730
Views
15
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

In situ single asperity wear at the nanometre scale

&
Pages 99-115 | Received 07 Feb 2016, Accepted 13 Jul 2016, Published online: 12 Aug 2016

References

  • S. Bodman: ‘The national academies summit on America’s energy future’, 2008, Washington, The National Academies of Sciences, Engineering, and Medicine.
  • H. P. Jost: ‘The economic importance of tribology in the conservation of energy’, in ‘Tribologie Reibung Verschleiß Schmierung’, (eds. W. Bunk et al.), 9–38; 1981, Berlin, Heidelberg, Springer.
  • B. Bhushan: ‘Tribology: friction, wear, and lubrication’, in ‘The engineering handbook’, (ed. R. C. Dorf), 2000, Boca Raton, FL, CRC Press LLC.
  • K. Holmberg, P. Andersson and A. Erdemir: ‘Global energy consumption due to friction in passenger cars', Tribol. Int., 2012, 47, (0), 221–234.
  • D. Dowson: ‘History of tribology’, xxiv, 768; 1998, London, Professional Engineering Publishing.
  • H. P. Jost and G. B. M. o. Technology: ‘Committee on tribology report, 1966–67’, 1968, H.M. Stationery Office.
  • I. M. Hutchings: ‘Tribology: friction and wear of engineering materials', 1992, London, Edward Arnold.
  • J. A. Williams: ‘Engineering tribology’, 1994, New York, Oxford University Press.
  • K. L. Johnson: ‘Contact mechanics’, 1985, Cambridge, Cambridge University Press.
  • B. Bhushan: ‘Contact mechanics of rough surfaces in tribology: multiple asperity contact’, Tribol. Lett., 1998, 4, (1), 1–35.
  • B. Bhushan: ‘Handbook of micro/nanotribology’, 628, [624] of plates; 1995, Boca Raton, CRC Press.
  • B. Bhushan and A. Majumdar: ‘Fractal theory of the interfacial temperature distribution in the slow sliding regime .1. Elastic contact and heat-transfer analysis – discussion’, J Tribol-T Asme, 1994, 116, (4), 822.
  • J. F. Archard: ‘Contact and rubbing of flat surfaces', J. Appl. Phys., 1953, 24, (8), 981–988.
  • K. L. Johnson: ‘Mechanics of adhesion’, Tribol. Int., 1998, 31, (8), 413–418.
  • D. Maugis: ‘Adhesion of spheres: the JKR-DMT transition using a dugdale model’, J. Colloid Interface Sci., 1992, 150, (1), 243–269.
  • B. V. Derjaguin, V. M. Muller and Y. P. Toporov: ‘Effect of contact deformations on the adhesion of particles', J. Colloid Interface Sci., 1975, 53, (2), 314–326.
  • F. P. Bowden, A. J. W. Moore and D. Tabor: J. Appl. Phys., 1942, 80, 80–91.
  • Y. Liao, R. Pourzal, M. A. Wimmer, J. J. Jacobs, A. Fischer and L. D. Marks: ‘Graphitic tribological layers in metal-on-metal hip replacements', Science, 2011, 334, (6063), 1687–1690.
  • M. A. Wimmer, A. Fischer, R. Buscher, R. Pourzal, C. Sprecher, R. Hauert and J. J. Jacobs: J. Orthop. Res., 2010, 28, (4), 436–443.
  • L. D. Marks, O. L. Warren, A. M. Minor and A. P. Merkle: ‘Tribology in full view’, MRS Bull., 2008, 33, (12), 1168–1173.
  • M. A. Wimmer, C. Sprecher, R. Hauert, G. Tager and A. Fischer: ‘Tribochemical reaction on metal-on-metal hip joint bearings', Wear, 2003, 255, 1007–1014.
  • G. T. Gao, P. T. Mikulski and J. A. Harrison: ‘Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions', J. Am. Chem. Soc., 2002, 124, (24), 7202–7209.
  • M. A. Wimmer, J. Loos, R. Nassutt, M. Heitkemper and A. Fischer: ‘The acting wear mechanisms on metal-on-metal hip joint bearings: in vitro results', Wear, 2001, 250, 129–139.
  • A. Grill: ‘Review of the tribology of diamond-like carbon’, Wear, 1993, 168, (1–2), 143–153.
  • R. S. Gates, S. M. Hsu and E. E. Klaus: ‘Tribochemical mechanism of alumina with water’, Tribol. T., 1989, 32, (3), 357–363.
  • Y. Yan, A. Neville and D. Dowson: ‘Biotribocorrosion—an appraisal of the time dependence of wear and corrosion interactions: II. surface analysis', J. Phys. D Appl. Phys., 2006, 39, (15), 3206–3212.
  • C. A. Freyman, Y. F. Chen and Y. W. Chung: ‘Synthesis of carbon films with ultra-low friction in dry and humid air’, Surf. Coat. Technol., 2006, 201, (1–2), 164–167.
