9,708
Views
163
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Tortuosity in electrochemical devices: a review of calculation approaches

ORCID Icon, ORCID Icon & ORCID Icon
Pages 47-67 | Received 04 Jul 2016, Accepted 11 Oct 2016, Published online: 09 Nov 2016

References

  • Shearing PR, Brett DJL, Brandon NP. Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques. Int Mater Rev. 2013;55(6):347–363.
  • Taiwo OO, Finegan DP, Eastwood DS, et al. Comparison of three-dimensional analysis and stereological techniques for quantifying lithium-ion battery electrode microstructures. J Microsc. 2016;263(3):280–292.
  • Virkar AV, Chen J, Tanner CW, et al. The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ion. 2000;131(1–2):189–198.
  • Wilson JR, Barnett SA. Solid Oxide Fuel Cell Ni–YSZ Anodes: effect of composition on microstructure and performance. Electrochem Solid-State Lett. 2008;11(10):B181.
  • Clennell B. Tortuosity: a guide through the maze. Geol Soc Lond Spec Publ. 1997;122(1):299–344.
  • Ghanbarian B, Hunt AG, Ewing RP, et al. Tortuosity in porous media: a critical review. Soil Sci Soc Am J. 2013;77(5):1461.
  • Mench M. Fuel cell engines. Hoboken, NJ: John Wiley & Sons; 2008.
  • Daniel C, Besenhard JO (Eds.). Handbook of battery materials. 2nd ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011.
  • Newman J, Tiedemann W. Porous-electrode theory with battery applications. AIChE J. 1975;21(1):25–41.
  • Adler S, Lane J, Steele B. Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc. 1996;143(11):3554–3564.
  • Epstein N. On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem Eng Sci. 1989;44(3):777–779.
  • van Brakel J, Heertjes P. Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int J Heat Mass Transfer. 1974;17(9):1093–1103.
  • Holzer L, Wiedenmann D, Münch B, et al. The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells. J Mater Sci. 2013;48(7):2934–2952.
  • Wiedenmann D, Keller L, Holzer L, et al. Three-dimensional pore structure and ion conductivity of porous ceramic diaphragms. AIChE J. 2013;59(5):1446–1457.
  • Kast W, Hohenthanner C-R. Mass transfer within the gas-phase of porous media. Int J Heat Mass Transfer. 2000;43(5):807–823.
  • Jiang Y, Virkar AV. Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. J Electrochem Soc. 2003;150(7):A942.
  • Hoogschagen J. Diffusion in porous catalysts and adsorbents. Ind Eng Chem. 1955;47(5):906–912.
  • Zamel N, Astrath N, Li X, et al. Experimental measurements of effective diffusion coefficient of oxygen–nitrogen mixture in PEM fuel cell diffusion media. Chem Eng Sci. 2010;65(2):931–937.
  • Flückiger R, Freunberger SA, Kramer D, et al. Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC. Electrochim Acta. 2008;54(2):551–559.
  • Kramer D, Freunberger SA, Flückiger R, et al. Electrochemical diffusimetry of fuel cell gas diffusion layers. J Electroanal Chem. 2008;612(1):63–77.
  • MacMullin RB, Muccini GA. Characteristics of porous beds and structures. AIChE J. 1956;2(3):393–403.
  • Djian D, Alloin F, Martinet S, et al. Lithium-ion batteries with high charge rate capacity: influence of the porous separator. J Power Sour. 2007;172(1):416–421.
  • Martínez MJ, Shimpalee S, Van Zee JW. Measurement of MacMullin numbers for PEMFC gas-diffusion media. J Electrochem Soc. 2009;156(1):B80.
  • Landesfeind J, Hattendorff J, Ehrl A, et al. Tortuosity determination of battery electrodes and separators by impedance spectroscopy. J Electrochem Soc. 2016;163(7):A1373.
  • Shen L, Chen Z. Critical review of the impact of tortuosity on diffusion. Chem Eng Sci. 2007;62(14):3748–3755.
