8,012
Views
60
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Plant fibre-reinforced polymers: where do we stand in terms of tensile properties?

, , , ORCID Icon & ORCID Icon
Pages 441-464 | Received 12 Mar 2015, Accepted 05 Dec 2016, Published online: 20 Jan 2017

References

  • Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on End-of-life Vehicles.
  • Directive 1999/31/EC of the European Parliament and of the Council of 26 April 1999 on the Landfill of Waste.
  • Directive 2002/96/EC of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE).
  • Meier MAR. Metathesis with oleochemicals: new approaches for the utilization of plant oils as renewable resources in polymer science. Macromol Chem Phys. 2009;210(13–14):1073–1079.
  • Flaris V, Singh G. Recent developments in biopolymers. J Vinyl Addit Technol. 2009;15(1):1–11.
  • Ragauskas AJ, Williams CK, Davison BH, et al. The path forward for biofuels and biomaterials. Science. 2006;311(5760):484–489.
  • Datta R, Henry M. Lactic acid: recent advances in products, processes and technologies - a review. J Chem Technol Biotechnol. 2006;81(7):1119–1129.
  • Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol. 2007;82(3):233–247.
  • Raquez JM, Deleglise M, Lacrampe MF, et al. Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci. 2010;35(4):487–509.
  • Lee K-Y, Tang M, Williams CK, et al. Carbohydrate derived copoly(lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites. Compos Sci Technol. 2012;72(14):1646–1650.
  • Montrikittiphant T, Tang M, Lee K-Y, et al. Bacterial cellulose nanopaper as reinforcement for polylactide composites: renewable thermoplastic NanoPaPreg. Macromol Rapid Commun. 2014;35(19):1640–1645.
  • Lee K-Y, Aitomäki Y, Berglund LA, et al. On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol. 2014;105:15–27.
  • Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: an overview. Prog Polym Sci. 2007;32(4):455–482.
  • Jamshidian M, Tehrany EA, Imran M, et al. Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Safety. 2010;9(5):552–571.
  • Dorgan JR, Braun B, Wegner JR, et al. Poly(lactic acids) – a brief review. In: Khemani K, et al., editors. Degradable polymers and materials: principles and practice. Washington (DC): American Chemical Society; 2006. p. 102–125.
  • Ackermann JU, Muller S, Losche A, et al. Methylobacterium rhodesianum cells tend to double the DNA content under growth limitations and accumlate PHB. J Biotechnol. 1995;39(1):9–20.
  • Verhoogt H, Ramsay BA, Favis BD. Polymer blends containing poly(3-hydroxyalkanoates). Polymer. 1994;35(24):5155–5169.
  • Blaker JJ, Lee KY, Bismarck A. Hierarchical composites made entirely from renewable resources. J Biobased Mater Bioenergy. 2011;5:1–16.
  • Morton W, Hearle JWS. Physical properties of textile fibres. Manchester: The Textile Institute; 1993.
  • Carus M, Eder A, Dammer L, et al. Wood-plastic composites (WPC) and natural fibre composites (NFC): European and Global Markets 2012 and future trends in automotive and construction. Germany: nova-Institut GmbH; 2015.
  • Schuh TG. Renewable materials for automotive applications. Stuttgart: Daimler-Chrysler AG; 2005.
  • Anon. Ten Alps Communications Ltd t/a Sovereign Publications. Rieter Automotive Systems; 2008. [cited 2016 Dec 16]. Available from: http://www.compositesworld.com/articles/jec-composites-2005-show-review
  • Winfield AG. Jute reinforced polyester projects for unido-government of India. Plast Rubber Int. 1979;4(1):23–28.
  • Faruk O, Bledzki AK, Fink H-P, et al. Progress report on natural fiber reinforced composites. Macromol Mater Eng. 2014;299(1):9–26.
  • Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics?. Compos Sci Technol. 2003;63(9):1259–1264.
  • Corbiere-Nicollier T, Gfeller-Laban B, Lundquist L, et al. Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour Conserv Recy. 2001;33(4):267–287.
  • Gindl W, Keckes J. Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol. 2004;64(15):2407–2413.