  • A. Erdemir: ‘A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings', Surf. Coat. Technol., 2005, 200, (5–6), 1792–1796.
  • J. Krim: ‘Surface science and the atomic-scale origins of friction: what once was old is new again’, Surf. Sci., 2002, 500, (1–3), 741–758.
  • J. M. Martin, T. Le Mogne, M. Boehm and C. Grossiord: ‘Tribochemistry in the analytical UHV tribometer’, Tribol. Int., 1999, 32, (11), 617–626.
  • R. W. Carpick and M. Salmeron: ‘Scratching the surface: fundamental investigations of tribology with atomic force microscopy’, Chem. Rev., 1997, 97, (4), 1163–1194.
  • A. P. Semenov: ‘Tribology at high temperatures', Tribol. Int., 1995, 28, (1), 45–50.
  • J. M. Martin, T. Lemogne, C. Chassagnette and M. N. Gardos: ‘Friction of hexagonal boron nitride in various environments', Tribol. Trans., 1992, 35, (3), 462–472.
  • B. Marchon, M. R. Khan, N. Heiman, P. Pereira and A. Lautie: ‘Tribochemical wear on amorphous carbon thin films', IEEE Trans. Magn., 1990, 26, (5), 2670–2675.
  • B. Marchon, N. Heiman and M. R. Khan: ‘Evidence for tribochemical wear on amorphous carbon thin films', IEEE Trans. Magn., 1990, 26, (1), 168–170.
  • F. P. Bowden, D. Tabor, N. Gane and R. F. Willis: ‘Microdeformation of solids', Z Phys. Chem-Leipzig, 1970, 244, (3–4), 129.
  • N. Gane and F. P. Bowden: ‘Microdeformation of solids', J. Appl. Phys., 1968, 39, (3), 1432–1436.
  • F. P. Bowden and D. Tabor: ‘The friction and lubrication of solids', 1950, Oxford, Clarendon Press.
  • R. Maboudian and C. Carraro: ‘Surface chemistry and tribology of MEMS', Annu. Rev. Phys. Chem., 2004, 55, 35–54.
  • N. R. Tas, C. Gui and M. Elwenspoek: ‘Static friction in elastic adhesion contacts in MEMS', J. Adhes. Sci. Technol., 2003, 17, 547–561.
  • D. A. Rigney: ‘Comments on the sliding wear of metals', Tribol. Int., 1997, 30, (5), 361–367.
  • R. Bennewitz, E. Gnecco, T. Gyalog and E. Meyer: ‘Atomic friction studies on well-defined surfaces', Tribol. Lett., 2001, 10, (1–2), 51–56.
  • B. Bhushan: ‘Nanoscale tribophysics and tribomechanics', Wear, 1999, 225-229, (Part 1), 465–492.
  • R. W. Carpick, N. Agrait, D. F. Ogletree and M. Salmeron: ‘Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope’, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct., 1996, AVS, 1289–1295.
  • D. Marchetto, A. Rota, L. Calabri, G. C. Gazzadi, C. Menozzi and S. Valeri: ‘AFM investigation of tribological properties of nano-patterned silicon surface’, Wear, 2008, 265, (5–6), 577–582.
  • R. G. Miller and P. J. Bryant: ‘Atomic force microscopy of layered compounds', J. Vac. Sci. Technol. A, 1989, 7, (4), 2879–2881.
  • J.-A. Ruan and B. Bhushan: ‘Atomic-scale and microscale friction studies of graphite and diamond using friction force microscopy’, J. Appl. Phys., 1994, 76, (9), 5022–5035.
  • I. L. Singer, H. M. Pollock and North Atlantic Treaty Organization. Scientific Affairs Division: ‘Fundamentals of friction: macroscopic and microscopic processes', xv, 621; 1992, Dordrecht, Boston, Kluwer Academic.
  • H. I. Kim and J. R. Lince: ‘Direct visualization of sliding-induced tribofilm on Au/MoS2 nanocomposite coatings by c-AFM’, Tribol. Lett., 2007, 26, (1), 61–65.
  • I. Heyvaert, J. Krim, C. VanHaesendonck and Y. Bruynseraede: ‘Surface morphology and kinetic roughening of Ag on Ag(111) studied with scanning tunneling microscopy’, Phys. Rev. E, 1996, 54, (1), 349–353.
  • M. Hirano, K. Shinjo, R. Kaneko and Y. Murata: ‘Observation of superlubricity by scanning tunneling microscopy’, Phys. Rev. Lett., 1997, 78, (8), 1448–1451.
  • M. Iwatsuki, K. Murooka, S. Kitamura, K. Takayanagi and Y. Harada: J. Electron Microsc., 1991, 40, (1), 48–53.
  • G. Palasantzas and J. Krim: ‘Scanning tunneling microscopy study of the thick film limit of kinetic roughening’, Phys. Rev. Lett., 1994, 73, (26), 3564–3567.
