728
Views
24
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Polysaccharide-based materials in macromolecular prodrug design and development

, , &
Pages 78-98 | Received 17 Nov 2015, Accepted 29 Jun 2016, Published online: 25 Jul 2016

References

  • V. Llopis-Hernandez, M. Cantini, C. Gonzalez-Garc and M. Salmeron-Sanchez: ‘Material-based strategies to engineer fibronectin matrices for regenerative medicine’, Int. Mater. Rev., 2015, 60, 245–263.
  • C. Fischbach and D. J. Mooney: ‘Polymers for pro- and anti-angiogenic therapy’, Biomaterials, 2007, 28, 2069–2076.
  • R. Langer and D. A. Tirrell: ‘Designing materials for biology and medicine’, Nature, 2004, 428, 487–492.
  • M. P. Lutolf and J. A. Hubbell: ‘Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering’, Nat. Biotechnol., 2005, 23, 47–55.
  • J. Vinsova and E. Vavrikova: ‘Recent advances in drugs and prodrugs design of chitosan’, Curr. Pharm. Desig., 2008, 14, 1311–1326.
  • J. Folkman and D. M. Long: ‘The use of silicone rubber as a carrier for prolonged drug therapy’, J. Surg. Res., 1964, 4, 139–142.
  • H. Ringsdorf: ‘Structure and properties of pharmacologically active polymers’, J. Polym. Sci. Polym. Symp., 1975, 51, 135–153.
  • K. L. Kiick: ‘Polymer therapeutics’, Science, 2007, 317, 1182–1183.
  • R. Duncan: ‘Polymer conjugates as anticancer nanomedicines’, Nat. Rev. Cancer, 2006, 6, 688–701.
  • N. S. Abbas, M. Amin, M. A. Hussain, K. J. Edgar, M. N. Tahir and W. Tremel: ‘Extended release and enhanced bioavailability of moxifloxacin conjugated with hydrophilic cellulose ethers’, Carbohydr. Polym., 2016, 136, 1297–1306.
  • M. A. Hussain, K. Abbas, M. Amin, B. A. Lodhi, S. Iqbal, M. N. Tahir and W. Tremel: ‘Novel high-loaded, nanoparticulate and thermally stable macromolecular prodrug design of NSAIDs based on hydroxypropylcellulose’, Cellulose, 2015, 22, (1), 461–471.
  • K. J. Watson, D. R. Anderson and S. T. Nguyen: ‘Toward polymeric anticancer drug cocktails from ring-opening metathesis polymerization’, Macromolecules, 2001, 34, 3507–3509.
  • M. Amin, N. S. Abbas, M. A. Hussain, K. Edgar, M. N. Tahir, W. Tremel and M. Sher: ‘Cellulose ether derivatives: a new platform for prodrug formation of fluoroquinolone antibiotics’, Cellulose, 2015, 22, (3), 2011–2022.
  • E. R. Gillies, A. P. Goodwin and J. M. J. Frechet: ‘Acetals as pH-sensitive linkages for drug delivery’, Bioconj. Chem., 2004, 15, 1254–1263.
  • Y. S. Kim, E. S. Gil and T. L. Lowe: ‘Synthesis and characterization of thermoresponsive-co-biodegradable linear-dendritic copolymers’, Macromolecules, 2006, 39, 7805–7811.
  • A. W. York, S. E. Kirkland and C. L. McCormick: ‘Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery’, Adv. Drug Deliv. Rev., 2008, 60, 1018–1036.
  • S. Liu, R. Maheshwari and K. L. Kiick: ‘Polymer-based therapeutics’, Macromolecules, 2009, 42, 3–13.
  • O. Germershaus, T. Luhmann, J.-C. Rybak, J. Ritzer and L. Meinel: ‘Application of natural and semi-synthetic polymers for the delivery of sensitive drugs’, Int. Mater. Rev., 2015, 60, 101–130.
  • A. Rosler, G. W. M. Vandermeulen and H. A. Klok: ‘Advanced drug delivery devices via self-assembly of amphiphilic block copolymers’, Adv. Drug Deliv. Rev., 2001, 53, 95–108.
  • I. Brigger, C. Dubernet and P. Couvreur: ‘Nanoparticles in cancer therapy and diagnosis’, Adv. Drug Deliv. Rev., 2002, 54, 631–651.
  • K. Hoste, K. De Winne and E. Schacht: ‘Polymeric prodrugs’, Int. J. Pharm., 2004, 277, 119–131.
  • W. Amass, A. Amass and B. Tighe: ‘A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies’, Polym. Int., 1998, 47, 89–144.
  • P. T. Anastas and J. C. Warner: ‘Green chemistry: theory and practice’, 1998, New York, Oxford University Press.
  • P. Tundo, P. Anastas, D. S. Black, J. Breen, T. Collins, S. Memoli, J. Miyamoto, M. Polyakoff and W. Tumas: ‘Synthetic pathways and processes in green chemistry: introductory overview’, Pure Appl. Chem., 2000, 72, 1207–1228.
