembly of Ag nanoparticles for catalysis’, J. Mater. Chem. A, 2014, 2, 11565–11568. doi: 10.1039/C4TA01820F
  • S. Sadasivan, D. Khushalani and S. Mann: ‘Synthesis and shape modification of organo-functionalised silica nanoparticles with ordered mesostructured interiors’, J. Mater. Chem., 2003, 13, 1023–1029. doi: 10.1039/b300851g
  • H. Zhang, T. J. Bandosz and D. L. Akins: ‘Template-free synthesis of silica ellipsoids’, Chem. Commun., 2011, 47, 7791–7793. doi: 10.1039/c1cc11787d
  • N. Hao, X. Chen, S. Jeon and M. Yan: ‘Carbohydrate-conjugated hollow oblate mesoporous silica nanoparticles as nanoantibiotics to target mycobacteria’, Adv. Healthcare Mater., 2015, 4, 2797–2801. doi: 10.1002/adhm.201500491
  • S. Sadasivan, C. E. Fowler, D. Khushalani and S. Mann: ‘Nucleation of MCM-41 nanoparticles by internal reorganization of disordered and nematic-like silica–surfactant clusters’, Angew. Chem. Int. Ed., 2002, 41, 2151–2153. doi: 10.1002/1521-3773(20020617)41:12<2151::AID-ANIE2151>3.0.CO;2-U
  • Q. Liang, Q. Hu, G. Miao, B. Yuan and X. Chen: ‘A facile synthesis of novel mesoporous bioactive glass nanoparticles with various morphologies and tunable mesostructure by sacrificial liquid template method’, Mater. Lett., 2015, 148, 45–49. doi: 10.1016/j.matlet.2015.01.122
  • S. Sacanna, L. Rossi, B. W. M. Kuipers and A. P. Philipse: ‘Fluorescent monodisperse silica ellipsoids for optical rotational diffusion studies’, Langmuir, 2006, 22, 1822–1827. doi: 10.1021/la052484o
  • S. Xuan, F. Liang and K. Shu: ‘Novel method to fabricate magnetic hollow silica particles with anisotropic structure’, J. Magn. Magn. Mater., 2009, 321, 1029–1033. doi: 10.1016/j.jmmm.2008.10.002
  • J. Zhao, Z. Hua, Z. Liu, Y. Li, L. Guo, W. Bu, X. Cui, M. Ruan, H. Chen and J. Shi: ‘Direct fabrication of mesoporous zeolite with a hollow capsular structure’, Chem. Commun., 2009, 48, 7578–7580. doi: 10.1039/b913920f
  • H. N. Zhang, Y. Zhou, Y. R. Li, T. J. Bandosz and D. L. Akins: ‘Synthesis of hollow ellipsoidal silica nanostructures using a wet-chemical etching approach’, J. Colloid Interf. Sci., 2012, 375, 106–111. doi: 10.1016/j.jcis.2012.02.046
  • N. Ehlert, P. P. Mueller, M. Stieve, T. Lenarz and P. Behrens: ‘Mesoporous silica films as a novel biomaterial: applications in the middle ear’, Chem. Soc. Rev., 2013, 42, 3847–3861. doi: 10.1039/c3cs35359a
  • H. Yang, N. Coombs, I. Sokolov and G. A. Ozin: ‘Free-standing and oriented mesoporous silica films grown at the air–water interface’, Nature, 1996, 381, 589–592. doi: 10.1038/381589a0
  • K. J. Edler and B. Yang: ‘Formation of mesostructured thin films at the air-liquid interface’, Chem. Soc. Rev., 2013, 42, 3765–3776. doi: 10.1039/C2CS35300H
  • D. Zhao, P. Yang, D. I. Margolese and G. D. Stucky: ‘Synthesis of continuous mesoporous silica thin films with three-dimensional accessible pore structures’, Chem. Commun., 1998, 1, 2499–2500. doi: 10.1039/a804649b
  • S. Besson, C. Ricolleau, T. Gacoin, C. Jacquiod and J.-P. Boilot: ‘Highly ordered orthorhombic mesoporous silica films’, Microporous Mesoporous Mater., 2003, 60, 43–49. doi: 10.1016/S1387-1811(03)00314-7
  • Y. Kumai, N. Sugimoto, H. Tsukada and S. Inagaki: ‘Synthesis of highly ordered mesoporous silica thin films for nano-fabrication of platinum nanodot arrays’, J. Porous Mater., 2009, 17, 529–534. doi: 10.1007/s10934-009-9321-4
  • L. Nicole, C. Boissière, D. Grosso, A. Quach and C. Sanchez: ‘Mesostructured hybrid organic–inorganic thin films’, J. Mater. Chem., 2005, 15, 3598–3627. doi: 10.1039/b506072a
  • E. M. Freer, L. E. Krupp, W. D. Hinsberg, P. M. Rice, J. L. Hedrick, J. N. Cha, R. D. Miller and H.-C. Kim: ‘Oriented mesoporous organosilicate thin films’, Nano Lett., 2005, 5, 2014–2018. doi: 10.1021/nl051517h
  • C. Z. Ma, L. Han, Z. Jiang, Z. H. Huang, J. Feng, Y. Yao and S. A. Che: ‘Growth of mesoporous silica film with vertical channels on substrate using gemini surfactants’, Chem. Mater., 2011, 23, 3583–3586. doi: 10.1021/cm201356n