  • J. C. H. Spence: ‘A scanning tunneling microscope in a side-entry holder for reflection electron microscopy in the philips EM400’, Ultramicroscopy, 1988, 25, (2), 165–169.
  • E. W. van der Vegte and G. Hadziioannou: ‘Scanning force microscopy with chemical specificity: an extensive study of chemically specific tip−surface interactions and the chemical imaging of surface functional groups', Langmuir, 1997, 13, (16), 4357–4368.
  • H. Ohnishi, Y. Kondo and K. Takayanagi: ‘UHV electron microscope and simultaneous STM observation of gold stepped surfaces', Surf. Sci., 1998, 415, (3), L1061–L1064.
  • F. J. Giessibl, M. Herz and J. Mannhart: ‘Friction traced to the single atom’, PNAS, 2002, 99, (19), 12006–12010.
  • G. Stachowiak and A. W. Batchelor: ‘Engineering tribology’, 2013, Oxford, Butterworth-Heinemann.
  • J. F. Archard: ‘Single contacts and multiple encounters', J. Appl. Phys., 1961, 32, 1420–1425.
  • D. A. Rigney, R. Divakar and S. M. Kuo: ‘Deformation substructures associated with very large plastic strains', Scripta Metall. Mater., 1992, 27, 975–980.
  • S. Johansson and J. Schweitz: ‘Contact damage in single-crystalline silicon investigated by cross-sectional transmission electron microscopy’, J. Am. Ceram. Soc., 1988, 71, 617–623.
  • J. C. Morris and D. L. DCallahan: ‘Origins of microplasticity in low-load scratching of silicon’, J. Mater. Res., 1994, 9, (11), 2907–2913.
  • R. Stickler and G. R. Booker: ‘Surface damage on abraded silicon specimens’, Philos. Mag. A, 1963, 8, (89), 859–876.
  • K. E. Puttick, L. C. Whitmore, C. L. Chao and A. E. Gee: ‘Transmission electron microscopy of nanomachined silicon crystals', Philos. Mag., 1994, 69, 91–103.
  • D. A. Rigney, M. G. S. Naylor, R. Divakar and L. K. Ives: ‘Low energy dislocation structures caused by sliding and by particle impact’, Mater. Sci. Eng., 1986, 81, 409–425.
  • J. Don and D. A. Rigney: ‘Prediction of debris flake thickness', Wear, 1985, 105, (1), 63–72.
  • P. Heilmann and D. A. Rigney: ‘An energy-based model of friction and its application to coated systems', Wear, 1981, 72, (2), 195–217.
  • I. A. Polonsky and L. M. Keer: ‘Scale effects of elastic-plastic behavior of microscopic asperity contacts', J. Tribol., 1996, 118, (2), 335–340.
  • D. A. Rigney: ‘Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials', Wear, 2000, 245, (1–2), 1–9.
  • D. Tabor: ‘Friction: the present state of our understanding', J. Lubr. Technol., 1981, 103, (2), 169–179.
  • S. C. Lim and M. F. Ashby: ‘Overview no. 55 wear-mechanism maps', Acta Metall., 1987, 35, (1), 1–24.
  • D. A. Rigney: ‘Sliding wear of metals', Annu. Rev. Mater. Sci., 1988, 18, 141–163.
  • N. Gane: ‘The direct measurement of the strength of metals on a sub-micrometre scale’, Proc. Math. Phys. Eng. Sci., 1970, 317, 367–391.
  • K. Kato, T. Kayaba, Y. Endo and K. Hokkirigawa: ‘Three dimensional shape effect on abrasive Wear’, J. Tribol., 1986, 108, (3), 346–349.
  • K. Hokkirigawa, K. Kato and Z. Z. Li: ‘The effect of hardness on the transition of the abrasive wear mechanism of steels', Wear, 1988, 123, (2), 241–251.
  • K. Hokkirigawa and K. Kato: ‘An experimental and theoretical investigation of ploughing, cutting and wedge formation during abrasive wear’, Tribol. Int., 1988, 21, (1), 51–57.
  • H. Kitsunai, K. Kato, K. Hokkirigawa and H. Inoue: ‘The transitions between microscopic wear modes during repeated sliding friction observed by a scanning electron microscope tribosystem’, Wear, 1990, 135, 237–249.
  • H. Kitsunai, K. Hokkirigawa, N. Tsumaki and K. Kato: ‘Transitions of microscopic wear mechanism for Cr2O3 ceramic coatings during repeated sliding observed in a scanning électron microscope tribosystem’, Wear, 1991, 151, (2), 279–289.
  • H. Kitsunai and K. Hokkirigawa: ‘Transitions of microscopic wear mode of silicon carbide coatings by chemical vapor deposition during repeated sliding observed in a scanning electron microscope tribosystem’, Wear, 1995, 185, (1–2), 9–15.
  • P. B. Hirsch: ‘Electron microscopy of thin crystals', 1977, Huntington, NY, R.E. Krieger Pub. Co.