  • Karnani R, Krishnan M, Narayan R. Biofiber-reinforced polypropylene composites. Polym Eng Sci. 1997;37(2):476–483.
  • Bismarck A, Burgstaller C, Lee K-Y, et al. Recent progress in natural fibre composites: selected papers from the 3rd international conference on Innovative Natural Fibre Composites for Industrial Applications, Ecocomp 2011 and BEPS 2011. J Biobased Mater Bioenergy. 2012;6(4):343–345.
  • Sergeev VP, Chuvashov YN, Galushchak OV, et al. Basalt fibers - a reinforcing filler for composites. Powder Metal Metal Ceram. 1994;33(9–10):555–557.
  • Hardy JG, Scheibel TR. Composite materials based on silk proteins. Prog Polym Sci. 2010;35(9):1093–1115.
  • Hong CK, Wool RP. Development of a bio-based composite material from soybean oil and keratin fibers. J Appl Polym Sci. 2005;95(6):1524–1538.
  • Shubhra QTH, Saha M, Alam AKMM, et al. Effect of matrix modification by natural rubber on the performance of silk-reinforced polypropylene composites. J Reinf Plast Compos. 2010;29(22):3338–3344.
  • Shah DU, Porter D, Vollrath F. Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Compos Sci Technol. 2014;101:173–183.
  • Bismarck A, Mishra S, Lampke T, et al. Plant fibers as reinforcement for green composites. In: Mohanty AK, et al., editors. Natural fibers, biopolymers and biocomposites. Boca Raton (FL): CRC Press; 2005. p. 37–108.
  • Mohanty AK, Misra M, Drzal LT, et al. Natural fibers, biopolymers, and biocomposites. In: Mohanty AK, Misra M, Drzal LT, editors. An introduction. London: CRC Press; 2005. p. 1–36.
  • Shah DU. Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci. 2013;48(18):6083–6107.
  • Najafi SK. Use of recycled plastics in wood plastic composites - a review. Waste Manage. 2013;33(9):1898–1905.
  • Ashori A. Wood-plastic composites as promising green-composites for automotive industries!. Bioresour Technol. 2008;99(11):4661–4667.
  • Faruk O, Bledzki AK, Matuana LM. Microcellular foamed wood-plastic composites by different processes: a review. Macromol Mater Eng. 2007;292(2):113–127.
  • Kumar V, Tyagi L, Sinha S. Wood flour-reinforced plastic composites: a review. Rev Chem Eng. 2011;27(5–6):253–264.
  • Lee K-Y, Delille A, Bismarck A. Greener surface treatments of natural fibres for the production of renewable composite materials. In: Kalia S, et al., editors. Cellulose fibers: bio- and nano-polymer composites. Berlin: Springer-Verlag; 2011. p. 155–178.
  • Riedel U, Nickel J. Natural fibre-reinforced biopolymers as construction materials - new discoveries. Angew Makromol Chem. 1999;272:34–40.
  • Saheb DN, Jog JP. Natural fiber polymer composites: a review. Adv Polym Technol. 1999;18(4):351–363.
  • Tripp VW, Rollins ML. Morphology and chemical composition of certain components of cotton fiber cell wall. Anal Chem. 1952;24(11):1721–1728.
  • Holt C, Mackie W, Sellen DB. Degree of polymerization and polydispersity of native cellulose. J Poly Sci C Polym Sympos. 1972;1973(42):1505–1512.
  • Holtzer AM, Benoit H, Doty P. The molecular configuration and hydrodynamic behavior of cellulose trinitrate. J Phys Chem. 1954;58(8):624–634.
  • Hunt ML, Newman S, Scheraga HA, et al. Dimensions and hydrodynamic properties of cellulose trinitrate molecules in dilute solutions. J Phys Chem. 1956;60(9):1278–1290.
  • Levi MP, Sellen DB. The degree-of-polymerization and polydispersity of cellulose in beechwood, and its radial variation across fibre cell-walls. Carbohydr Res. 1967;5(3):351–355.
  • Schurz J, Tritthart H. Supermolecular gels in cellulose nitrate solutions. Polymer. 1966;7(9):475–477.