  • Y. Guillemin, M. Etienne, E. Aubert and A. Walcarius: ‘Electrogeneration of highly methylated mesoporous silica thin films with vertically-aligned mesochannels and electrochemical monitoring of mass transport issues’, J. Mater. Chem., 2010, 20, 6799–6807. doi: 10.1039/c0jm00305k
  • Y. Yamauchi, M. Sawada, T. Noma, H. Ito, S. Furumi, Y. Sakka and K. Kuroda: ‘Orientation of mesochannels in continuous mesoporous silica films by a high magnetic field’, J. Mater. Chem., 2005, 15, 1137–1140. doi: 10.1039/b418478e
  • A. Walcarius, E. Sibottier, M. Etienne and J. Ghanbaja: ‘Electrochemically assisted self-assembly of mesoporous silica thin films’, Nat. Mater., 2007, 6, 602–608. doi: 10.1038/nmat1951
  • S. Kondoh and Y. Iwamoto: ‘Novel processing for mesoporous silica films with one-dimensional through channels normal to the substrate surface’, J. Am. Ceram. Soc., 1999, 82, 209–212. doi: 10.1111/j.1151-2916.1999.tb01744.x
  • Z. G. Teng, G. F. Zheng, Y. Q. Dou, W. Li, C. Y. Mou, X. H. Zhang, A. M. Asiri and D. Y. Zhao: ‘Highly ordered mesoporous silica films with perpendicular mesochannels by a simple Stöber-solution growth approach’, Angew. Chem. Int. Ed., 2012, 51, 2173–2177. doi: 10.1002/anie.201108748
  • A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita and N. Teramae: ‘Self-assembly of a silica–surfactant nanocomposite in a porous alumina membrane’, Nat. Mater., 2004, 3, 337–341. doi: 10.1038/nmat1107
  • M. Hara, S. Nagano and T. Seki: ‘π-π interaction-induced vertical alignment of silica mesochannels templated by a discotic lyotropic liquid crystal’, J. Am. Chem. Soc., 2010, 132, 13654–13656. doi: 10.1021/ja106220j
  • N. Hao, X. Chen, K. W. Jayawardana, B. Wu, M. Sundhoro and M. Yan: ‘Shape control of mesoporous silica nanomaterials templated with dual cationic surfactants and their antibacterial activities’, Biomater. Sci., 2016, 4, 87–91. doi: 10.1039/C5BM00197H
  • P. Kipkemboi, A. Fogden, V. Alfredsson and K. Flodström: ‘Triblock copolymers as templates in mesoporous silica formation: structural dependence on polymer chain length and synthesis temperature’, Langmuir, 2001, 17, 5398–5402. doi: 10.1021/la001715i
  • X. Cui, S.-W. Moon and W.-C. Zin: ‘High-yield synthesis of monodispersed SBA-15 equilateral hexagonal platelet with thick wall’, Mater. Lett., 2006, 60, 3857–3860. doi: 10.1016/j.matlet.2006.03.129
  • S. Y. Chen, L. Y. Jang and S. Cheng: ‘Synthesis of Zr-incorporated SBA-15 mesoporous materials in a self-generated acidic environment’, Chem. Mater., 2004, 16, 4174–4180. doi: 10.1021/cm049247b
  • S. Y. Chen, C. Y. Tang, W. T. Chuang, J. J. Lee, Y. L. Tsai, J. C. Chan, C. Y. Lin, Y. C. Liu and S. Cheng: ‘A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels’, Chem. Mater., 2008, 20, 3906–3916. doi: 10.1021/cm703500c
  • B. C. Chen, H. P. Lin, M. C. Chao, C. Y. Mou and C. Y. Tang: ‘Mesoporous silica platelets with perpendicular nanochannels via a ternary surfactant system’, Adv. Mater., 2004, 16, 1657–1661. doi: 10.1002/adma.200306327
  • Sujandi, S. E. Park, D. S. Han, S. C. Han, M. J. Jin and T. Ohsuna: ‘Amino-functionalized SBA-15 type mesoporous silica having nanostructured hexagonal platelet morphology’, Chem. Commun., 2006, 42, 4131–4133. doi: 10.1039/b608463j
  • K. Nakanishi, M. Tomita and K. Kato: ‘Improvement in the catalytic activity of cytochromium c by immobilisation on a novel mesoporous silica sheet’, RSC Adv., 2014, 4, 4732–4735. doi: 10.1039/C3RA45861J
  • K. Nakanishi, M. Tomita and K. Kato: ‘Synthesis of amino-functionalized mesoporous silica sheets and their application for metal ion capture’, J. Asian Ceram. Soc., 2015, 3, 70–76. doi: 10.1016/j.jascer.2014.10.011
  • Y. Q. Yeh, H. P. Lin, C. Y. Tang and C. Y. Mou: ‘Mesoporous silica SBA-15 sheet with perpendicular nanochannels’, J. Colloid Interf. Sci., 2011, 362, 354–366. doi: 10.1016/j.jcis.2011.07.011
  • N. Hao, F. Tang and L. Li: ‘MCM-41 mesoporous silica sheet with ordered perpendicular nanochannels for protein delivery and the assembly of Ag nanoparticles in catalytic applications’, Microporous Mesoporous Mater., 2015, 218, 223–227. doi: 10.1016/j.micromeso.2015.06.023