  • D. L. Kaplan, Ed., ‘Biopolymers from renewable resources: macromolecular systems-materials approach’, 1998, Berlin, Heidelberg, New York, Springer.
  • E. Chiellini and R. Solaro, Eds., ‘Recent advances in biodegradable polymers and plastics’, 2003, Weinheim, Wiley-VCH.
  • M. E. Gomes and R. L. Reis: ‘Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 1 available systems and their properties’, Int. Mater. Rev., 2004, 49, 261–273.
  • J. Puls, C. Altaner and B. Saake: ‘Cellulose acetates: properties and applications’, (ed. P. Rustemeyer), 2004, Weinheim, Wiley-VCH.
  • E. Samios, R. K. Dart and J. V. Dawkins: ‘Preparation, characterization and biodegradation studies on cellulose acetates with varying degrees of substitution’, Polymer, 1997, 38, (12), 3045–3054.
  • A. Abbas, M. A. Hussain, M. Amin, M. N. Tahir, I. Jantan, A. Hameed and S. N. A. Bukhari: ‘Multiple cross-linked hydroxypropylcellulose-succinate-salicylate: Prodrug design, characterization, stimuli responsive swelling-deswelling and sustained drug release’, RSC Adv., 2015, 5, 43440–43448.
  • L. Y. Qiu and Y. H. Bae: ‘Polymer architecture and drug delivery’, Pharm. Res., 2006, 23, 1–30.
  • P. J. Marsac and L. S. Taylor: ‘Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters’, Pharm. Res., 2009, 26, 139–151.
  • K. A. Elkhodairy, N. S. Barakat and F. K. Alanazi: ‘Solubilization and amorphization of non-steroidal anti-inflammatory drug with low molecular weight chitosan for a new guar-based colon delivery formulation’, Lett. Drug Des. Discov., 2011, 8, 292–301.
  • S. K. Jain, A. Jain, Y. Gupta and M. Ahirwar: ‘Design and development of hydrogel beads for targeted drug delivery to the colon’, AAPS PharmSciTech., 2007, 8, 34–41.
  • T. Nishikawa, K. Akiyoshi and J. Sunamoto: ‘Macromolecular complexation between bovine serum albumin and the self-assembled hydrogel nanoparticle of hydrophobized polysaccharides’, J. Am. Chem. Soc., 1996, 118, 6110–6115.
  • J. A. Hubbell: ‘Materials science: enhancing drug function’, Science, 2003, 300, 595–596.
  • K. Na, T. B. Lee, K. H. Park, E. K. Shin, Y. B. Lee and H. K. Choi: ‘Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system’, Eur. J. Pharm. Sci., 2003, 18, 165–173.
  • L. Liu, P. Jin, M. Cheng, G. Zhang and F. Zhang: ‘5-Fluorouracil-loaded self-assembled pH-sensitive nanoparticles as novel drug carrier for treatment of malignant tumors’, Chin. J. Chem. Eng., 2006, 14, 377–382.
  • R. Duncan: ‘The dawning era of polymer therapeutics’, Nat. Rev. Drug Discov., 2003, 2, 347–360.
  • D. A. Wood: ‘Biodegradable drug delivery systems’, Int. J. Pharm., 1980, 7, 1–18.
  • J. Khandare and T. Minko: ‘Polymer-drug conjugates: progress in polymeric prodrugs’, Prog. Polym. Sci., 2006, 31, 359–397.
  • M. J. Hawkins, P. S. Shiong and N. Desai: ‘Protein nanoparticles as drug carriers in clinical medicine’, Adv. Drug Deliv. Rev., 2008, 60, 876–885.
  • V. P. Torchilin and A. N. Lukyanov: ‘Peptide and protein drug delivery to and into tumors: challenges and solutions’, Drug Discov. Today, 2003, 8, 259–266.
  • A. Trouet and D. D. Campeneere: ‘Daunorubicin-DNA and doxorubicin-DNA a review of experimental and clinical data’, Cancer Chemother. Pharmacol., 1979, 2, 77–79.
  • X. Cheng, F. Zhang, G. Zhou, S. Gao, L. Dong, W. Jiang, Z. Ding, J. Chen and J. Zhang: ‘DNA/chitosan nanocomplex as a novel drug carrier for doxorubicin’, Drug Deliv., 2009, 16, 135–144.
  • D. Klemm, B. Phillip, T. Heinze and U. Heinze: ‘Comprehensive cellulose chemistry’, (ed. W. Wagenknecht), 1998, Weinheim, Wiley-VCH.
  • M. A. Hussain: ‘Unconventional synthesis and characterization of novel abietic acid esters of hydroxypropylcellulose as potential macromolecular prodrugs’, J. Polym. Sci. A: Pol. Chem., 2008, 46, 747–752.
  • M. A. Hussain and T. Heinze: ‘Unconventional synthesis of pullulan abietates’, Polym. Bull., 2008, 60, 775–783.
  • C. Larsen: ‘Macromolecular prodrugs. XII. Kinetics of release of naproxen from various polysaccharide ester prodrugs in neutral and alkaline solution’, Int. J. Pharm., 1989, 51, 233–240.