  • Bruggeman DAG. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys. 1935;416(7):636–664.
  • Tjaden B, Cooper SJ, Brett DJL, et al. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Curr Opin Chem Eng. 2016;12:44–51.
  • Maxwell J. A treatise on electricity and magnetism. Oxford: Clarendon press; 1873.
  • Chueh CC, Bertei A, Pharoah JG, et al. Effective conductivity in random porous media with convex and non-convex porosity. Int J Heat Mass Transfer. 2014;71(0):183–188.
  • Rue R, Tobias C. On the conductivity of dispersions. J Electrochem Soc. 1959;106(9):827–833.
  • Fuller TF, Doyle M, Newman J. Simulation and optimization of the dual lithium ion insertion cell. J Electrochem Soc. 1994;141(1):1–10.
  • Arora P, Doyle M, Gozdz AS, et al. Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteries. J Power Sources. 2000;88(2):219–231.
  • Doyle M, Newman J. The use of mathematical modeling in the design of lithium/polymer battery systems. Electrochim Acta. 1995;40(13–14):2191–2196.
  • Vijayaraghavan B, Ely DR, Chiang Y-M, et al. An analytical method to determine tortuosity in rechargeable battery electrodes. J Electrochem Soc. 2012;159(5):A548.
  • Miranda D, Costa CM, Almeida AM, et al. Modeling separator membranes physical characteristics for optimized lithium ion battery performance. Solid State Ion. 2015;278:78–84.
  • Bernardi DM, Verbrugge MW. Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AIChE J. 1991;37(8):1151–1163.
  • Lin G, He W, van Nguyen T. Modeling liquid water effects in the gas diffusion and catalyst layers of the cathode of a PEM fuel cell. J Electrochem Soc. 2004;151(12):A1999.
  • Pharoah JG, Karan K, Sun W. On effective transport coefficients in PEM fuel cell electrodes: anisotropy of the porous transport layers. J Power Sour. 2006;161(1):214–224.
  • Das PK, Li X, Liu Z-S. Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: beyond Bruggeman approximation. Appl Energ. 2010;87(9):2785–2796.
  • Marquis J, Coppens M-O. Achieving ultra-high platinum utilization via optimization of PEM fuel cell cathode catalyst layer microstructure. Chem Eng Sci. 2013;102:151–162.
  • Pant LM, Mitra SK, Secanell M. A generalized mathematical model to study gas transport in PEMFC porous media. Int J Heat Mass Transfer. 2013;58(1–2):70–79.
  • Chaudhary S, Sachan VK, Bhattacharya PK. Two dimensional modelling of water uptake in proton exchange membrane fuel cell. Int J Hydr Energ. 2014;39(31):17802–17818.
  • Xing L, Liu X, Alaje T, et al. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell. Energy. 2014;73:618–634.
  • Xing L, Mamlouk M, Kumar R, et al. Numerical investigation of the optimal Nafion® ionomer content in cathode catalyst layer: an agglomerate two-phase flow modelling. Int J Hydr Energ. 2014;39(17):9087–9104.
  • Wu W, Jiang F. Microstructure reconstruction and characterization of PEMFC electrodes. Int J Hydr Energ. 2014;39(28):15894–15906.
  • DuBeshter T, Sinha PK, Sakars A, et al. Measurement of tortuosity and porosity of porous battery electrodes. J Electrochem Soc. 2014;161(4):A599.
  • Thorat I, Stephenson DE, Zacharias N, et al. Quantifying tortuosity in porous Li-ion battery materials. J Power Sour. 2009;188(2):592–600.
  • Doyle M, Newman J, Gozdz AS, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc. 1996;143(6):1890–1903.
  • Patel KK, Paulsen JM, Desilvestro J. Numerical simulation of porous networks in relation to battery electrodes and separators. J Power Sour. 2003;122(2):144–152.
  • Arora P, Zhang Z. Battery separators. Chem Rev. 2004;104(10):4419–4462.