  • S. Yang, X. Feng, L. Wang, K. Tang, J. Maier and K. Müllen: ‘Graphene-based nanosheets with a sandwich structure’, Angew. Chem. Int. Ed., 2010, 49, 4795–4799. doi: 10.1002/anie.201001634
  • X. Guo, Y. Deng, D. Gu, R. Che and D. Zhao: ‘Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites’, J. Mater. Chem., 2009, 19, 6706–6712. doi: 10.1039/b910606e
  • S. I. R. Castillo, S. Ouhajji, S. Fokker, B. H. Erné, C. T. W. M. Schneijdenberg, D. M. E. Thies-Weesie and A. P. Philipse: ‘Silica cubes with tunable coating thickness and porosity: from hematite filled silica boxes to hollow silica bubbles’, Microporous Mesoporous Mater., 2014, 195, 75–86. doi: 10.1016/j.micromeso.2014.03.047
  • S. I. R. Castillo, C. E. Pompe, J. van Mourik, D. M. a. Verbart, D. M. E. Thies-Weesie, P. E. de Jongh and A. P. Philipse: ‘Colloidal cubes for the enhanced degradation of organic dyes’, J. Mater. Chem. A, 2014, 2, 10193–10201. doi: 10.1039/c4ta01373e
  • M. Fuji, T. Shin, H. Watanabe and T. Takei: ‘Shape-controlled hollow silica nanoparticles synthesized by an inorganic particle template method’, Adv. Powder Technol., 2012, 23, 562–565. doi: 10.1016/j.apt.2011.06.002
  • R. V. Rivera-Virtudazo, M. Fuji, C. Takai and T. Shirai: ‘Fabrication of unique hollow silicate nanoparticles with hierarchically micro/mesoporous shell structure by a simple double template approach’, Nanotechnology, 2012, 23, 485608. doi: 10.1088/0957-4484/23/48/485608
  • F. Li, Z. Wang and A. Stein: ‘Shaping mesoporous silica nanoparticles by disassembly of hierarchically porous structures’, Angew. Chem. Int. Ed., 2007, 46, 1885–1888. doi: 10.1002/anie.200604147
  • N. Yan, F. Wang, H. Zhong, Y. Li, Y. Wang, L. Hu and Q. Chen: ‘Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries’, Sci. Rep., 2013, 3, 1–6.
  • N. J. Hao, K. Neranon, O. Ramström and M. Yan: ‘Glyconanomaterials for biosensing applications’, Biosens. Bioelectron., 2016, 76, 113–130. doi: 10.1016/j.bios.2015.07.031
  • I. I. Slowing, J. L. Vivero-Escoto, B. G. Trewyn and V. S.-Y. Lin: ‘Mesoporous silica nanoparticles: structural design and applications’, J. Mater. Chem., 2010, 20, 7924–7937. doi: 10.1039/c0jm00554a
  • M. H. Lim and A. Stein: ‘Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials’, Chem. Mater., 1999, 11, 3285–3295. doi: 10.1021/cm990369r
  • F. De Juan and E. Ruiz-Hitzky: ‘Selective functionalization of mesoporous silica’, Adv. Mater., 2000, 12, 430–432. doi: 10.1002/(SICI)1521-4095(200003)12:6<430::AID-ADMA430>3.0.CO;2-3
  • N. Gartmann and D. Brühwiler: ‘Controlling and imaging the functional-group distribution on mesoporous silica’, Angew. Chem. Int. Ed., 2009, 48, 6354–6356. doi: 10.1002/anie.200902436
  • J. Lu, E. Choi, F. Tamanoi and J. I. Zink: ‘Light-activated nanoimpeller-controlled drug release in cancer cells’, Small, 2008, 4, 421–426. doi: 10.1002/smll.200700903
  • P.-W. Chung, R. Kumar, M. Pruski and V. S. Y. Lin: ‘Temperature responsive solution partition of organic–inorganic hybrid poly(N-isopropylacrylamide)-coated mesoporous silica nanospheres’, Adv. Funct. Mater., 2008, 18, 1390–1398. doi: 10.1002/adfm.200701116
  • N. K. Mal, M. Fujiwara and Y. Tanaka: ‘Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica’, Nature, 2003, 421, 350–353. doi: 10.1038/nature01362
  • C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija and V. S. Y. Lin: ‘A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules’, J. Am. Chem. Soc., 2003, 125, 4451–4459. doi: 10.1021/ja028650l
  • J. A. Gruenhagen, C.-Y. Lai, D. R. Radu, V. S. Y. Lin and E. S. Yeung: ‘Real-time imaging of tunable adenosine 5-Triphosphate release from an MCM-41-type mesoporous silica nanosphere-based delivery system’, Appl. Spectrosc., 2005, 59, 424–431. doi: 10.1366/0003702053641513
  • J. L. Vivero-Escoto, I. I. Slowing, C.-W. Wu and V. S.-Y. Lin: ‘Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere’, J. Am. Chem. Soc., 2009, 131, 3462–3463. doi: 10.1021/ja900025f
  • S. Giri, B. G. Trewyn, M. P. Stellmaker and V. S.-Y. Lin: ‘Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles’, Angew. Chem. Int. Ed., 2005, 44, 5038–5044. doi: 10.1002/anie.200501819