  • C. Y. Won and C. C. Chu: ‘Dextran-estrone conjugate: synthesis and in vitro release study’, Carbohydr. Polym., 1988, 36, 327–334.
  • S. Y. Zhou, Q. B. Mei, L. Liu, B. L. Zhang, C. Li and J. Zhou: ‘Characteristics of drug-release in vitro of different dextran-dexamethasone conjugates’, Yao Xue Xue Bao, 2003, 38, 388–391.
  • H. Nogusa, K. Yamamoto, T. Yano, M. Kajiki, H. Hamana and S. Okuno: ‘Distribution characteristics of carboxymethylpullulan-peptide-doxorubicin conjugates in tumor-bearing rats: different sequence of peptide spacers and doxorubicin contents’, Biol. Pharm. Bull., 2000, 23, 621–626.
  • S. G. Lévesque and M. S. Shoichet: ‘Synthesis of enzyme-degradable, peptide-cross-linked dextran hydrogels’, Bioconj. Chem., 2007, 18, 874–885.
  • E. Roseeuw, V. Coessens, A. M. Balazuc, M. Lagranderie, P. Chavarot, A. Pessina, M. G. Neri, E. Schacht, G. Marchal and D. Domurado: ‘Synthesis, degradation, and antimicrobial properties of targeted macromolecular prodrugs of norfloxacin’, Antimicrob. Agents Chemother., 2003, 47, 3435–3441.
  • J. A. Guu, G. H. Hsiue and T. M. Juang: ‘Synthesis and biological properties of antitumor-active conjugates of ADR with dextran’, J. Biomater. Sci. Polym. Ed., 2002, 13, 1135–1151.
  • C. Y. Won, C. C. Chu and T. J. Yu: ‘Synthesis of starch-based drug carrier for the control release of estrone hormone’, Carbohyd. Polym., 1997, 32, 239–244.
  • M. R. Rekha and C. P. Sharma: ‘Hemocompatible pullulan-polyethyleneimine conjugates for liver cell gene delivery: ‘in vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency’, Acta Biomater., 2011, 7, 370–379.
  • A. D. McLeod, D. R. Friend and T. N. Tozer: ‘Glucocorticoid-dextran conjugates as potential prodrugs for colon-specific delivery: hydrolysis in rat gastrointestinal tract contents’, J. Pharm. Sci., 1994, 83, 1284–1288.
  • J. Varshosaz, J. Emami, F. Ahmadi, N. Tavakoli, M. Minaiyan, A. Fassihi, P. Mahzouni and F. Dorkooosh: ‘Preparation of budesonide-dextran conjugates using glutarate spacer as a colon-targeted drug delivery system: in vitro/in vivo evaluation in induced ulcerative colitis’, J. Drug. Target., 2011, 19, 140–153.
  • C. Mura, D. Valenti, R. Sanna, M. A. De Luca, A. M. Fadda and G. Loy: ‘Metronidazole prodrugs: synthesis, physicochemical properties, stability, and ex vivo release studies’, Eur. J. Med. Chem., 2011, 46, 4142–4150.
  • K. Na and Y. H. Bae: ‘Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro’, Pharm. Res., 2002, 19, 681–688.
  • P. K. Shrivastava and S. K. Shrivastava: ‘Dextran carrier macromolecule for colon specific delivery of celecoxib’, Curr. Drug Deliv., 2010, 7, 144–151.
  • A. P. Chimalakonda and R. Mehvar: ‘Dextran-methylprednisolone succinate as a prodrug of methylprednisolone: local immunosuppressive effects in liver after systemic administration to rats’, Pharm. Res., 2003, 20, 198–204.
  • A. Scomparin, S. Salmaso, S. Bersani, F. R. Satchi and P. Caliceti: ‘Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery’, Eur. J. Pharm. Sci., 2011, 42, 547–558.
  • Y. S. Peng, S. C. Lin, S. J. Huang, Y. M. Wang, Y. J. Lin, L. F. Wang and J. S. Chen: ‘Chondroitin sulfate-based anti-inflammatory macromolecular prodrugs’, Eur. J. Pharm. Sci., 2006, 29, 60–69.
  • B. Schlechter, A. Neumann, M. Wilchek and R. Arnon: ‘Soluble polymers as carriers of cis-platinum’, J. Control. Release, 1989, 10, 75–87.
  • W. C. Biddle, Y. Haruta, B. K. Seon, E. S. Henderson and E. J. Sarcione: ‘In vitro and in vivo cytotoxic activity of anti-human leukemia monoclonal antibodies SN5c and SN6 daunorubicin conjugates’, Leuk. Res., 1989, 13, 699–707.
  • R. Duncan and J. Kopecek: ‘Soluble synthetic polymers as potential drug carriers’, Adv. Polym. Sci., 1984, 57, 51–101.
  • R. Duncan: ‘Drug-polymer conjugates: potential for improved chemotherapy’, Anti-Cancer Drugs, 1992, 3, 175–210.