  • J. C. H. Spence: ‘High-resolution electron microscopy’, 2013, London, Oxford University Press.
  • L. M. Peng, S. L. Dudarev and M. J. Whelan: ‘High-energy electron diffraction and microscopy’, 2011, Oxford University Press.
  • J. M. Cowley: ‘Diffraction physics’, 1995, New York, Elsevier Science Ltd.
  • L. Reimer and H. Kohl: ‘Transmission electron microscopy: physics of image formation’, 2008, New York, Springer.
  • Hysitron. 2015. ‘TEM PicoIndenter’, [Available from: https://www.hysitron.com/.
  • A. M’ndange-Pfupfu, O. Eryilmaz, A. Erdemir and L. Marks: ‘Quantification of sliding-induced phase transformation in N3FC diamond-like carbon films', Diam. Relat. Mater., 2011, 20, 1143–1148.
  • A. P. Merkle: ‘Tribological interfaces studied by an analytical dislocation model and in-situ transmission electron microscopy’, PhD thesis, Northwestern University, Evanston, IL, 2007.
  • M. Kuwabara, W. Lo and J. C. H. Spence: ‘Reflection electron microscope imaging of an operating scanning tunneling microscope’, J. Vac. Sci. Technol. A, 1989, 7, 2745–2751.
  • W. K. Lo and J. C. H. Spence: ‘Investigation of STM image artifacts by in-situ reflection electron microscopy’, Ultramicroscopy, 1993, 48, 433–444.
  • J. C. H. Spence, W. Lo and M. Kuwabara: ‘Observation of the graphite surface by reflection electron microscopy during STM operation’, Ultramicroscopy, 1990, 33, 69–82.
  • T. Sato, T. Ishida, S. Nabeya and H. Fujita: ‘Nano-scale observation of frictional deformation at Ag single point contact with MEMS-in-TEM setup’, J. Phys. Conf. Ser., 2010, 258, 012005.
  • M. W. Larsson, L. R. Wallenberg, A. I. Persson and L. Samuelson: ‘Probing of individual semiconductor nanowhiskers by TEM-STM’, Microsc. Microanal., 2004, 10, (1), 41–46.
  • K. Anantheshwara and M. S. Bobji: Tribol. Int., 2010, 43, (5–6), 1099–1103.
  • K. Svensson, Y. Jompol, H. Olin and E. Olsson: ‘Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion’, Rev. Sci. Instrum., 2003, 74, (11), 4945–4947.
  • Y. Oshima, K. Mouri, H. Hirayama and K. Takayanagi: Surf. Sci., 2003, 531, (3), 209–216.
  • H. Nili, K. Kalantar-zadeh, M. Bhaskaran and S. Sriram: ‘In situ nanoindentation: probing nanoscale multifunctionality’, Prog. Mater. Sci., 2013, 58, (1), 1–29.
  • D. Erts, A. Lohmus, R. Lohmus, H. Olin, A. V. Pokropivny, L. Ryen and K. Svensson: ‘Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope’, Appl. Surf. Sci., 2002, 188, 460–466.
  • M. A. Wall and U. Dahmen: ‘An in situ nanoindentation specimen holder for a high voltage transmission electron microscope’, Microsc. Res. Tech., 1998, 42, (4), 248–254.
  • M. S. Bobji, C. S. Ramanujan, R. C. Doole, J. B. Pethica and B. J. Inkson: ‘An in-situ TEM nanoindenter system with 3-axis inertial positioner’, Mater. Res. Soc. Symp. Proc., 2003, 778, 105–110.
  • T. Kizuka, K. Yamada, S. Deguchi, M. Naruse and N. Tanaka: ‘Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces', Phys. Rev. B, 1997, 55, (12), R7398–R7401.
  • A. Nafari, D. Karlen, C. Rusu, K. Svensson, H. Olin and P. Enoksson: ‘MEMS sensor for in situ TEM atomic force Microscopy’, J. Microelectromech. S, 2008, 17, (2), 328–333.
  • T. Sato, T. Ishida, L. Jalabert and H. Fujita: ‘Real-time transmission electron microscope observation of nanofriction at a single Ag asperity’, Nanotechnology, 2012, 23, 505701.
  • A. P. Merkle and L. D. Marks: ‘Liquid-like tribology of gold studied by in situ TEM’, Wear, 2008, 265, (11–12), 1864–1869.
  • A. P. Merkle, A. Erdemir, O. L. Eryilmaz, J. A. Johnson and L. D. Marks: ‘In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films', Carbon, 2010, 48, (3), 587–591.
  • Y. Liao, E. Hoffman and L. D. Marks: ‘Nanoscale abrasive wear of coCrMo in in situ TEM sliding’, Tribol. Lett., 2015, 57, 3.
  • A. P. Merkle and L. D. Marks: ‘Friction in full view’, Appl. Phys. Lett., 2007, 90, (6), 064101.
  • C. A. Volkert and A. M. Minor: ‘Focused ion beam microscopy and micromachining’, MRS Bull., 2007, 32, (5), 389–399.