  • M. Fujiwara, S. Terashima, Y. Endo, K. Shiokawa and H. Ohue: ‘Switching catalytic reaction conducted in pore void of mesoporous material by redox gate control’, Chem. Commun., 2006, 42, 4635–4637. doi: 10.1039/b610444d
  • C. Park, K. Lee and C. Kim: ‘Photoresponsive cyclodextrin-covered nanocontainers and their sol-gel transition induced by molecular recognition’, Angew. Chem. Int. Ed., 2009, 48, 1275–1278. doi: 10.1002/anie.200803880
  • K. Patel, S. Angelos, W. R. Dichtel, A. Coskun, Y.-W. Yang, J. I. Zink and J. F. Stoddart: ‘Enzyme-responsive snap-top covered silica nanocontainers’, J. Am. Chem. Soc., 2008, 130, 2382–2383. doi: 10.1021/ja0772086
  • D. P. Ferris, Y. L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart and J. I. Zink: ‘Light-operated mechanized nanoparticles’, J. Am. Chem. Soc., 2009, 131, 1686–1688. doi: 10.1021/ja807798g
  • R. Liu, Y. Zhang and P. Feng: ‘Multiresponsive supramolecular nanogated ensembles’, J. Am. Chem. Soc., 2009, 131, 15128–15129. doi: 10.1021/ja905288m
  • K. C. F. Leung, T. D. Nguyen, J. F. Stoddart and J. I. Zink: ‘Supramolecular nanovalves controlled by proton abstraction and competitive binding’, Chem. Mater., 2006, 18, 5919–5928. doi: 10.1021/cm061682d
  • S. Angelos, Y.-W. Yang, K. Patel, J. F. Stoddart and J. I. Zink: ‘pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes’, Angew. Chem. Int. Ed., 2008, 47, 2222–2226. doi: 10.1002/anie.200705211
  • T. D. Nguyen, K. C.-F. Leung, M. Liong, Y. Liu, J. F. Stoddart and J. I. Zink: ‘Versatile supramolecular nanovalves reconfigured for light activation’, Adv. Funct. Mater., 2007, 17, 2101–2110. doi: 10.1002/adfm.200600751
  • T. D. Nguyen, Y. Liu, S. Saha, K. C. F. Leung, J. F. Stoddart and J. I. Zink: ‘Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes’, J. Am. Chem. Soc., 2007, 129, 626–634. doi: 10.1021/ja065485r
  • R. Casasús, E. Climent, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, J. Soto, P. Amorós, J. Cano and E. Ruiz: ‘Dual aperture control on pH- and anion-driven supramolecular nanoscopic hybrid gate-like ensembles’, J. Am. Chem. Soc., 2008, 130, 1903–1917. doi: 10.1021/ja0756772
  • A. Bernardos, E. Aznar, C. Coll, R. Martínez-Mañez, J. M. Barat, M. D. Marcos, F. Sancenón, A. Benito and J. Soto: ‘Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings’, J. Control. Release, 2008, 131, 181–189. doi: 10.1016/j.jconrel.2008.07.037
  • A. Bernardos, E. Aznar, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, J. Soto, J. M. Barat and P. Amorós: ‘Enzyme-responsive controlled release using mesoporous silica supports capped with lactose’, Angew. Chem. Int. Ed., 2009, 48, 5884–5887. doi: 10.1002/anie.200900880
  • E. Climent, A. Bernardos, R. Martínez-Máñez, A. Maquieira, M. D. Marcos, N. Pastor-Navarro, R. Puchades, F. Sancenón, J. Soto and P. Amorós: ‘Controlled delivery systems using antibody-capped mesoporous nanocontainers’, J. Am. Chem. Soc., 2009, 131, 14075–14080. doi: 10.1021/ja904456d
  • Y. N. Zhao, B. G. Trewyn, I. I. Slowing and V. S.-Y. Lin: ‘Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP’, J. Am. Chem. Soc., 2009, 131, 8398–8400. doi: 10.1021/ja901831u
  • S. R. Zhai, C. S. He, D. Wu and Y. H. Sun: ‘Hydrothermal synthesis of mesostructured aluminosilicate nanoparticles assisted by binary surfactants and finely controlled assembly process’, J. Non-Cryst. Solids, 2007, 353, 1606–1611. doi: 10.1016/j.jnoncrysol.2007.01.032
  • W. Zhao, J. Gu, L. Zhang, H. Chen and J. Shi: ‘Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure’, J. Am. Chem. Soc., 2005, 127, 8916–8917. doi: 10.1021/ja051113r
  • K. Mori, Y. Kondo, S. Morimoto and H. Yamashita: ‘Synthesis and multifunctional properties of superparamagnetic iron oxide nanoparticles coated with mesoporous silica involving single-site Ti-oxide moiety’, J. Phys. Chem. C, 2008, 112, 397–404. doi: 10.1021/jp076165c
  • Y. S. Lin, Y. Hung, J. K. Su, R. Lee, C. Chang, M. L. Lin and C. Y. Mou: ‘Gadolinium(III)-incorporated nanosized mesoporous silica as potential magnetic resonance imaging contrast agents’, J. Phys. Chem. B, 2004, 108, 15608–15611. doi: 10.1021/jp047829a