  • G. Mocanu, A. Airinie and A. Carporv: ‘Macromolecular drug conjugates. 5. Theophylline-dextran’, J. Control. Release, 1996, 40, 1–9.
  • S. Pugazhendhy, P. K. Shrivastava, S. K. Sinha, K. Sushant and S. K. Shrivastava: ‘Lamotrigine–dextran conjugates-synthesis, characterization, and biological evaluation’, Med. Chem. Res., 2011, 20, 595–600.
  • J. S. Lee, Y. J. Jung, M. J. Doh and Y. M. Kim: ‘Synthesis and properties of dextran-nalidixic acid ester as a colon-specific prodrug of nalidixic acid’, Drug Dev. Ind. Pharm., 2001, 27, 331–336.
  • R. Axén and S. Ernback: ‘Chemical fixation of enzymes to cyanogen halide activated polysaccharide carriers’, Eur. J. Biochem., 1971, 18, 351–360.
  • J. J. Marshall and M. L. Rabinowitz: ‘Preparation and characterization of a dextran-trypsin conjugate’, J. Biol. Chem., 1976, 251, 1081–1087.
  • T. Kojima, M. Hashida, S. Muranishi and H. Sezaki: ‘Mitomycin C-dextran conjugate: a novel high molecular weight pro-drug of mitomycin C’, J. Pharm. Pharmacol., 1980, 32, 30–34.
  • S. Dimitriu and E. Chornet: ‘Polysaccharides as support for enzyme and cell immobilization’, in ‘Polysaccharides, structural diversity and functional versatility’, (ed. S. Dimitriu), 1998, New York, Marcel Dekker.
  • T. Heinze, T. Liebert, B. Heublein and S. Hornig: ‘Functional polymers based on dextran’, Adv. Polym. Sci., 2006, 205, 199–291.
  • V. Pozsgay: ‘Conjugation of biomolecules using Diels-Alder cycloaddition’, U. S. Patent, 6673905B2, 2004.
  • S. D. Mikolajczyk, D. L. Meyer, R. Fagnani, M. S. Hagan, K. L. Law and J. J. Starling: ‘Dextran modification of a fab‘β-lactamase conjugate modulated by variable pretreatment of fab‘ with amine-blocking reagents’, Bioconj. Chem., 1996, 7, 150–158.
  • R. Fagnani, M. S. Hagan and R. Bartholomew: ‘Reduction of immunogenicity by covalent modification of murine and rabbit immunoglobulins with oxidized dextrans of low molecular weight’, Cancer Res., 1990, 50, 3638–3645.
  • J. Tu, S. Zhong and P. Li: ‘Studies on acyclovir-dextran conjugate: synthesis and pharmacokinetics’, Drug Dev. Ind. Pharm., 2004, 30, 959–965.
  • D. V. Arefjev, N. S. Domnina, E. A. Komarova and A. Y. Bilibin: ‘Sterically hindered phenol-dextran conjugates: synthesis and radical scavenging activity’, Eur. Polym. J., 1999, 35, 279–284.
  • T. Heinze, T. F. Liebert, K. S. Pfeiffer and M. A. Hussain: ‘Unconventional cellulose esters: synthesis, characterization and structure–property relationship’, Cellulose, 2003, 10, 283–296.
  • T. Liebert, M. A. Hussain, M. N. Tahir and T. Heinze: ‘Synthesis and characterization of cellulose α-lipoates: a novel material for adsorption onto gold’, Polym. Bull., 2006, 57, 857–863.
  • M. A. Hussain, D. Shahwar, M. N. Hassan, M. N. Tahir, M. S. Iqbal and M. Sher: ‘An efficient esterification of pullulan using activated carboxylic acid anhydrides with iodine’, Collect. Czech. Chem. Commun., 2010, 75, 133–143.
  • M. A. Hussain, D. Shahwar, M. N. Tahir, M. Sher, M. N. Hassan and Z. Afzal: ‘An efficient acetylation of dextran using in situ activated acetic anhydride with iodine’, J. Serb. Chem. Soc., 2010, 75, 165–173.
  • S. Yolles, J. F. Morton and M. F. Sartori: ‘Preparation of steroid esters of hydroxypropyl cellulose’, J. Polym. Sci., 1979, 17, 4111–4113.
  • M. A. Hussain, T. Liebert and T. Heinze: ‘Acylation of cellulose with N,N′-carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride’, Macromol. Rapid Commun., 2004, 25, 916–920.
  • S. K. Shrivastava, D. K. Jain and P. Trivedi: ‘Dextrans-potential polymeric drug carriers for suprofen’, Pharmazie, 2003, 58, 804–806.
  • S. K. Shrivastava, D. K. Jain and P. Trivedi: ‘Dextrans-potential polymeric drug carriers for flurbiprofen’, Pharmazie, 2003, 58, 389–391.
  • M. A. Hussain, T. Liebert and T. Heinze: ‘First report on a new esterification method for cellulose’, Polym. News, 2004, 29, 14–17.