  • O. L. Warren, Z. W. Shan, S. A. S. Asif, E. A. Stach, J. W. Morris and A. M. Minor: ‘In situ nanoindentation in the TEM’, Mater. Today, 2007, 10, (4), 59–60.
  • A. M’ndange-Pfupfu, J. Ciston, O. Eryilmaz, A. Erdemir and L. D. Marks: ‘Direct observation of tribochemically assisted wear on diamond-like carbon thin Films', Tribol. Lett., 2013, 49, (2), 351–356.
  • J. R. Yang, Z. Liu, F. Grey, Z. P. Xu, X. D. Li, Y. L. Liu, M. Urbakh, Y. Cheng and Q. S. Zheng: ‘Observation of high-speed microscale superlubricity in graphite’, Phys. Rev. Lett., 2013, 110, (25), 255504.
  • T. W. Scharf and S. V. Prasad: ‘Solid lubricants: a review’, J. Mater. Sci., 2013, 48, (2), 511–531.
  • I. Leven, D. Krepel, O. Shemesh and O. Hod: ‘Robust superlubricity in graphene/h-BN heterojunctions', J. Phys. Chem. Lett., 2013, 4, (1), 115–120.
  • A. S. de Wijn, C. Fusco and A. Fasolino: ‘Stability of superlubric sliding on graphite’, Phys. Rev. E, 2010, 81, (4), 046105.
  • J. J. Hu, R. Wheeler, J. S. Zabinski, P. A. Shade, A. Shiveley and A. A. Voevodin: ‘Transmission electron microscopy analysis of Mo–W–S–Se film sliding contact obtained by using focused ion beam microscope and in situ microtribometer’, Tribol. Lett., 2008, 32, (1), 49–57.
  • J. Cumings and A. Zettl: ‘Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes', Science, 2000, 289, (5479), 602–604.
  • M. Chhowalla and G. A. J. Amaratunga: ‘Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear’, Nature, 2000, 407, (6801), 164–167.
  • C. M. Mate, G. M. McClelland, R. Erlandsson and S. Chiang: ‘Atomic-scale friction of a tungsten tip on a graphite surface’, Phys. Rev. Lett., 1987, 59, (17), 1942–1945.
  • J. Krim, J. P. Coulomb and J. Bouzidi: ‘Summary abstract: influence of film melting characteristics on the wetting behavior of multilayer oxygen films adsorbed on graphite’, J. Vac. Sci. Technol. A, 1987, 5, (4), 1096–1097.
  • J. Skinner, N. Gane and D. Tabor: ‘Micro-friction of graphite’, Nat. Phys. Sci., 1971, 232, (35), 195–196.
  • R. H. Savage: ‘Graphite lubrication’, J. Appl. Phys., 1948, 19, (1), 1–10.
  • U. D. Schwarz, O. Zworner, P. Koster and R. Wiesendanger: ‘Quantitative analysis of the frictional properties of solid materials at low loads. I. carbon compounds', Phys. Rev. B, 1997, 56, 6987–6996.
  • M. Dienwiebel, G. S. SVerhoeven, N. Pradeep and J. W. M. Frenken: ‘Superlubricity of graphite’, Phys. Rev. Lett., 2004, 92, (12), 126101–126104.
  • G. Casillas, Y. Liao, M. Jose-Yacaman and L. D. Marks: ‘Monolayer transfer layers during sliding at the atomic scale’, Tribol. Lett., 2015, 59, (3), 1–5.
  • J. Luo, H. D. Jang, T. Sun, L. Xiao, Z. He, A. Katsoulidis, M. Kanatzidis, J. M. Gibson and J. X. Huang: ‘Compression and aggregation-resistant particles of crumpled soft sheets', ACS Nano, 2011, 5, 8943–8949.
  • D. Tang, D. G. Kvashnin, S. Najmaei, Y. Bando, K. Kimoto, P. Koshinen, P. M. Ajayan, B. I. Yakobson, P. B. Sorokin, J. Lou and D. Golberg: ‘Holocene variations in peatland methane cycling associated with the asian summer monsoon system’, Nat. Commun., 2014, 5, 4631–4638.
  • J. P. Oviedo, S. KC, N. Lu, J. Wang, K. Cho, R. M. Wallace and M. J. Kim: ‘In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide’, ACS Nano, 2015, 9, (2), 1543–1551.
  • I. L. Singer, R. N. Bolster, J. Wegand, S. Fayeulle and B. C. Stupp: ‘Hertzian stress contribution to low friction behavior of thin MoS2 coatings', Appl. Phys. Lett., 1990, 57, 995–997.
  • L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S. R. Cohen and R. Tenne: ‘Hollow nanoparticles of WS2 as potential solid-state lubricants', Nat. Commun., 1997, 387, 791–793.