  • Sellen DB, Levi MP. A light scattering and viscosity study of polydispersity changes in the cellulose of wood when subjected to fungal attack. Polymer. 1967;8(C):633–642.
  • Huque MM, Goring DAI, Mason SG. Molecular size and configuration of cellulose trinitrate in solution. Can J Chem. 1958;36(6):952–969.
  • Segal L. Fractionation of cellulose trinitrates by gel permeation chromatography. J Pol Sci B Poly Lett. 1966;4(12):1011–1018.
  • Franco PJH, Valadez-González A. Fiber-matrix adhesion in natural fiber composites. In: Mohanty AK, et al., editors. Natural fibers, biopolymers and biocomposites. Boca Raton (FL): CRC Press; 2005. p. 177–230.
  • Bismarck A, Mishra S, Lampke T, et al. Plant fibers as reinforcement for green composites. In: Mohanty AK, et al., editors. Natural fibers, biopolymers and biocomposites. Boca Raton (FL): CRC Press; 2005. p. 37–108.
  • Scheller HV, Ulvskov P. Hemicelluloses. Ann Rev Plant Biol. 2010;61:263–289.
  • Olesen PO, Plackett DV. Perspectives on the performance of natural plant fibres. Copenhagen: Plant Fibre Laboratory, Royal Veterinary and Agricultural University.
  • Kumar MNS, Mohanty AK, Erickson L, et al. Lignin and its applications with polymers. J Biobased Mater Bioenergy. 2009;3(1):1–24.
  • Duval A, Lawoko M. A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym. 2014;85:78–96.
  • Mohanty AK, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng. 2000;276(3–4):1–24.
  • Koronis G, Silva A, Fontul M. Green composites: a review of adequate materials for automotive applications. Compos B Eng. 2013;44(1):120–127.
  • McLaughlin EC, Tait RA. Fracture mechanism of plant fibres. J Mater Sci. 1980;15(1):89–95.
  • Mukherjee PS, Satyanarayana KG. An empirical evaluation of structure-property relationships in natural fibres and their fracture behaviour. J Mater Sci. 1986;21(12):4162–4168.
  • Nishino T. Natural fibre sources. In: Baillie CA, editor. Green composites: polymer composites and the environment. Cambridge: Woodhead Publishing; 2004. p. 49–80.
  • Dodd RB, Akin DE. Recent developments in retting and measurement of fiber quality in natural fibers: pros and cons. In: Mohanty AK, et al., editors. Natural fibers, biopolymers and biocomposites. Boca Raton (FL): CRC Press; 2005. p. 141–158.
  • Sharma HSS, Sumere CFv. Enzyme treatment of flax. Genet Eng Biotechnol. 1992;12(2):19–23.
  • USDA. Industrial hemp in the United States: status and market potential. Washington (DC): Department of Agriculture; 2000. Available from: http://www.globalhemp.com/Archives/Government_Research/USDA/ages001Ee.pdf
  • Akin DE, Foulk JA, Dodd RB, et al. Enzyme-retting of flax and characterization of processed fibers. J Biotechnol. 2001;89(2–3):193–203.
  • Shah DU, Nag RK, Clifford MJ. Why do we observe significant differences between measured and ‘back-calculated’ properties of natural fibres?. Cellulose. 2016;23(3):1481–1490.
  • Thomason JL, Carruthers J. Natural fibre cross sectional area, its variability and effects on the determination of fibre properties. J Biobased Mater Bioenergy. 2012;6(4):424–430.
  • Thomason JL, Carruthers J, Kelly J, et al. Fibre cross-section determination and variability in sisal and flax and its effects on fibre performance characterisation. Compos Sci Technol. 2011;71(7):1008–1015.
  • Lamy B, Baley C. Stiffness prediction of flax fibers-epoxy composite materials. J Mater Sci Lett. 2000;19(11):979–980.
  • Hänninen T, Michud A, Hughes M. Kink bands in bast fibres and their effects on mechanical properties. Plast Rubber Compos. 2011;40(6/7):307–310.
  • Hänninen T, Thygesen A, Mehmood S, et al. Mechanical processing of bast fibres: the occurrence of damage and its effect on fibre structure. Ind Crop Prod. 2012;39:7–11.