  • L. Hovgaard and H. Brondsted: ‘Current applications of polysaccharides in colon targeting’, Crit. Rev. Ther. Drug Carrier Syst., 1996, 13, 185–223.
  • A. R. Jeanes: ‘Encyclopedia of polymer science and technology’, 1966, New York, Wiley-Interscience.
  • A. R. Jeanes: ‘Dextran bibliography’, US Dept. Agric. Agric. Res. Ser. Peoria, 1967. [Through Chem. Abstr. 1968; 68: 22902]
  • K. Akiyoshi, S. Deguchi, N. Moriguchi, S. Yamaguchi and J. Sunamoto: ‘Self-aggregates of hydrophobized polysaccharides in water: formation and characteristics of nanoparticles’, Macromolecules, 1993, 26, 3062–3068.
  • H. Maeda, T. Sawa and T. Konno: ‘Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS’, J. Control. Release, 2001, 74, 47–61.
  • Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki, T. Maeda and Y. Baba: ‘Acidic extracellular microenvironment and cancer’, Cancer Cell Int., 2013, 13, 89–96.
  • H. Maeda: ‘SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy’, Adv. Drug Deliv. Rev., 2001, 46, 169–185.
  • V. P. Torchilin: ‘Targeted pharmaceutical nanocarriers for cancer therapy and imaging’, AAPS J., 2007, 9, (2), Article 15.
  • D. Lu, X. Wen, J. Liang, Z. Gu, X. Zhang and Y. Fan: ‘A pH-sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate’, J. Biomed. Mater. Res. B. Appl. Biomater., 2009, 89, 177–183.
  • H. Nogusa, T. Yano, S. Okuno, H. Hamana and K. Inoue: ‘Synthesis of carboxymethylpullulan-peptide-doxorubicin conjugates and their properties’, Chem. Pharm. Bull., 1995, 43, (11), 1931–1936.
  • A. Agarwal, U. Gupta, A. Asthana and N. K. Jain: ‘Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent’, Biomaterials, 2009, 30, 3588–3596.
  • S. Sugahara, M. Kajiki, H. Kuriyama and T. Kobayashi: ‘Complete regression of xenografted human carcinomas by a paclitaxel–carboxymethyl dextran conjugate (AZ10992)’, J. Control. Release, 2007, 117, 40–50.
  • Y. Chau, N. M. Dang, F. E. Tan and R. Langer: ‘Investigation of targeting mechanism of new dextran-peptide-methotrexate conjugates using biodistribution study in matrix-metalloproteinase-overexpressing tumor xenograft model’, J. Pharm. Sci., 2006, 95, 542–551.
  • M. Harada, H. Sakakibara, T. Yano, T. Suzuki and S. Okuno: ‘Determinants for the drug release from T-0128, camptothecin analogue-carboxymethyl dextran conjugate’, J. Control. Release, 2000, 69, 399–412.
  • M. Harada, J. Murata, Y. Sakamura, H. Sakakibara, S. Okuno and T. Suzuki: ‘Carrier and dose effects on the pharmacokinetics of T-0128, a camptothecin analogue-carboxymethyl dextran conjugate, in non-tumor- and tumor-bearing rats’, J. Control. Release, 2001, 71, 71–86.
  • M. Hashida, A. Kato, Y. Takakura and H. Sezaki: ‘Disposition and pharmacokinetics of a polymeric prodrug of mitomycin C, mitomycin C-dextran conjugate, in the rat’, Drug Metab. Dispos., 1984, 12, 492–499.
  • Y. Takakura, R. Atsumi, M. Hashida and H. Sezaki: ‘Development of a novel polymeric prodrug of mitomycin C, mitomycin C-dextran conjugate with anionic charge. II. Disposition and pharmacokinetics following intravenous and intramuscular administration’, Int. J. Pharm., 1987, 37, 145–154.
  • T. Nomura, A. Saikawa, S. Morita, T. Sakaeda, F. Yamashita, K. Honda, Y. Takakura and M. Hashida: ‘Pharmacokinetic characteristics and therapeutic effects of mitomycin C-dextran conjugates after intratumoural injection’, J. Control. Release, 1998, 52, 239–252.
  • Y. Takakura, R. I. Mahato, M. Nishikawa and M. Hashida: ‘Control of pharmacokinetic profiles of drug-macromolecule conjugates’, Adv. Drug Deliv. Rev., 1996, 19, 377–399.
  • F. Takuya, Y. Yoshihisa, Y. Takakura, M. Hashida and H. Sezaki: ‘Alteration of biopharmaceutical properties of drugs by their conjugation with water-soluble macromolecules: uricase-dextran conjugate’, J. Control. Release, 1990, 11, (1–3), 149–156.
  • J. Zhong and Y. Chau: ‘Synthesis, characterization, and thermodynamic study of a polyvalent lytic peptide-polymer conjugate as novel anticancer agent’, Bioconj. Chem., 2010, 21, (11), 2055–2064.