  • L. Rapoport, Y. Feldman, M. Homyonfer, H. Cohen, J. Sloan, J. L. Hutchison and R. Tenne: ‘Inorganic fullerene-like material as additives to lubricants: structure-function relationship’, Wear, 1999, 975, 225–229.
  • L. Cizaire, B. Vacher, T. Le Mogne, J. M. Martin, L. Rapoport, A. Margolin and R. Tenne: ‘Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles', Surf. Coat. Tech., 2002, 160, 282–287.
  • R. Rosentsveig, A. Gorodnev, N. Feuerstein, H. Friedman, A. Zak, N. Fleischer, J. Tannous, F. Dassenoy and R. Tenne: ‘Fullerene-like MoS2 nanoparticles and their tribological behavior’, Tribol. Lett., 2009, 36, 175–182.
  • L. Joly-Pottuz, J. M. Martin, F. Dassenoy, M. Belin, R. Montagnac and B. Reynard: ‘Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a hertzian contact’, J. Appl. Phys., 2006, 99, 023524–023526.
  • I. Lahouij, F. Dassenoy, L. Knoop, J. M. Martin and B. Vacher: ‘In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact’, Tribol. Lett., 2011, 42, 133–140.
  • J. Ruan and B. Bhushan: ‘Nanoindentation studies of sublimed fullerene films using atomic force microscopy’, J. Mater. Res., 1993, 8, (12), 3019–3022.
  • M. Godet: ‘The third-body approach: a mechanical view of wear’, Wear, 1984, 100, 437–452.
  • I. L. Singer, S. Fayeulle and P. D. Ehni: ‘Friction and wear behavior of TiN in air: the chemistry of transfer films and debris formation’, Wear, 1991, 149, (1–2), 375–394.
  • T. W. Scharf and I. L. Singer: ‘Role of the transfer film on the friction and wear of metal carbide reinforced amorphous carbon coatings during run-in’, Tribol. Lett., 2009, 36, (1), 43–53.
  • T. W. Scharf and I. L. Singer: ‘Monitoring transfer films and friction instabilities with in situ Raman tribometry’, Tribol. Lett., 2003, 14, (1), 3–8.
  • T. W. Scharf and I. L. Singer: ‘Quantification of the thickness of carbon transfer films using Raman tribometry’, Tribol. Lett., 2003, 14, (2), 137–145.
  • T. W. Scharf, P. G. Kotula and S. V. Prasad: ‘Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings', Acta Mater., 2010, 58, 4100–4109.
  • K. J. Wahl, D. N. Dunn and I. L. Singer: ‘Wear behavior of Pb–Mo–S solid lubricating coatings', Wear, 1999, 230, (2), 175–183.
  • C. B. Rieker, R. Schon and P. Kottig: J. Arthroplasty, 2004, 19, (8), 5–11.
  • S. A. Jacobsson, K. Djerf and O. Wahlstrom: ‘20-year results of mcKee-farrar versus charnley prosthesis', Clin. Orthop. Relat. Res., 1996, 329, S60–S68.
  • L. D. Dorr, Z. I. Wang, D. B. Longjohn, B. Dubois and R. Murken: J. Bone Joint Surg. Am., 2000, 82A, (6), 789–798.
  • C. P. Delaunay, F. Bonnomet, P. Clavert, P. Laffargue and H. Migaud: ‘THA using metal-on-metal articulation in active patients younger than 50 years', Clin. Orthop. Relat. Res., 2008, 466, (2), 340–346.
  • V. Eswaramoorthy, P. Moonot, Y. Kalairajah, L. C. Biant and R. E. Field: ‘The metasul metal-on-metal articulation in primary total hip replacement: clinical and radiological results at ten years', J. Bone Joint Surg. Br., 2008, 90-B, (10), 1278–1283.
  • D. Dowson, C. M. McNie and A. A. J. Goldsmith: ‘Direct experimental evidence of lubrication in a metal-on-metal total hip replacement tested in a joint simulator’, Proc. Inst. Mech. Eng. C J Mech. Eng. Sci., 2000, 214, (1), 75–86.
  • D. Sun, J. A. Wharton, R. J. K. Wood, L. Ma and W. M. Rainforth: ‘Microabrasion–corrosion of cast coCrMo alloy in simulated body fluids', Tribol. Int., 2009, 42, (1), 99–110.
  • Y. Liao, R. Pourzal, P. Stemmer, M. A. Wimmer, J. J. Jacobs, A. Fischer and L. Marks: ‘New insights into hard phases of coCrMo metal-on-metal hip replacements', J. Mech. Behav. Biomed. Mater., 2012, 12, 39–49.
  • H. F. Lopez and A. J. Saldivar-Garcia: ‘Martensitic transformation in a cast Co-Cr-Mo-C alloy’, Metall. Mater. Trans. A, 2008, 39, (1), 8–18.
  • K. Asgar and F. A. Peyton: ‘Effect of microstructure on the physical properties of cobalt-base alloys', J. Dent. Res., 1961, 40, (1), 63–72.