  • Baley C. Influence of kink bands on the tensile strength of flax fibers. J Mater Sci. 2004;39(1):331–334.
  • Duc AL, Vergnes B, Budtova T. Polypropylene/natural fibres composites: analysis of fibre dimensions after compounding and observations of fibre rupture by rheo-optics. Compos A Appl Sci Manuf. 2011;42(11):1727–1737.
  • Hill CAS, Norton A, Newman G. The water vapor sorption behavior of natural fibers. J Appl Polym Sci. 2009;112(3):1524–1537.
  • Bismarck A, Mohanty AK, Aranberri-Askargorta I, et al. Surface characterization of natural fibers; surface properties and the water up-take behavior of modified sisal and coir fibers. Green Chem. 2001;3(2):100–107.
  • Juntaro J, Pommet M, Kalinka G, et al. Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater. 2008;20(16):3122–3126.
  • Mukherjee PS, Satyanarayana KG. Structure and properties of some vegetable fibers. Part 1 sisal fiber. J Mater Sci. 1984;19(12):3925–3934.
  • Bismarck A, Aranberri-Askargorta I, Springer J, et al. Surface characterization of flax, hemp and cellulose fibers; surface properties and the water uptake behavior. Polym Compos. 2002;23(5):872–894.
  • Stamboulis A, Baillie CA, Garkhail SK, et al. Environmental durability of flax fibres and their composites based on polypropylene matrix. Appl Compos Mater. 2000;7(5):273–294.
  • Stamboulis A, Baillie CA, Peijs T. Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos A Appl Sci Manuf. 2001;32(8):1105–1115.
  • Mokhothu TH, John MJ. Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohydr Polym. 2015;131:337–354.
  • Célino A, Freour S, Jacquemin F, et al. The hygroscopic behavior of plant fibres: a review. Front Chem. 2014;1:1–12.
  • Assarar M, Scida D, El Mahi A, et al. Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: flax–fibres and glass–fibres. Mater Design. 2011;32(2):788–795.
  • Dan-mallam Y, Abdullah MZ, Yusoff PSMM. Mechanical properties of recycled Kenaf/Polyethylene Terephthalate (PET) fiber reinforced Polyoxymethylene (POM) hybrid composite. J Appl Polym Sci. 2014;131(3):39831.
  • Dhakal HN, Zhang ZY, Bennett N, et al. Effects of water immersion ageing on the mechanical properties of flax and jute fibre biocomposites evaluated by nanoindentation and flexural testing. J Compos Mater. 2014;48(11):1399–1406.
  • Pommet M, Juntaro J, Heng JYY, et al. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules. 2008;9(6):1643–1651.
  • Kalia S, Kaith BS, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites – a review. Polym Eng Sci. 2009;49(7):1253–1272.
  • La Mantia FP, Morreale M. Green composites: a brief review. Compos A Appl Sci Manuf. 2011;42(6):579–588.
  • Dittenber DB, GangaRao HVS. Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf. 2012;43(8):1419–1429.
  • Shahzad A. Hemp fiber and its composites – a review. J Compos Mater. 2012;46(8):973–986.
  • Bledzki AK, Fink HP, Specht K. Unidirectional hemp and flax EP- and PP-composites: influence of defined fiber treatments. J Appl Polym Sci. 2004;93(5):2150–2156.
  • Mishra S, Tripathy SS, Misra M, et al. Novel eco-friendly biocomposites: biofiber reinforced biodegradable polyester amide composites – fabrication and properties evaluation. J Reinf Plast Compos. 2002;21(1):55–70.
  • Wang B, Panigrahi S, Tabil L, et al. Effects of chemical treatments on mechanical and physical properties of flax fiber-reinforced rotationally molded composites. ASAE Annual International Meeting, 2004. p. 6745–6755.
  • Heß K, Trogus C, Ljubitsch N, et al. Ueber Quellungserscheinungen an Zellulosefasern. Kolloid-Zeitschrift. 1930;51(1):89–96.
  • Mukherjee RR, Woods HJ. Mercerization of jute. Nature. 1950;165(4203):818–819.
  • Ku H, Wang H, Pattarachaiyakoop N, et al. A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng. 2011;42(4):856–873.