  • S. A. Shabalovskaya: ‘Physicochemical and biological aspects of Nitinol as a biomaterial’, Int. Mater. Rev., 2001, 46, 233–250. doi: 10.1179/095066001771048745
  • M. E. Gomes and R. L. Reis: ‘Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 1 Available systems and their properties’, Int. Mater. Rev., 2004, 49, 261–273. doi: 10.1179/095066004225021918
  • M. E. Gomes and R. L. Reis: ‘Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 2 Systems for temporary replacement and advanced tissue regeneration’, Int. Mater. Rev., 2004, 49, 274–285. doi: 10.1179/095066004225021927
  • R. J. Narayan: ‘Laser processing of diamond like carbon thin films for medical prostheses’, Int. Mater. Rev., 2006, 51, 127–143. doi: 10.1179/174328406X79432
  • A. R. C. Duarte, J. F. Mano and R. L. Reis: ‘Supercritical fluids in biomedical and tissue engineering applications: a review’, Int. Mater. Rev., 2009, 54, 214–222. doi: 10.1179/174328009X411181
  • V. Guarino, A. Gloria, M. G. Raucci, R. De Santis and L. Ambrosio: ‘Bio-inspired composite and cell instructive platforms for bone regeneration’, Int. Mater. Rev., 2012, 57, 256–275. doi: 10.1179/0950660812Z.00000000021
  • T. H. Silva, A. Alves, B. M. Ferreira, J. M. Oliveira, L. L. Reys, R. J. F. Ferreira, R. A. Sousa, S. S. Silva, J. F. Mano and R. L. Reis: ‘Materials of marine origin: a review on polymers and ceramics of biomedical interest’, Int. Mater. Rev., 2012, 57, 276–306. doi: 10.1179/1743280412Y.0000000002
  • M. M. Gentleman and E. Gentleman: ‘The role of surface free energy in osteoblast–biomaterial interactions’, Int. Mater. Rev., 2014, 59, 417–429. doi: 10.1179/1743280414Y.0000000038
  • J. A. Gan and C. C. Berndt: ‘Nanocomposite coatings: thermal spray processing, microstructure and performance’, Int. Mater. Rev., 2015, 60, 195–244. doi: 10.1179/1743280414Y.0000000048
  • F. Barthelat: ‘Architectured materials in engineering and biology: fabrication, structure, mechanics and performance’, Int. Mater. Rev., 2015, 60, 413–430. doi: 10.1179/1743280415Y.0000000008
  • A. Shapira, R. Feiner and T. Dvir: ‘Composite biomaterial scaffolds for cardiac tissue engineering’, Int. Mater. Rev., 2016, 61, 1–19. doi: 10.1179/1743280415Y.0000000012
  • A. Kumar, K. C. Nune, L. E. Murr and R. D. K. Misra: ‘Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process–structure–property paradigm’, Int. Mater. Rev., 2016, 61, 20–45. doi: 10.1080/09506608.2015.1128310
  • Q. J. He, Z. W. Zhang, Y. Gao, J. L. Shi and Y. P. Li: ‘Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles’, Small, 2009, 5, 2722–2729. doi: 10.1002/smll.200900923
  • H. J. Gao, W. D. Shi and L. B. Freund: ‘Mechanics of receptor-mediated endocytosis’, Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 3–4. doi: 10.1073/pnas.0408495101
  • R. Vácha, F. J. Martinez-Veracoechea and D. Frenkel: ‘Receptor-mediated endocytosis of nanoparticles of various shapes’, Nano Lett., 2011, 11, 5391–5395. doi: 10.1021/nl2030213
  • R. Toy, P. M. Peiris, K. B. Ghaghada and E. Karathanasis: ‘Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles’, Nanomedicine, 2014, 9, 121–134. doi: 10.2217/nnm.13.191
  • S. Lee, M. Ferrari and P. Decuzzi: ‘Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows’, Nanotechnology, 2009, 20, 495101–495111. doi: 10.1088/0957-4484/20/49/495101
  • S. Shah, Y. L. Liu, W. Hu and J. M. Gao: ‘Modeling particle shape-dependent dynamics in nanomedicine’, J. Nanosci. Nanotechnol., 2011, 11, 919–928. doi: 10.1166/jnn.2011.3536
  • K. Yang and Y. Q. Ma: ‘Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer’, Nat. Nanotechnol., 2010, 5, 579–583. doi: 10.1038/nnano.2010.141
  • I. I. Slowing, B. G. Trewyn and V. S.-Y. Lin: ‘Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells’, J. Am. Chem. Soc., 2006, 128, 14792–14793. doi: 10.1021/ja0645943
  • T. H. Chung, S. H. Wu, M. Yao, C. W. Lu, Y. S. Lin, Y. Hung, C. Y. Mou, Y. C. Chen and D. M. Huang: ‘The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells’, Biomaterials, 2007, 28, 2959–2966. doi: 10.1016/j.biomaterials.2007.03.006