  • M. J. Murray, P. J. Mutton and J. D. Watson: ‘Abrasive wear mechanisms in steels', J. Lubr. Technol., 1982, 104, (1), 9–16.
  • J. M. Challen and P. L. B. Oxley: ‘An explanation of the different regimes of friction and wear using asperity deformation models', Wear, 1979, 53, (2), 229–243.
  • J. M. Challen, P. L. B. Oxley and E. D. Doyle: ‘The effect of strain hardening on the critical angle for abrasive (chip formation) wear’, Wear, 1983, 88, (1), 1–12.
  • K. Kato: ‘Micro-mechanisms of wear — wear modes', Wear, 1992, 153, (1), 277–295.
  • K. L. Johnson: ‘Contact mechanics and the wear of metals', Wear, 1995, 190, (2), 162–170.
  • E. D. Doyle and L. E. Samuels: ‘Further development of a model of grinding’, Proc. Int. Conf. Prod. Eng., 1974, 2, 45–50.
  • K. Anantheshwara, K. A. Selvan, R. K. Mishra and M. S. Bobji: ‘In situ transmission electron microscopy study of deformation of an aluminum alloy tribolayer’, Scripta. Mater., 2009, 60, 623–626.
  • R. Buscher, G. Tager, W. Dudzinski, B. Gleising, M. A. Wimmer and A. Fischer: ‘Subsurface microstructure of metal-on-metal hip joints and its relationship to wear particle generation’, J. Biomed. Mater. Res. B Appl. Biomater., 2005, 72B, (1), 206–214.
  • R. Buscher and A. Fischer: ‘The pathways of dynamic recrystallization in all-metal hip joints', Wear, 2005, 259, 887–897.
  • M. Bryant, M. Ward, R. Farrar, R. Freeman, K. Brummitt, J. Nolan and A. Neville: ‘Characterisation of the surface topography, tomography and chemistry of fretting corrosion product found on retrieved polished femoral stems', J. Mech. Behav. Biomed. Mater., 2014, 32, 321–334.
  • T. D. B. Jacobs, B. Gotsmann, M. A. Lantz and R. W. Carpick: ‘On the application of transition state theory to atomic-scale wear’, Tribol. Lett., 2010, 39, (3), 257–271.
  • N. P. Suh: ‘An overview of the delamination theory of wear’, Wear, 1977, 44, (1), 1–16.
  • T. D. B. Jacobs and R. W. Carpick: ‘Nanoscale wear as a stress-assisted chemical reaction’, Nat. Nanotechnol., 2013, 8, (2), 108–112.
  • B. Gotsmann and M. A. Lantz: ‘Atomistic wear in a single asperity sliding contact’, Phys. Rev. Lett., 2008, 101, (12), 125501.
  • H. Bhaskaran, B. Gotsmann, A. Sebastian, U. Drechsler, M. A. Lantz, M. Despont, P. Jaroenapibal, R. W. Carpick, Y. Chen and K. Sridharan: ‘Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon’, Nat. Nanotechnol., 2010, 5, (3), 181–185.
  • P. Steiner, E. Genecco, F. Krok, J. Budzioch, L. Walczk, J. Konior, M. Szymonski and E. Meyer: ‘Atomic-scale friciton on stepped surfaces of ionic crystals’, Phys. Rev. Lett., 2001, 106, 186101–186104.
  • E. Gnecco, R. Bennewitz and E. Meyer: ‘Abrasive wear on the atomic scale’, Phys. Rev. Lett., 2002, 88, (21), 215501.
  • A. R. Konicek, D. S. Grierson, P. U. P. A. Gilbert, W. G. Sawyer, A. V. Sumant and R. W. Carpick: ‘Origin of ultralow friction and wear in ultrananocrystalline diamond’, Phys. Rev. Lett., 2008, 100, 235501–235503.
  • D. Hannouche, M. Hamadouche, R. Nizard, P. Bizot, A. Meunier and L. Sedel: ‘Ceramics in total hip replacement’, Clin. Orthop. Relat. Res., 2005, 430, 62–71.
  • K. Kato and K. Adachi: ‘Wear of advanced ceramics', Wear, 2002, 253, (11–12), 1097–1104.
  • Y. Liao and L. D. Marks: ‘Direct observation of layer-by-layer wear’, Tribol. Lett., 2015, 59, (3), 1–11.
  • A. L. Bowman, G. P. Arnold, E. K. Storms and N. G. Nereson: ‘The crystal structure of Cr23C6’, Acta Crystallogr. Sec B, 1972, 28, (10), 3102–3103.
  • M. El-Batanouny, S. Burdick, K. M. Martini and P. Stancioff: ‘Double-sine-Gordon solitons: a model for misfit dislocations on the Au(111) reconstructed surface’, Phys. Rev. Lett., 1987, 58, (26), 2762–2765.
  • F. Ernst: ‘Dissociation of misfit dislocation nodes in (111) Gesi/Si interfaces’, Philos. Mag. A-Phys., 1993, 68, (6), 1251–1272.