  • Kehrwald D, Shearing PR, Brandon NP, et al. Local tortuosity inhomogeneities in a lithium battery composite electrode. J Electrochem Soc. 2011;158(12):A1393–A1399.
  • Cannarella J, Arnold CB. Ion transport restriction in mechanically strained separator membranes. J Power Sour. 2013;226:149–155.
  • Zacharias NA, Nevers DR, Skelton C, et al. Direct measurements of effective ionic transport in porous li-ion electrodes. J Electrochem Soc. 2013;160(2):A306.
  • Ebner M, Chung D-W, García ER, et al. Tortuosity anisotropy in lithium-ion battery electrodes. Adv Energy Mater. 2014;4(5): n/a.
  • Vadakkepatt A, Trembacki B, Mathur SR, et al. Bruggeman’s exponents for effective thermal conductivity of lithium-ion battery electrodes. J Electrochem Soc. 2016;163(2):A119.
  • Chung D-W, Ebner M, Ely DR, et al. Validity of the Bruggeman relation for porous electrodes. Modell Simul Mater Sci Eng. 2013;21(7):74009.
  • Ebner E, Geldmacher F, Marone F, et al. X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv Energy Mater. 2013;3(7):845–850.
  • Ebner M, Wood V. Tool for tortuosity estimation in lithium ion battery porous electrodes. J Electrochem Soc. 2015;162(2):A3064.
  • Lagadec MF, Ebner M, Zahn R, et al. Communication – technique for visualization and quantification of lithium-ion battery separator microstructure. J Electrochem Soc. 2016;163(6):A992.
  • Russ J, DeHoff RT. Practical stereology. 2nd ed. New York, London: Kluwer Academic/Plenum; 2000.
  • Stephenson DE, Hartman EM, Harb JN, et al. Modeling of particle-particle interactions in porous cathodes for lithium-ion batteries. J Electrochem Soc. 2007;154(12):A1146.
  • Gupta A, Seo JH, Zhang X, et al. Effective transport properties of LiMn2O4 electrode via particle-scale modeling. J Electrochem Soc. 2011;158(5):A487.
  • Cooper SJ, Eastwood DS, Gelb J, et al. Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries. J Power Sour. 2014;247:1033–1039.
  • Zhang Y, Chen Y, Yan M, et al. New formulas for the tortuosity factor of electrochemically conducting channels. Electrochem Commun. 2015;60:52–55.
  • Wicke E, Kallenbach R. Die Oberflächendiffusion von Kohlendioxyd in aktiven Kohlen. Kolloid-Zeitschrift. 1941;97(2):135–151.
  • Evans RB, Watson GM, Truitt J. Interdiffusion of gases in a low permeability graphite at uniform pressure. J Appl Phys. 1962;33(9):2682–2688.
  • Evans RB, Watson GM, Truitt J. Interdiffusion of gases in a low-permeability graphite. II. Influence of pressure gradients. J Appl Phys. 1963;34(7):2020–2026.
  • Bardakci T, King FG. Measurements of argon, nitrogen and carbon dioxide diffusion through random assemblies of small spheres. Gas Sep Purif. 1992;6(1):43–48.
  • Williford RE, Chick LA, Maupin GD, et al. Diffusion limitations in the porous anodes of SOFCs. J Electrochem Soc. 2003;150(8):A1067.
  • Soukup K, Schneider P, Šolcová O. Comparison of Wicke–Kallenbach and Graham’s diffusion cells for obtaining transport characteristics of porous solids. Chem Eng Sci. 2008;63(4):1003–1011.
  • Salejova G, Grof Z, Solcova O, et al. Strategy for predicting effective transport properties of complex porous structures. Comput Chem Eng. 2011;35(2): 200–211.
  • Brus G, Miyawaki K, Iwai H, et al. Tortuosity of an SOFC anode estimated from saturation currents and a mass transport model in comparison with a real micro-structure. Solid State Ion. 2014;265:13–21.
  • He W, Zou J, Wang B, et al. Gas transport in porous electrodes of solid oxide fuel cells: a review on diffusion and diffusivity measurement. J Power Sour. 2013;237(0):64–73.