  • F. P. Gao, L. L. Li, T. L. Liu, N. J. Hao, H. Y. Liu, L. F. Tan, H. B. Li, X. L. Huang, B. Peng, C. M. Yan, L. Q. Yang, X. L. Wu, D. Chen and F. Q. Tang: ‘Doxorubicin loaded silica nanorattles actively seek tumors with improved anti-tumor effects’, Nanoscale, 2012, 4, 3365–3372. doi: 10.1039/c2nr12094a
  • Q. J. He, J. M. Zhang, F. Chen, L. M. Guo, Z. Y. Zhu and J. L. Shi: ‘An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles’, Biomaterials, 2010, 31, 7785–7796. doi: 10.1016/j.biomaterials.2010.07.008
  • Y. F. Zhu, Y. Fang, L. Borchardt and S. Kaskel: ‘PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles’, Microporous Mesoporous Mater., 2011, 141, 199–206. doi: 10.1016/j.micromeso.2010.11.013
  • T. Suteewong, H. Sai, R. Cohen, S. T. Wang, M. Bradbury, B. Baird, S. M. Gruner and U. Wiesner: ‘Highly aminated mesoporous silica nanoparticles with cubic pore structure’, J. Am. Chem. Soc., 2011, 133, 172–175. doi: 10.1021/ja1061664
  • S. R. Blumen, K. Cheng, M. E. Ramos-Nino, D. J. Taatjes, D. J. Weiss, C. C. Landry and B. T. Mossman: ‘Unique uptake of acid-prepared mesoporous spheres by lung epithelial and mesothelioma cells’, Am. J. Respir. Cell Mol Biol., 2007, 36, 333–342. doi: 10.1165/rcmb.2006-0319OC
  • V. Cauda, H. Engelke, A. Sauer, D. Arcizet, J. Rädler and T. Bein: ‘Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake’, Nano Lett., 2010, 10, 2484–2492. doi: 10.1021/nl100991w
  • Y. Yang, W. Song, A. Wang, P. Zhu, J. Fei and J. Li: ‘Lipid coated mesoporous silica nanoparticles as photosensitive drug carriers’, Phys. Chem. Chem. Phys., 2010, 12, 4418–4422. doi: 10.1039/b924370d
  • S. Kumari, S. MG and S. Mayor: ‘Endocytosis unplugged: multiple ways to enter the cell’, Cell Res., 2010, 20, 256–275. doi: 10.1038/cr.2010.19
  • G. Sahay, D. Y. Alakhova and A. V. Kabanov: ‘Endocytosis of nanomedicines’, J. Control. Release, 2010, 145, 182–195. doi: 10.1016/j.jconrel.2010.01.036
  • L. Y. T. Chou, K. Ming and W. C. W. Chan: ‘Strategies for the intracellular delivery of nanoparticles’, Chem. Soc. Rev., 2010, 40, 233–245. doi: 10.1039/C0CS00003E
  • J. L. Vivero-Escoto, I. I. Slowing, B. G. Trewyn and V. S.-Y. Lin: ‘Mesoporous silica nanoparticles for intracellular controlled drug delivery’, Small, 2010, 6, 1952–1967. doi: 10.1002/smll.200901789
  • J. Rejman, V. Oberle, I. S. Zuhorn and D. Hoekstra: ‘Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis’, Biochem. J., 2004, 377, 159–169. doi: 10.1042/bj20031253
  • A. J. Di Pasqua, K. K. Sharma, Y. L. Shi, B. B. Toms, W. Ouellette, J. C. Dabrowiak and T. Asefa: ‘Cytotoxicity of mesoporous silica nanomaterials’, J. Inorg. Biochem., 2008, 102, 1416–1423. doi: 10.1016/j.jinorgbio.2007.12.028
  • Q. J. He, J. M. Zhang, J. L. Shi, Z. Y. Zhu, L. X. Zhang, W. B. Bu, L. M. Guo and Y. Chen: ‘The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses’, Biomaterials, 2010, 31, 1085–1092. doi: 10.1016/j.biomaterials.2009.10.046
  • B. Godin, J. H. Gu, R. E. Serda, R. Bhavane, E. Tasciotti, C. Chiappini, X. W. Liu, T. Tanaka, P. Decuzzi and M. Ferrari: ‘Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation’, J. Biomed. Mater. Res. A, 2010, 94, 1236–1243.
  • I. I. Slowing, C. W. Wu, J. L. Vivero-Escoto and V. S.-Y. Lin: ‘Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells’, Small, 2009, 5, 57–62. doi: 10.1002/smll.200800926
  • I. I. Slowing, J. L. Vivero-Escoto, Y. N. Zhao, K. Kandel, C. Peeraphatdit, B. G. Trewyn and V. S.-Y. Lin: ‘Exocytosis of mesoporous silica nanoparticles from mammalian cells: from asymmetric cell-to-cell transfer to protein harvesting’, Small, 2011, 7, 1526–1532. doi: 10.1002/smll.201002077
  • N. J. Hao, H. Y. Liu, L. L. Li, D. Chen, L. F. Li and F. Q. Tang: ‘In vitro degradation behavior of silica nanoparticles under physiological conditions’, J. Nanosci. Nanotechnol., 2012, 12, 6346–6354. doi: 10.1166/jnn.2012.6199
  • L. Li, T. Liu, C. Fu, L. Tan, X. Meng and H. Liu: ‘Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape’, Nanomedicine, 2015, 11, 1915–1924.