  • J. Nakamura, N. Nakajima, K. Matsumura and S. H. Hyon: ‘Water-soluble taxol conjugates with dextran and targets tumor cells by folic acid immobilization’, Anticancer Res., 2010, 30, (3), 903–909.
  • D. Nevozhay, R. Budzynska, M. Jagiello, U. Kanska, M. S. Omar, A. Opolski, J. Wietrzyk and J. Boratynski: ‘The effect of the substitution level of some dextran-methotrexate conjugates on their antitumor activity in experimental cancer models’, Anticancer Res., 2006, 26, (3A), 2179–2186.
  • Y. Wang, Y. Liu, Y. Liu, W. Zhou, H. Wang, G. Wan, D. Sun, N. Zhang and Y. Wang: ‘A polymeric prodrug of cisplatin based on pullulan for the targeted therapy against hepatocellular carcinoma’, Int. J. Pharm., 2015, 483, 89–100.
  • E. Harboe, C. Larsen, M. Johansen and H. P. Olesen: ‘Macromolecular prodrugs XIV. Absorption characteristics of naproxen after oral administration of dextran T-70-naproxen ester prodrug in pigs’, Int. J. Pharm., 1989, 53, 157–165.
  • S. Ahmad, R. F. Tester, A. Corbett and J. Karkalas: ‘Dextran and 5-aminosalicylic acid (5-ASA) conjugates: synthesis, characterisation and enzymic hydrolysis’, Carbohydr. Res., 2006, 341, 2694–2701.
  • C. Larsen, E. Harboe, M. Johansen and H. P. Olesen: ‘Macromolecular prodrugs. XVI Colon-targeted delivery-comparison of the rate of release of naproxen from dextran ester prodrugs in homogenates of various segments of the pig gastrointestinal (GI) tract’, Pharm. Res., 1989, 6, 995–999.
  • C. Larsen, B. H. Jensen and H. P. Olesen: ‘Bioavailability of ketoprofen from orally administered ketoprofen-dextran ester prodrugs in the pig’, Acta Pharm. Nord., 1991, 3, 71–76.
  • P. Kurtzhals, C. Larsen and M. Johansen: ‘Preliminary studies on the in vivo fate of FITC-dextrans and naproxen-dextran ester prodrugs administered i.v. to rabbits’, Acta Pharm. Nord., 1989, 1, 201–210.
  • E. Harboe, M. Johansen and C. Larsen: ‘Macromolecular prodrugs VI. Coupling of naproxen to dextrans and in vivo characterization of the conjugates’, Farmaci. Sci. Ed., 1988, 16, 73–85.
  • E. Harboe, C. Larsen and M. Johansen: ‘Macromolecular prodrugs X. Bioavailability of naproxen after oral administration of dextran-naproxen ester conjugates in rabbits’, Farmaci. Sci. Ed., 1988, 16, 65–72.
  • S. Vyas, P. Trivedi and S. C. Chaturvedi: ‘Ketorolac-dextran conjugates: synthesis, in vitro and in vivo evaluation’, Acta Pharm., 2007, 57, 441–450.
  • S. Vyas, P. Trivedi and S. C. Chaturvedi: ‘Dextran-etodolac conjugates: synthesis, in vitro and in vivo evaluation’, Acta Pol. Pharm. Drug Res., 2009, 66, 201–206.
  • Y. Lee, I. H. Kim, J. Kim, J. H. Yoon, Y. H. Shin, Y. Jung and Y. M. Kim: ‘Evaluation of dextran-flufenamic acid ester as a polymeric colon-specific prodrug of flufenamic acid, an anti-inflammatory drug, for chronotherapy’, J. Drug Target., 2011, 19, (5), 336–343.
  • K. C. Chimalakonda, H. K. Agarwal, A. Kumar, K. Parang and R. Mehvar: ‘Synthesis, analysis, in vitro characterization, and in vivo disposition of a lamivudine-dextran conjugate for selective antiviral delivery to the liver’, Bioconj. Chem., 2007, 18, (6), 2097–2108.
  • K. Xi, Y. Tabata, K. Uno, M. Yashimoto, T. Kishida, Y. Sokawa and Y. Ikada: ‘Liver targeting of interferon through pullulan conjugation’, Pharm. Res., 1996, 13, (12), 1846–1850.
  • S. P. Hudson, R. Langer, G. R. Fink and D. S. Kohane: ‘Injectable in situ cross-linking hydrogels for local antifungal therapy’, Biomaterials, 2010, 31, (6), 1444–1452.
  • M. Fuentes, C. Mateo, R. F. Lafuente and J. M. Guisan: ‘Aldehyde–dextran–protein conjugates to immobilize amino-haptens: avoiding cross-reactions in the immunodetection’, Enzyme Microb. Tech., 2005, 36, (4), 510–513.
  • Y. Takakura, Y. Kaneko, T. Fujita, M. Hashida, H. Maeda and H. Sezaki: ‘Control of pharmaceutical properties of soybean trypsin inhibitor by conjugation with dextran I: synthesis and characterization’, J. Pharm. Sci., 1989, 78, (2), 117–121.