  • Mason E, Malinauskas A. Gas transport in porous media: the dusty-gas model. Amsterdam, New York: Elsevier; 1983.
  • Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. 2nd ed. New York: J Wiley; 2002.
  • Yuan J, Sundén B. On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes. Int J Heat Mass Transfer. 2014;69(0):358–374.
  • Mills AF. On steady one-dimensional diffusion in binary ideal gas mixtures. Int J Heat Mass Transfer. 2003;46(13):2495–2497.
  • Bertei A, Nicolella C. Common inconsistencies in modeling gas transport in porous electrodes: the dusty-gas model and the Fick law. J Power Sour. 2015;279:133–137.
  • Suwanwarangkul R, Croiset E, Fowler M, et al. Performance comparison of Fick’s, dusty-gas and Stefan–Maxwell models to predict the concentration overpotential of a SOFC anode. J Power Sour. 2003;122(1):9–18.
  • Tseronis K, Kookos I, Theodoropoulos C. Modelling mass transport in solid oxide fuel cell anodes: a case for a multidimensional dusty gas-based model. Chem Eng Sci. 2008;63(23):5626–5638.
  • Izzo JR, Joshi A, Grew K, et al. Non-destructive reconstruction and analysis of solid oxide fuel cell anodes using X-ray computed tomography at sub-50 nm resolution. ECS Trans. 2008;13(6):1–11.
  • Vural Y, Ma L, Ingham D, et al. Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes. J Power Sour. 2010;195(15):4893–4904.
  • Wang S, Worek W, Minkowycz W. Performance comparison of the mass transfer models with internal reforming for solid oxide fuel cell anodes. Int J Heat Mass Transfer. 2012;55(15–16):3933–3945.
  • Bertei A, Nucci B, Nicolella C. Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes. Chem Eng Sci. 2013;101(0):175–190.
  • Tjaden B, Lane J, Withers PJ, et al. The application of 3D imaging techniques, simulation and diffusion experiments to explore transport properties in porous oxygen transport membrane support materials. Solid State Ion. 2016;288:315–321.
  • Schmidt HV, Tsai C-L. Anode-pore tortuosity in solid oxide fuel cells found from gas and current flow rates. J Power Sour. 2008;180(1):253–264.
  • Schmidt HV, Tsai C-L, Lediaev L. Advances in Solid Oxide Fuel Cells III: Ceramic and Engineering Science Proceedings, Volume 28, Issue 4, John Wiley & Sons, Inc, 2009; p. 127–140.
  • Tsai C-L, Schmidt HV. Tortuosity in anode-supported proton conductive solid oxide fuel cell found from current flow rates and dusty-gas model. J Power Sour. 2011;196(2):692–699.
  • Harned HS, French DM. A conductance method for the determination of the diffusion coefficients of electrolytes. Ann N Y Acad Sci. 1945;46(5 The Diffusion):267–284.
  • Newman J, Chapman TW. Restricted diffusion in binary solutions. AIChE J. 1973;19(2):343–348.
  • Stewart SG, Newman J. The use of UV/vis absorption to measure diffusion coefficients in LiPF6 electrolytic solutions. J Electrochem Soc. 2008;155(1):F13.
  • Bae C-J, Erdonmez CK, Halloran JW, et al. Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance. Adv Mater. 2013;25(9):1254–1258.
  • Doyle M, Newman J. Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process. J Appl Electrochem. 1997;27(7):846–856.
  • Shearing PR, Eastwood DS, Bradley RS, et al. Exploring electrochemical devices using X-ray microscopy: 3D microstructure of batteries and fuel cells. Microscopy Anal. 2013;27(2):19–22.
  • Cantoni M, Holzer L. Advances in 3D focused ion beam tomography. MRS Bull. 2014;39(04):354–360.
  • Stock SR. Recent advances in X-ray microtomography applied to materials. Int Mater Rev. 2013;53(3):129–181.