  • Bledzki AK, Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci. 1999;24(2):221–274.
  • Bledzki AK, Sperber VE, Faruk O. Rapra review report: natural and wood fiber reinforcement in polymers. Shrewsbury: Smithers Rapra; 2002.
  • Mishra S, Naik JB, Patil YP. The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Compos Sci Technol. 2000;60(9):1729–1735.
  • Gassan J, Bledzki AK. The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Compos A Appl Sci Manuf. 1997;28(12):1001–1005.
  • Tserki V, Zafeiropoulos NE, Simon F, et al. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos A. 2005;36(8):1110–1118.
  • Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, et al. Chemical modification of henequen fibers with an organosilane coupling agent. Compos B Eng. 1999;30(3):321–331.
  • Mehta G, Drzal LT, Mohanty AK, et al. Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J Appl Polym Sci. 2006;99(3):1055–1068.
  • Ganan P, Garbizu S, Llano-Ponte R, et al. Surface modification of sisal fibers: effects on the mechanical and thermal properties of their epoxy composites. Polym Compos. 2005;26(2):121–127.
  • Pothan LA, Thomas S, Groeninckx G. The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Compos A. 2006;37(9):1260–1269.
  • George J, Janardhan R, Anand JS, et al. Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer. 1996;37(24):5421–5431.
  • Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ. 2007;15(1):25–33.
  • John MJ, Anandjiwala RD. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos. 2008;29(2):187–207.
  • Cichocki FR, Thomason JL. Thermoelastic anisotropy of a natural fiber. Compos Sci Technol. 2002;62(5):669–678.
  • Baley C, Perrot Y, Busnel F, et al. Transverse tensile behaviour of unidirectional plies reinforced with flax fibres. Mater Lett. 2006;60(24):2984–2987.
  • Miyagawa H, Mase T, Sato C, et al. Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon. 2006;44(10):2002–2008.
  • Maurin R, Davies P, Baral N, et al. Transverse properties of carbon fibres by nano-indentation and micro-mechanics. Appl Compos Mater. 2008;15(2):61–73.
  • Thomason JL. Why are natural fibres failing to deliver on composite performance? Conference Proceedings of the 17th International Conference of Composite Materials, Edinburgh; 2009.
  • Nishino T, Matsuda I, Hirao K. All-cellulose composite. Macromolecules. 2004;37(20):7683–7687.
  • Juntaro J, Pommet M, Mantalaris A, et al. Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos Interfaces. 2007;14(7–9):753–762.
  • Lee K-Y, Ho KKC, Schlufter K, et al. Hierarchical composites reinforced with robust short sisal fibre preforms utilising bacterial cellulose as binder. Compos Sci Technol. 2012;72(13):1479–1486.
  • Lee K-Y, Bharadia P, Blaker JJ, et al. Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos A. 2012;43(11):2065–2074.
  • Van de Weyenberg I, Ivens J, De Coster A, et al. Influence of processing and chemical treatment of flax fibres on their composites. Compos Sci Technol. 2003;63(9):1241–1246.
  • Rong MZ, Zhang MQ, Liu Y, et al. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol. 2001;61(10):1437–1447.
  • Rouison D, Sain M, Couturier M. Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Technol. 2004;64(5):629–644.
  • Roulson D, Sain M, Couturier M. Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Compos Sci Technol. 2006;66(7–8):895–906.
  • Oksman K. High quality flax fibre composites manufactured by the resin transfer moulding process. J Reinf Plast Compos. 2001;20(7):621–627.
  • Hautala M, Pasila A, Pirila J. Use of hemp and flax in composite manufacture: a search for new production methods. Compos A. 2004;35(1):11–16.
  • Faruk O, Bledzki AK, Fink H-P, et al. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci. 2012;37(11):1552–1596.
  • Oksman K. Mechanical properties of natural fibre mat reinforced thermoplastic. Appl Compos Mater. 2000;7(5–6):403–414.
  • Garkhail SK, Heijenrath RWH, Peijs T. Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene. Appl Compos Mater. 2000;7(5–6):351–372.
  • Van de Velde K, Kiekens P. Effect of Flax/PP panel process parameters on resulting composite properties. J Thermoplast Compos Mater. 2003;16(5):413–431.