  • F. C. Frank and J. H. v. d. Merwe: ‘One-dimensional dislocations. II. misfitting monolayers and oriented overgrowth’, Proc. Math. Phys. Eng. Sci., 1949, 198, (1053), 216–225.
  • R. Kohler, J.-U. Pfeiffer, H. Raidt, W. Neumann, P. Zaumseil and U. Richter: ‘Nucleation, glide velocity and blocking of misfit dislocations in siGe/Si’, Cryst. Res. Technol., 1998, 33, (4), 593–604.
  • T. Schober and R. W. Balluffi: ‘Quantitative observation of misfit dislocation arrays in low and high angle twist grain boundaries', Philos. Mag., 1970, 21, (169), 109.
  • L. E. Shilkrot and D. J. Srolovitz: ‘Elastic analysis of finite stiffness bimaterial interfaces: application to dislocation–interface interactions', Acta Mater., 1998, 46, (9), 3063–3075.
  • W. Mader and D. Knauss: ‘Equilibrium position of misfit dislocations at planar interfaces', Acta Metallurgica Et Materialia, 1992, 40, S207–S215.
  • F. P. Bowden: ‘Introduction to the discussion: the mechanism of friction’, Proc. Math. Phys. Eng. Sci., 1952, 212, (1111), 440–449.
  • F. P. Bowden and E. H. Freitag: ‘The friction of solids at very high speeds. I. metal on metal; II. metal on diamond’, Proc. Math. Phys. Eng. Sci., 1958, 248, (1254), 350–367.
  • A. P. Merkle and L. D. Marks: ‘A predictive analytical friction model from basic theories of interfaces, contacts and dislocations', Tribol. Lett., 2007, 26, (1), 73–84.
  • A. M’ndange-Pfupfu and L. D. Marks: ‘A dislocation-based analytical model for the nanoscale processes of shear and plowing friction’, Tribol. Lett., 2010, 39, 163.
  • J. de la Figuera, K. Pohl, O. R. de la Fuente, A. K. Schmid, N. C. Bartelt, C. B. Carter and R. Q. Hwang: ‘Direct observation of misfit dislocation glide on surfaces', Phys. Rev. Lett., 2001, 86, (17), 3819–3822.
  • K. Anantheshwara, A. J. Lockwood, R. K. Mishra, B. Inkson and M. S. Bobji: ‘Dynamical evolution of wear particles in nanocontacts', Tribol. Lett., 2012, 45, 229–235.
  • A. Erdemir and C. Donnet: ‘Tribology of diamond-like carbon films: recent progress and future prospects', J. Phys. D Appl. Phys., 2006, 39, R311–R327.
  • L. Pastewka, S. Moser, P. Gumbsch and M. Moseler: ‘Anisotropic mechanical amorphization drives wear in diamond’, Nat. Mater., 2011, 10, (1), 34–38.
  • C. Donnet, T. L. Mogne, L. Ponsonnet, M. Belin, A. Grill, V. Patel and C. Jahnes: ‘The respective role of oxygen and water vapor on the tribology of hydrogenated diamond-like carbon coatings', Tribol. Lett., 1998, 4, (3–4), 259–265.
  • A. Erdemir: ‘The role of hydrogen in tribological properties of diamond-like carbon films', Surf. Coat. Technol., 2001, 146–147, 292–297.
  • A. Grill: ‘Tribology of diamond like carbon and related materials: an updated review’, Surf. Coat. Technol., 1997, 94–95, (1–3), 507–513.
  • F. M. Borodich and L. M. Keer: ‘Modeling effects of gas adsorption and removal on friction during sliding along diamond-like carbon films', Thin Solid Films, 2005, 476, (1), 108–117.
  • A. Erdemir: ‘Review of engineered tribological interfaces for improved boundary lubrication’, Tribol. Int., 2005, 38, (3), 249–256.
  • D. W. Pashley, M. J. Stowell, M. H. Jacobs and T. J. Law: ‘The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope’, Philos. Mag., 1964, 10, (103), 127–158.
  • A. J. Lockwood, K. Anantheshwara, M. S. Bobji and B. Inkson: ‘Friction-formed liquid droplets', Nanotechnology, 2011, 22, 105703 .
  • J. J. Wang, A. J. Lockwood, Y. Peng, X. Xu, M. S. Bobji and B. J. Inkson: Nanotechnology, 2009, 20, (30), 305–703.
  • J. Sun, L. He, Y. C. Lo, H. Bi, L. Sun, Z. Zhang, S. X. Mao and J. Li: ‘Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles', Nat. Mater., 2014, 13, 1007–1012.
  • T. W. Scharf and I. L. Singer: ‘Thickness of diamond-like carbon coatings quantified with Raman spectroscopy’, Thin Solid Films, 2003, 440, (1–2), 138–144.
  • T. Lucretius Carus and A. E. Stallings: ‘De rerum natura (On the nature of things)’, 2007, London, Penguin Classics.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.