  • I. Izquierdo-Barba, M. Colilla, M. Manzano and M. Vallet-Regí: ‘In vitro stability of SBA-15 under physiological conditions’, Microporous Mesoporous Mater., 2010, 132, 442–452. doi: 10.1016/j.micromeso.2010.03.025
  • V. Cauda, C. Argyo and T. Bein: ‘Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles’, J. Mater. Chem., 2010, 20, 8693–8699. doi: 10.1039/c0jm01390k
  • J. H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia and M. J. Sailor: ‘Biodegradable luminescent porous silicon nanoparticles for in vivo applications’, Nat. Mater., 2009, 8, 331–336. doi: 10.1038/nmat2398
  • Q. J. He, J. L. Shi, M. Zhu, Y. Chen and F. Chen: ‘The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid’, Microporous Mesoporous Mater., 2010, 131, 314–320. doi: 10.1016/j.micromeso.2010.01.009
  • K. S. Finnie, D. J. Waller, F. L. Perret, A. M. Krause-Heuer, H. Q. Lin, J. V. Hanna and C. J. Barbé: ‘Biodegradability of sol–gel silica microparticles for drug delivery’, J. Sol-Gel Sci. Tech., 2008, 49, 12–18. doi: 10.1007/s10971-008-1847-4
  • A. P. Mann, T. Tanaka, A. Somasunderam, X. Liu, D. G. Gorenstein and M. Ferrari: ‘E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow’, Adv. Mater., 2011, 23, H278–H282. doi: 10.1002/adma.201101541
  • N. Artzi, N. Oliva, C. Puron, S. Shitreet, S. Artzi, A. bon Ramos, A. Groothuis, G. Sahagian and E. R. Edelman: ‘In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging’, Nat. Mater., 2011, 10, 704–709. doi: 10.1038/nmat3095
  • J. S. Souris, C.-H. Lee, S.-H. Cheng, C.-T. Chen, C.-S. Yang, J. A. Ho, C.-Y. Mou and L.-W. Lo: ‘Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles’, Biomaterials, 2010, 31, 5564–5574. doi: 10.1016/j.biomaterials.2010.03.048
  • M. Vallet-Regí, A. Rámila, R. P. de Real and J. Pérez-Pariente: ‘A new property of MCM-41: drug delivery system’, Chem. Mater., 2001, 13, 308–311. doi: 10.1021/cm0011559
  • J. M. Rosenholm and M. Lindén: ‘Towards establishing structure-activity relationships for mesoporous silica in drug delivery applications’, J. Control. Release, 2008, 128, 157–164. doi: 10.1016/j.jconrel.2008.02.013
  • Q. N. Lin, Q. Huang, C. Y. Li, C. Y. Bao, Z. Z. Liu, F. Y. Li and L. Y. Zhu: ‘Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one- or two-photon process’, J. Am. Chem. Soc., 2010, 132, 10645–10647. doi: 10.1021/ja103415t
  • S. Hudson, J. Cooney and E. Magner: ‘Proteins in mesoporous silicates’, Angew. Chem. Int. Ed., 2008, 47, 8582–8594. doi: 10.1002/anie.200705238
  • I. I. Slowing, B. G. Trewyn and V. S.-Y. Lin: ‘Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins’, J. Am. Chem. Soc., 2007, 129, 8845–8849. doi: 10.1021/ja0719780
  • F. Torney, B. G. Trewyn, V. S.-Y. Lin and K. Wang: ‘Mesoporous silica nanoparticles deliver DNA and chemicals into plants’, Nat. Nanotechnol., 2007, 2, 295–300. doi: 10.1038/nnano.2007.108
  • C. Hom, J. Lu, M. Liong, H. Z. Luo, Z. X. Li, J. I. Zink and F. Tamanoi: ‘Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells’, Small, 2010, 6, 1185–1190. doi: 10.1002/smll.200901966
  • Y. Han, D. Shchukin, P. Fernandes, R. Mutihac and H. Möhwald: ‘Mechanism and kinetics of controlled drug release by temperature stimuli responsive protein nanocontainers’, Soft Matter, 2010, 6, 4942–4947. doi: 10.1039/c0sm00294a
  • Y. C. Zhu, H. J. Liu, F. Li, Q. C. Ruan, H. Wang, M. Fujiwara, L. Z. Wang and G. Q. M. Lu: ‘Dipolar molecules as impellers achieving electric-field-stimulated release’, J. Am. Chem. Soc., 2010, 132, 1450–1451. doi: 10.1021/ja907560y
  • S. H. Hu, T. Y. Liu, H. Y. Huang, D. M. Liu and S. Y. Chen: ‘Magnetic-sensitive silica nanospheres for controlled drug release’, Langmuir, 2008, 24, 239–244. doi: 10.1021/la701570z
  • H.-J. Kim, H. Matsuda, H. Zhou and I. Honma: ‘Ultrasound-triggered smart drug release from a poly(dimethylsiloxane)–mesoporous silica composite’, Adv. Mater., 2006, 18, 3083–3088. doi: 10.1002/adma.200600387
  • C. H. Lee, S. H. Cheng, I. P. Huang, J. S. Souris, C. S. Yang, C. Y. Mou and L. W. Lo: ‘Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics’, Angew. Chem. Int. Ed., 2010, 49, 8214–8219. doi: 10.1002/anie.201002639