  • Wielage B, Lampke T, Utschick H, et al. Processing of natural-fibre reinforced polymers and the resulting dynamic-mechanical properties. J Mater Process Technol. 2003;139(1–3):140–146.
  • Zampaloni M, Pourboghrat F, Yankovich SA, et al. Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos A. 2007;38(6):1569–1580.
  • Wielage B, Lampke T, Marx G, et al. Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta. 1999;337(1–2):169–177.
  • Madsen B, Lilholt H. Physical and mechanical properties of unidirectional plant fibre composites – an evaluation of the influence of porosity. Compos Sci Technol. 2003;63(9):1265–1272.
  • Bledzki AK, Letman M, Viksne A, et al. A comparison of compounding processes and wood type for wood fibre – PP composites. Compos A. 2005;36(6):789–797.
  • Sain M, Suhara P, Law S, et al. Interface modification and mechanical properties of natural fiber-polyolefin composite products. J Reinf Plast Compos. 2005;24(2):121–130.
  • Yang H-S, Wolcott MP, Kim H-S, et al. Properties of lignocellulosic material filled polypropylene bio-composites made with different manufacturing processes. Polymer Testing. 2006;25(5):668–676.
  • Balasuriya PW, Ye L, Mai YW. Mechanical properties of wood flake-polyethylene composites. Part I: effects of processing methods and matrix melt flow behaviour. Compos A. 2001;32(5):619–629.
  • Wang Y, Chan HC, Lai SM, et al. Twin screw compounding of PE-HD wood flour composites. Int Polym Process. 2001;16(2):100–107.
  • Burgstaller C. A comparison of processing and performance for lignocellulosic reinforced polypropylene for injection moulding applications. Compos B Eng. 2014;67:192–198.
  • Ganster J, Fink HP, Pinnow M. High-tenacity man-made cellulose fibre reinforced thermoplastics – injection moulding compounds with polypropylene and alternative matrices. Compos A. 2006;37(10):1796–1804.
  • Fink HP, Ganster J, Uihlein K, et al. Rieselfähige pellets auf basis cellulosischer spinnfasern, verfahren zu deren herstellung und deren verwendung. Google Patents; 2006.
  • De Bruyne NA. Plastic materials for aircraft construction. J Royal Aeronaut Soc. 1937;41(319):523–590.
  • De Bruyne NA. Plastic progress: some further developments in the manufacture and use of synthetic materials for aircraft constructions. In: Flight and the aircraft engineer. Waterloo: Royal Aero Club; 1939. p. 41–43.
  • Shurtleff W, Aoyagi A. Henry Ford and his researchers – history of their work with soybeans, soyfoods and chemurgy (1928-2011): extensively annotated bibliography and sourcebook. Lafayette (CA): Soyinfo Center; 2011.
  • T GE, Ford H. Automobile chassis construction. Google Patents; 1942.
  • Wu Q, Chi K, Wu Y, et al. Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells. Mater Des. 2014;60:334–342.
  • Yam RCM, Mak DMT. A cleaner production of rice husk-blended polypropylene eco-composite by gas-assisted injection moulding. J Clean Prod. 2014;67:277–284.
  • Zimniewska M, Stevenson A, Sapieja A, et al. Linen fibres based reinforcements for laminated composites. Fibres Text East Eur. 2014;22(3):103–108.
  • Arao Y, Fujiura T, Itani S, et al. Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos B Eng. 2015;68:200–206.
  • Mihai M, Chapleau N, Denault J. Processing-formulation-performance relationships of polypropylene/short flax fiber composites. J Appl Polym Sci. 2015;132(9):41528.
  • Nabinejad O, Sujan D, Rahman ME, et al. Effect of oil palm shell powder on the mechanical performance and thermal stability of polyester composites. Mater Des. 2015;65:823–830.
  • Paul V, Kanny K, Redhi GG. Mechanical, thermal and morphological properties of a bio-based composite derived from banana plant source. Compos A. 2015;68:90–100.
  • Siengchin S. Reinforced flax mat/modified Polylactide (PLA) composites: impact, thermal, and mechanical properties. Mech Compos Mater. 2014;50(2):257–266.