  • R. Pawankar, R. Takizawa, M. Goto, Y. Goto, M. Okuda, S. Yamagishi, K. Ohkubo, M. Nonaka, H. Ohtsuka and T. Yagi: ‘Effect of modified immunotherapy with an allergen–pullulan conjugate in patients with Japanese cedar pollinosis’, Allergol. Int., 2001, 50, (1), 43–55.
  • A. Sjostorm, P. Bue, P. U. Malmstorm, S. Nilsson and J. Carlsson: ‘Binding, internalization and degradation of EGF-dextran conjugates in two human bladder-cancer cell lines’, Int. J. Cancer, 1997, 70, (4), 383–389.
  • Y. N. Pang, Y. Zhang and Z. R. Zhang: ‘Synthesis of an enzyme-dependent prodrug and evaluation of its potential for colon targeting’, World J. Gastroenterol., 2002, 8, 913–917.
  • S. Kim, Y. S. Chae, K. Na, S. W. Kim and Y. H. Bae: ‘Insulinotropic activity of sulfonylurea/pullulan conjugate in rat islet microcapsule’, Biomaterials, 2003, 24, (26), 4843–4851.
  • Y. Kaneo, Y. Fujihara, T. Tanaka, K. Ogawa, K. Fujita and S. Iguchi: ‘Preparation and characterization of a soluble glutathione-dextran conjugate’, Int. J. Pharm., 1989, 57, (3), 263–272.
  • H. Yura, N. Yoshimura, T. Hamashima, K. Akamatsu, M. Nishikawa, Y. Takakura and M. Hashida: ‘Synthesis and pharmacokinetics of a novel macromolecular prodrug of Tacrolimus (FK506), FK506–dextran conjugate’, J. Control. Release, 1999, 57, (1), 87–99.
  • M. A. Hussain, K. Abbas, M. Sher, M. N. Tahir, W. Tremel, M. S. Iqbal, M. Amin and M. Badshah: ‘Macromolecular prodrugs of aspirin with HPMC: a nano particulate drug design, characterization, and pharmacokinetic studies’, Macromol. Res., 2011, 19, (12), 1296–1302.
  • C. Elvira, A. Gallardo, J. S. Roman and A. Cifuentes: ‘Covalent polymer-drug conjugates’, Molecules, 2005, 10, 114–125.
  • M. A. Hussain, M. Badshah, M. S. Iqbal, M. N. Tahir, W. Tremel, S. V. Bhosale, M. Sher and M. T. Haseeb: ‘HPMC-salicylate conjugates as macromolecular prodrugs: design, characterization and nano-rod formation’, J. Polym. Sci. A: Pol. Chem., 2009, 47, 4202–4208.
  • M. A. Hussain, B. A. Lodhi, K. Abbas, R. N. Paracha, M. R. Shah and M. A. Arsalan: ‘Novel HPC-ibuprofen conjugates: synthesis, characterization, thermal analysis and degradation kinetics’, J. Chem. Soc. Pak., 2014, 36(1), 78–84.
  • M. A. Hussain, R. Kausar, M. Amin and M. R. Shah: ‘Mefenamic acid conjugates based on a hydrophilic biopolymer hydroxypropylcellulose: novel prodrug design, characterization and thermal analysis’, J. Chem. Soc. Pak., 2015, 37, (1), 46–52.
  • A. Rasheed, U. Krishna, P. S. Reddy and A. Mishra: ‘Synthesis and characterization of novel dextran-conjugated macromolecules of aceclofenac’, Ars Pharm., 2011, 52, (1), 5–11.
  • M. A. Hussain, A. Zarish, K. Abbas, M. Sher, M. N. Tahir, W. Tremel, M. Amin, A. Ghafoor and B. A. Lodhi: ‘Hydroxypropylcellulose-aceclofenac conjugates: high covalent loading design, structure characterization, nano-assemblies and thermal kinetics’, Cellulose, 2013, 20, (2), 717–725.
  • J. Panyam and V. Labhasetwar: ‘Biodegradable nanoparticles for drug and gene delivery to cells and tissue’, Adv. Drug Deliv. Rev., 2003, 55, 329–347.
  • S. V. Vinogrado, E. V. Batrakova, A. V. Kabanov: ‘Nanogels for oligonucleotide delivery to the brain’, Bioconj. Chem., 2004, 15, 50–60.
  • B. K. Nanjwade, H. M. Bechra, G. K. Derkar, F. V. Manvi and V. K. Nanjwade: ‘Dendrimers: emerging polymers for drug-delivery systems’, Eur. J. Pharm. Sci., 2009, 38, 185–196.
  • G. Gonçalves, P. Pereira and M. Gama: ‘Self-assembled hydrogel nanoparticles for drug delivery applications’, Materials, 2010, 3, 1420–1460.
  • S. Horing, H. Bunjes and T. Heinze: ‘Preparation and characterization of nanoparticles based on dextran-drug conjugates’, J. Colloid Interface Sci., 2009, 338, (1), 56–62.