  • Maire E, Withers PJ. Quantitative X-ray tomography. Int Mater Rev. 2014;59(1):1–43.
  • Nelson GJ, Harris WM, Lombardo JJ, et al. Comparison of X-ray Nanotomography and FIB-SEM in quantifying the composite LSM/YSZ SOFC cathode microstructure. ECS Trans. 2011;35(1):2417–2421.
  • Shearing PR, Gelb J, Brandon NP. Characterization of SOFC electrode microstructure using nano-scale X-ray computed tomography and focused ion beam techniques: a comparative study. ECS Trans. 2009;19(17):51–57.
  • Thydén K, Liu YL, Bilde-Sørensen JB. Microstructural characterization of SOFC Ni–YSZ anode composites by low-voltage scanning electron microscopy. Solid State Ion. 2008;178(39–40):1984–1989.
  • Shearing PR, Bradley RS, Gelb J, et al. Exploring microstructural changes associated with oxidation in Ni–YSZ SOFC electrodes using high resolution X-ray computed tomography. Solid State Ion. 2012;216(0):69–72.
  • Wilson J, Kobsiriphat W, Mendoza R, et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater. 2006;5(7):541–544.
  • Iwai H, Shikazono N, Matsui T, et al. Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique. J Power Sour. 2010;195(4):955–961.
  • Chen-Wiegart Y, Cronin S, Yuan Q, et al. 3D Non-destructive morphological analysis of a solid oxide fuel cell anode using full-field X-ray nano-tomography. J Power Sour. 2012;218(0):348–351.
  • Vivet N, Chupin S, Estrade E, et al. Effect of Ni content in SOFC Ni-YSZ cermets: a three-dimensional study by FIB-SEM tomography. J Power Sour. 2011;196(23):9989–9997.
  • Shearing PR, Brandon NP, Gelb J, et al. Multi length scale microstructural investigations of a commercially available Li-Ion battery electrode. J Electrochem Soc. 2012;159(7):A1023.
  • Zalc JM, Reyes SC, Iglesia E. The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures. Chem Eng Sci. 2004;59(14):2947–2960.
  • Zhang Y, Xia C, Ni M. Simulation of sintering kinetics and microstructure evolution of composite solid oxide fuel cells electrodes. Int J Hydr Energ. 2012;37(4):3392–3402.
  • Gostovic D, Smith JR, Kundinger D, et al. Three-dimensional reconstruction of porous LSCF cathodes. Electrochem Solid-State Lett. 2007;10(12):B214.
  • Smith JR, Chen A, Gostovic D, et al. Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs. Solid State Ion. 2009;180(1):90–98.
  • Cooper SJ, Kishimoto M, Tariq F, et al. Microstructural analysis of an LSCF cathode using in situ tomography and simulation. ECS Trans. 2013;57(1):2671–2678.
  • Jørgensen PS, Hansen KV, Larsen R, et al. Geometrical characterization of interconnected phase networks in three dimensions. J Microsc. 2011;244(1):45–58.
  • Jørgensen PS, Ebbehøj SL, Hauch A. Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure. J Power Sour. 2015;279:686–693.
  • Chen-Wiegart Y, DeMike R, Erdonmez C, et al. Tortuosity characterization of 3D microstructure at nano-scale for energy storage and conversion materials. J Power Sour. 2014;249(0):349–356.
  • Shearing PR, Howard LE, Jørgensen PS, et al. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem Commun 2010;12(3):374–377.
  • Çeçen A, Wargo EA, Hanna AC, et al. 3-D microstructure analysis of fuel cell materials: spatial distributions of tortuosity, void size and diffusivity. J Electrochem Soc. 2012;159(3):B299.
  • Shearing PR, Bradley RS, Gelb J, et al. Using synchrotron X-ray nano-CT to characterize SOFC electrode microstructures in three-dimensions at operating temperature. Electrochem Solid-State Lett. 2011;14(10):B117.
  • Cooper SJ. Quantifying the transport properties of solid oxide fuel cell electrodes. Ph.D. Thesis, London, 2015.