  • Z. Luo, K. Y. Cai, Y. Hu, L. Zhao, P. Liu, L. Duan and W. H. Yang: ‘Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery’, Angew. Chem. Int. Ed., 2011, 50, 640–643. doi: 10.1002/anie.201005061
  • L. Pasqua, F. Testa, R. Aiello, S. Cundari and J. B. Nagy: ‘Preparation of bifunctional hybrid mesoporous silica potentially useful for drug targeting’, Microporous Mesoporous Mater., 2007, 103, 166–173. doi: 10.1016/j.micromeso.2007.01.045
  • V. P. Torchilin: ‘Recent approaches to intracellular delivery of drugs and DNA and organelle targeting’, Annu. Rev. Biomed. Eng., 2006, 8, 343–375. doi: 10.1146/annurev.bioeng.8.061505.095735
  • C. S. O. Paulo, R. Pires das Neves and L. S. Ferreira: ‘Nanoparticles for intracellular-targeted drug delivery’, Nanotechnology, 2011, 22, 494002. doi: 10.1088/0957-4484/22/49/494002
  • E. Ju, Z. Li, Z. Liu, J. Ren and X. Qu: ‘Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy’, ACS Appl. Mater. Interfaces, 2014, 6, 4364–4370. doi: 10.1021/am5000883
  • G.-F. Luo, W.-H. Chen, Y. Liu, Q. Lei, R.-X. Zhuo and X.-Z. Zhang: ‘Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide’, Sci. Rep., 2014, 4, 6064. doi: 10.1038/srep06064
  • Z. Chen: ‘Small-molecule delivery by nanoparticles for anticancer therapy’, Trends Mol Med., 2010, 16, 594–602. doi: 10.1016/j.molmed.2010.08.001
  • E. Ruoslahti, S. N. Bhatia and M. J. Sailor: ‘Targeting of drugs and nanoparticles to tumors’, J. Cell Biol., 2010, 188, 759–768. doi: 10.1083/jcb.200910104
  • R. K. Jain and T. Stylianopoulos: ‘Delivering nanomedicine to solid tumors’, Nat. Rev. Clin. Oncol., 2010, 7, 653–664. doi: 10.1038/nrclinonc.2010.139
  • K. Greish: ‘Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting’, Methods Mol Biol., 2010, 624, 25–37. doi: 10.1007/978-1-60761-609-2_3
  • L. L. Li, F. Q. Tang, H. Y. Liu, T. L. Liu, N. J. Hao, D. Chen, X. Teng and J. Q. He: ‘In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy’, ACS Nano, 2010, 4, 6874–6822. doi: 10.1021/nn100918a
  • R. Toy, E. Hayden, C. Shoup, H. Baskaran and E. Karathanasis: ‘The effects of particle size, density and shape on margination of nanoparticles in microcirculation’, Nanotechnology, 2011, 22, 115101–115109. doi: 10.1088/0957-4484/22/11/115101
  • C. Wong, T. Stylianopoulos, J. Cui, J. Martin, V. P. Chauhan, W. Jiang, Z. Popovic, R. K. Jain, M. G. Bawendi and D. Fukumura: ‘Multistage nanoparticle delivery system for deep penetration into tumor tissue’, Proc. Natl. Acad. Sci. U.S.A., 2011, 108, 2426–2431. doi: 10.1073/pnas.1018382108
  • S. Xu, B. Z. Olenyuk, C. T. Okamoto and S. F. Hamm-Alvarez: ‘Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances’, Adv. Drug Deliv. Rev., 2013, 65, 121–138. doi: 10.1016/j.addr.2012.09.041
  • E. Tasciotti, X. W. Liu, R. Bhavane, K. Plant, A. D. Leonard, B. K. Price, M. M. C. Cheng, P. Decuzzi, J. M. Tour, F. Robertson and M. Ferrari: ‘Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications’, Nat. Nanotechnol., 2008, 3, 151–157. doi: 10.1038/nnano.2008.34
  • T. Lebold, C. Jung, J. Michaelis and C. Brauchle: ‘Nanostructured silica materials as drug-delivery systems for doxorubicin: single molecule and cellular studies’, Nano Lett., 2009, 9, 2877–2883. doi: 10.1021/nl9011112
  • A. Grandjean-Laquerriere, P. Laquerriere, M. Guenounou, D. Laurent-Maquin and T. M. Phillips: ‘Importance of the surface area ratio on cytokines production by human monocytes in vitro induced by various hydroxyapatite particles’, Biomaterials, 2005, 26, 2361–2369. doi: 10.1016/j.biomaterials.2004.07.036
  • A. S. Shanbhag, J. J. Jacobs, J. Black, J. O. Galante and T. T. Glant: ‘Macrophage/particle interactions: effect of size, composition and surface area’, J. Biomed. Mater. Res., 1994, 28, 81–90. doi: 10.1002/jbm.820280111
  • A. S. Shanbhag, J. J. Jacobs, J. Black, J. O. Galante and T. T. Glant: ‘Human monocyte response to particulate biomaterials generated in vivo and in vitro’, J. Orthop. Res., 1995, 13, 792–801. doi: 10.1002/jor.1100130520

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.