  • Singh AA, Palsule S. Coconut fiber reinforced chemically functionalized high-density polyethylene (CNF/CF-HDPE) composites by Palsule process. J Compos Mater. 2014;48(29):3673–3684.
  • Tawakkal ISMA, Cran MJ, Bigger SW. Effect of Kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/Kenaf/thymol composites. Ind Crop Prod. 2014;61:74–83.
  • Toupe JL, Trokourey A, Rodrigue D. Simultaneous optimization of the mechanical properties of postconsumer natural fiber/plastic composites: phase compatibilization and quality/cost ratio. Polym Compos. 2014;35(4):730–746.
  • Virk AS, Hall W, Summerscales J. Microstructural characterisation of jute/epoxy quasi-unidirectional composites. Appl Compos Mater. 2014;21(6):885–903.
  • Wisittanawat U, Thanawan S, Amornsakchai T. Mechanical properties of highly aligned short pineapple leaf fiber reinforced – nitrile rubber composite: effect of fiber content and bonding agent. Polym Test. 2014;35:20–27.
  • Wu C-S, Hsu Y-C, Liao H-T, et al. Characterization and biocompatibility of chestnut shell fiber-based composites with polyester. J Appl Polym Sci. 2014;131(17):40730.
  • Perez-Fonseca AA, Robledo-Ortiz JR, Ramirez-Arreola DE, et al. Effect of hybridization on the physical and mechanical properties of high density polyethylene-(pine/agave) composites. Mater Des. 2014;64:35–43.
  • Piekarska K, Piorkowska E, Krasnikova N, et al. . Polylactide composites with waste cotton fibers: thermal and mechanical properties. Polym Compos. 2014;35(4):747–751.
  • Poilane C, Cherif ZE, Richard F, et al. Polymer reinforced by flax fibres as a viscoelastoplastic material. Compos Struct. 2014;112:100–112.
  • Prabu VA, Uthayakumar M, Manikandan V, et al. Influence of redmud on the mechanical, damping and chemical resistance properties of banana/polyester hybrid composites. Mater Des. 2014;64:270–279.
  • Puglia D, Santulli C, Sarasini F, et al. Thermal and mechanical characterisation of Phormium tenax-reinforced polypropylene composites. J Thermoplast Compos Mater. 2014;27(11):1493–1503.
  • Raghavendra G, Ojha S, Acharya SK, et al. Jute fiber reinforced epoxy composites and comparison with the glass and neat epoxy composites. J Compos Mater. 2014;48(20):2537–2547.
  • Riyapan D, Riyajan S-A, Tangboriboonrat P. Preparation of polymer composite: low natural rubber, cassava starch and palm fiber. In: Nakason C, Thitithammawong A, Wisunthorn S, editors. Advanced materials research. Zurich: Trans Tech Publications Ltd; 2014. p. 314–317.
  • Sarifuddin N, Ismail H, Ahmad Z. Incorporation of Kenaf core fibers into low density polyethylene/thermoplastic sago starch blends exposed to natural weathering. Mol Cryst Liq Cryst. 2014;603(1):180–193.
  • Sathishkumar TP, Navaneethakrishnan P, Shankar S, et al. Investigation of chemically treated randomly oriented sansevieria ehrenbergii fiber reinforced isophthallic polyester composites. J Compos Mater. 2014;48(24):2961–2975.
  • Oumer AN, Bachtiar D. Modeling and experimental validation of tensile properties of sugar palm fiber reinforced high impact polystyrene composites. Fiber Polym. 2014;15(2):334–339.
  • Moothoo J, Ouagne P, Allaoui S, et al. Vegetal fibre composites for semi-structural applications in the medical environment. J Reinf Plast Compos. 2014;33(19):1823–1834.
  • Monteiro SN, Margem FM, Altoe GR, et al. Tensile strength of polyester composites reinforced with thinner buriti fibers. 20th Brazilian Conference on Materials Science and Engineering, Joinville, Brazil; 2012.
  • Merkel K, Rydarowski H, Kazimierczak J, et al. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibres isolated from waste plant biomass such as hemp. Compos B Eng. 2014;67:138–144.