  • Joshi AS, Grew KN, Izzo JR, et al. Lattice Boltzmann modeling of three-dimensional, multicomponent mass diffusion in a solid oxide fuel cell anode. J Fuel Cell Sci Technol. 2010;7(1):11006.
  • Grew KN, Chu YS, Yi J, et al. Nondestructive nanoscale 3D elemental mapping and analysis of a solid oxide fuel cell anode. J Electrochem Soc. 2010;157(6)B783.
  • Grew KN, Peracchio AA, Joshi AS, et al. Characterization and analysis methods for the examination of the heterogeneous solid oxide fuel cell electrode microstructure. Part 1: volumetric measurements of the heterogeneous structure. J Power Sour. 2010;195(24):7930–7942.
  • Cooper SJ, Bertei A, Shearing PR, Kilner JA, Brandon NP. TauFactor: An open-source application for calculating tortuosity factors from tomographic data. Software X. 2016. doi:10.1016/j.softx.2016.09.002
  • Finegan DP, Cooper SJ, Tjaden B, et al. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy. J Power Sour. 2016;333:184–192.
  • Brown LD, Neville TP, Jervis R, et al. The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries. J Energ Stor. 2016;8:91–98.
  • Sukop MC, Thorne DT. Lattice Boltzmann modeling: an introduction for geoscientists and engineers. Berlin, New York: Springer; 2006.
  • Hao L, Cheng P. Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers. J Power Sour. 2009;186(1):104–114.
  • Kanno D, Shikazono N, Takagi N, et al. Evaluation of SOFC anode polarization simulation using three-dimensional microstructures reconstructed by FIB tomography. Electrochim Acta. 2011;56(11):4015–4021.
  • Matsuzaki K, Shikazono N, Kasagi N. Three-dimensional numerical analysis of mixed ionic and electronic conducting cathode reconstructed by focused ion beam scanning electron microscope. J Power Sour. 2011;196(6):3073–3082.
  • Shimura T, Jiao Z, Hara S, et al. Quantitative analysis of solid oxide fuel cell anode microstructure change during redox cycles. J Power Sour. 2014;267:58–68.
  • Nabovati A, Hinebaugh J, Bazylak A, et al. Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells. J Power Sour. 2014;248:83–90.
  • Espinoza M, Sundén B, Andersson M, et al. Analysis of porosity and tortuosity in a 2D selected region of solid oxide fuel cell cathode using the Lattice Boltzmann method. ECS Trans. 2015;65(1):59–73.
  • Joshi AS, Peracchio AA, Grew KN, et al. Lattice Boltzmann method for multi-component, non-continuum mass diffusion. J Phys D: Appl Phys. 2007;40(23):7593–7600.
  • Vivet N, Chupin S, Estrade E, et al. 3D Microstructural characterization of a solid oxide fuel cell anode reconstructed by focused ion beam tomography. J Power Sour. 2011;196(18):7541–7549.
  • Kishimoto M, Iwai H, Saito M, et al. Quantitative evaluation of transport properties of SOFC porous anode by random walk process. ECS Trans. 2009;25(2):1887–1896.
  • Kishimoto M, Iwai H, Saito M, et al. Quantitative evaluation of solid oxide fuel cell porous anode microstructure based on focused ion beam and scanning electron microscope technique and prediction of anode overpotentials. J Power Sour. 2011;196(10):4555–4563.
  • Kishimoto M, Iwai H, Miyawaki K, et al. Improvement of the sub-grid-scale model designed for 3D numerical simulation of solid oxide fuel cell electrodes using an adaptive power index. J Power Sour. 2013;223:268–276.
  • Tariq F, Yufit V, Kishimoto M, et al. Three-dimensional high resolution X-ray imaging and quantification of lithium ion battery mesocarbon microbead anodes. J Power Sour. 2014;248:1014–1020.
  • Mitra PP, Sen PN, Schwartz LM, et al. Diffusion propagator as a probe of the structure of porous media. Phys Rev Lett. 1992;68(24):3555–3558.