  • M. A. Hussain, K. Abbas, B. A. Lodhi, M. Sher, M. Ali, M. N. Tahir, W. Tremel and S. Iqbal: ‘Fabrication, characterization, thermal stability and nanoassemblies of novel pullulan-aspirin conjugates’, Arab. J. Chem., 2015, doi:10.1016/j.arabjc.2013.06.001.
  • Z. Wang, T. Y. Lee and P. C. Ho: ‘A novel dextran-oleate-cRGDfK conjugate for self-assembly of nanodrug’, Nanomed.: Nanotechnol. Biol. Med., 2012, 8, (2), 194–203.
  • H. Zhang, F. Gao, L. Liu, X. Li, Z. Zhou, X. Yang and Q. Zhang: ‘Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy’, Colloid Surf. B: Biointerface, 2009, 71, (1), 19–26.
  • A. P. Goodwin, S. M. Tabakman, K. Welsher, S. P. Sherlock, G. Prencipe and H. Dai: ‘Phospholipid-dextran with a single coupling point: a useful amphiphile for functionalization of nanomaterials’, J. Am. Chem. Soc., 2009, 131, (1), 289–296.
  • A. Anitha, V. G. Deepagan, V. V. D. Rani, D. Menon, S. V. Nair and R. Jayakumar: ‘Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles’, Carbohydr. Polym., 2011, 84, 1158–1164.
  • I. S. Kim and I. J. Oh: ‘Preparation and characterization of stearic acid-pullulan nanoparticles’, Arch. Pharm. Res., 2010, 33, (5), 761–767.
  • J. Li and P. Yao: ‘Self-assembly of ibuprofen and bovine serum albumin–dextran conjugates leading to effective loading of the drug’, Langmuir, 2009, 25, (11), 6385–6391.
  • W. Deng, J. Li, P. Yao, F. He and C. Huang: ‘Green preparation process, characterization and antitumor effects of doxorubicin-BSA-dextran nanoparticles’, Macromol. Biosci., 2010, 10, (10), 1224–1234.
  • J. Qi, P. Yao, F. He, C. Yu and C. Huang: ‘Nanoparticles with dextran/chitosan shell and BSA/chitosan core-doxorubicin loading and delivery’, Int. J. Pharm., 2010, 393, (1–2), 177–185.
  • Y. I. Jeong, K. D. Chung and K. C. Choi: ‘Doxorubicin release from self-assembled nanoparticles of deoxycholic acid-conjugated dextran’, Arch. Pharm. Res., 2011, 34, (1), 159–167.
  • K. Na, K. H. Lee and Y. H. Bae: ‘pH-sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate’, J. Control. Release, 2004, 97, (3), 513–525.
  • Y. When-Zhi, C. Hong-Li, G. Fu-Ping, C. Min-Mao, L. Xue-Min, Z. Ming-Ming, Z. Qi-Qing, L. Ling-Rong, J. Qian, W. Yin-Song: ‘Self-aggregated nanoparticles of cholesterol-modified pullulan conjugate as a novel carrier of mitoxantronep’, Curr. Nanosci., 2010, 6, (3), 298–306.
  • B. Bae and K. Na: ‘Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy’, Biomaterials, 2010, 31, (24), 6325–6335.
  • H. Zhang, X. Li, F. Gao, L. Liu, Z. Zhou and Q. Zhang: ‘Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery’, Drug Deliv., 2010, 17, (1), 48–57.
  • B. L. Brannon-Peppas and J. O. Blanchette: ‘Nanoparticle and targeted systems for cancer therapy’, Adv. Drug Deliv. Rev., 2012, 64, 206–212.
  • M. S. Iqbal, J. Akbar, S. Saghir, A. Karim, A. Koschella, T. Heinze and M. Sher: ‘Thermal studies of plant carbohydrate polymer hydrogel’, Carbohydr. Polym., 2011, 8, 1775–1783.
  • H. S. Neto, F. A. P. Barros, F. M. de Sousa Carvalho and J. R. Matos: ‘Thermal analysis of prednicarbate and characterization of thermal decomposition product’, J. Therm. Anal. Calorim., 2010, 102, 277–283.
  • F. S. Felix, L. C. Cides da Silva, L. Angnes and J. R. Matos: ‘Thermal behavior study and decomposition kinetics of salbutamol under isothermal and non-isothermal conditions’, J. Therm. Anal. Calorim., 2009, 95, 877–880.
  • D. Giron: ‘Applications of thermal analysis and coupled techniques in pharmaceutical industry’, J. Therm. Anal. Calorim., 2002, 68, 335–357.
  • R. Rohanizadeh and N. Kokabi: ‘Heat denatured/aggregated albumin-based biomaterial: effects of preparation parameters on biodegradability and mechanical properties’, J. Mater. Sci. Mater. Med., 2009, 20, (12), 2413–2418.
  • M. A. Villetti, J. S. Crespo, M. S. Soldi, A. T. N. Pires, R. Borsali and V. Soldi: ‘Thermal degradation of natural polymers’, J. Therm. Anal. Calorim., 2002, 67, 295–303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.