  • Mitra PP, Sen PN, Schwartz LM. Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys Rev B. 1993;47(14):8565–8574.
  • Nakashima Y, Kamiya S. Mathematica programs for the analysis of three-dimensional pore connectivity and anisotropic tortuosity of porous rocks using X-ray computed tomography image data. J Nucl Sci Technol. 2007;44(9):1233–1247.
  • Kishimoto M, Iwai H, Saito M, et al. Three-dimensional simulation of SOFC anode polarization characteristics based on sub-grid scale modeling of microstructure. J Electrochem Soc. 2012;159(3):B315.
  • Rüger B, Weber A, Ivers-Tiffee E. 3D-modelling and performance evaluation of mixed conducting (MIEC) cathodes. ECS Trans. 2007;7(1):2065–2074.
  • Rüger B, Joos J, Weber A, et al. 3D electrode microstructure reconstruction and modelling. ECS Trans. 2009;25(2):1211–1220.
  • Joos J, Carraro T, Weber A, et al. Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling. J Power Sour. 2011;196(17):7302–7307.
  • Häffelin A, Joos J, Ender M, et al. Time-dependent 3D impedance model of mixed-conducting solid oxide fuel cell cathodes. J Electrochem Soc. 2013;160(8):F867.
  • Ender M, Joos J, Carraro T, et al. Three-dimensional reconstruction of a composite cathode for lithium-ion cells. Electrochem Commun. 2011;13(2):166–168.
  • Joos J, Ender M, Carraro T, et al. Representative volume element size for accurate solid oxide fuel cell cathode reconstructions from focused ion beam tomography data. Electrochim Acta. 2012;82:268–276.
  • Cronin S, Wilson J, Barnett S. Impact of pore microstructure evolution on polarization resistance of Ni-Yttria-stabilized zirconia fuel cell anodes. J Power Sour. 2011;196(5):2640–2643.
  • Nanjundappa A, Alavijeh AS, El Hannach M, et al. A customized framework for 3-D morphological characterization of microporous layers. Electrochim Acta 2013;110:349–357.
  • Laurencin J, Quey R, Delette G, et al. Characterisation of solid oxide fuel cell Ni–8YSZ substrate by synchrotron X-ray nano-tomography: from 3D reconstruction to microstructure quantification. J Power Sour. 2012;198:182–189.
  • Vijayaraghavan B, Garcia E, Chiang Y-M. Microstructure modeling of rechargeable lithium-ion batteries. Meeting Abstracts 2011; MA2011-01(10):502.
  • Trogadas P, Taiwo OO, Tjaden B, et al. X-ray micro-tomography as a diagnostic tool for the electrode degradation in vanadium redox flow batteries. Electrochem Commun. 2014;48(0):155–159.
  • Kashkooli AG, Farhad S, Lee DU, et al. Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography. J Power Sour. 2016;307:496–509.
  • Brown LD, Abdulaziz R, Tjaden B, et al. Investigating microstructural evolution during the electroreduction of UO2 to U in LiCl-KCl eutectic using focused ion beam tomography. Journal of Nuclear Materials. 2016;480:355–361.
  • Harris SJ, Lu P. Effects of Inhomogeneities – Nanoscale to Mesoscale – on the durability of li-ion batteries. J Phys Chem C. 2013;117(13):6481–6492.
  • Mandelbrot B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science. 1967;156(3775):636–638.
  • Costanza-Robinson MS, Estabrook BD, Fouhey DF. Representative elementary volume estimation for porosity, moisture saturation, and air-water interfacial areas in unsaturated porous media: data quality implications. Water Resour Res. 2011;47(7):W07513.
  • Finegan DP, Scheel M, Tjaden B, et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study. Phys Chem Chem Phys. 2016.
  • Robertson I, Holzer L, Prestat M, et al. Effects of particle and pore sizes, surface area and porosity on the performance of LSC cathodes. Proc. 9th European Fuel Cell Forum. 2010;10–83.