  • Marrot L, Bourmaud A, Bono P, et al. Multi-scale study of the adhesion between flax fibers and biobased thermoset matrices. Mater Des. 2014;62:47–56.
  • Mahmoudi N, Hebbar N. Study of mechanical properties of a composite-based plant fibre of the palm and thermoplastic matrices (PP). J Compos Mater. 2014;48(3):291–299.
  • Mahjoub R, Yatim JM, Sam ARM, et al. Characteristics of continuous unidirectional Kenaf fiber reinforced epoxy composites. Mater Des. 2014;64:640–649.
  • Le AT, Gacoin A, Li A, et al. Experimental investigation on the mechanical performance of starch-hemp composite materials. Constr Build Mater. 2014;61:106–113.
  • Kumar SMS, Duraibabu D, Subramanian K. Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Mater Des. 2014;59:63–69.
  • Kong C, Park H, Lee J. Study on structural design and analysis of flax natural fiber composite tank manufactured by vacuum assisted resin transfer molding. Mater Lett. 2014;130:21–25.
  • Kommula VP, Reddy KO, Shukla M, et al. Mechanical properties, water absorption, and chemical resistance of napier grass fiber strand-reinforced epoxy resin composites. Int J Polym Anal Chem. 2014;19(8):693–708.
  • Khalfallah M, Abbes B, Abbes F, et al. Innovative flax tapes reinforced Acrodur biocomposites: a new alternative for automotive applications. Mater Des. 2014;64:116–126.
  • Kern WT, Kim W, Argento A, et al. Mechanical behavior of microcellular, natural fiber reinforced composites at various strain rates and temperatures. Polym Test. 2014;37:148–155.
  • Kengkhetkit N, Amornsakchai T. A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Mater Des. 2014;55:292–299.
  • Kang JT, Park SH, Kim SH. Improvement in the adhesion of bamboo fiber reinforced polylactide composites. J Compos Mater. 2014;48(21):2567–2577.
  • Kalapakdee A, Amornsakchai T. Mechanical properties of preferentially aligned short pineapple leaf fiber reinforced thermoplastic elastomer: effects of fiber content and matrix orientation. Polym Test. 2014;37:36–44.
  • Islam MS, Miao M. Optimising processing conditions of flax fabric reinforced Acrodur biocomposites. J Compos Mater. 2014;48(26):3281–3292.
  • Gu Y, Tan X, Yang Z, et al. Hot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion molding. Mater Des. 2014;56:852–861.
  • Fu W, Xu X, Wu H. Mechanical and biodegradable properties of L-lactide-grafted sisal fiber reinforced polylactide composites. J Reinf Plast Compos. 2014;33(22):2034–2045.
  • Benyahia A, Merrouche A. Effect of chemical surface modifications on the properties of alfa fiber-polyester composites. Polym-Plast Technol Eng. 2014;53(4):403–410.
  • Benyahia A, Merrouche A, Rahmouni ZEA, et al. Study of the alkali treatment effect on the mechanical behavior of the composite unsaturated polyester-Alfa fibers. Mech Ind. 2014;15(1):69–73.
  • Bin Saiman MP, Bin Wahab MS, Bin Wahit MU. The effect of yarn linear density on mechanical properties of plain Woven Kenaf reinforced unsaturated polyester composite. In: Ismail AE, Mohd Nor NH, Mohd Ali MF, et al., editors. Applied mechanics and materials. Zurich: Trans Tech Publications Ltd; 2014. p. 962–966.
  • Bodur MS, Bakkal M, Savas M, et al. A new approach for the development of textile waste cotton reinforced composites (T-FRP): laminated hybridization vs. coupling agents. J Polym Eng. 2014;34(7):639–648.
  • Crossley R, Schubel P, Stevenson A. Furan matrix and flax fibre as a sustainable renewable composite: mechanical and fire-resistant properties in comparison to phenol, epoxy and polyester. J Reinf Plast Compos. 2014;33(1):58–68.
  • Dan-Mallam Y, Abdullah MZ, Yusoff PSMM. The effect of hybridization on mechanical properties of woven Kenaf fiber reinforced polyoxymethylene composite. Polym Compos. 2014;35(10):1900–1910.
  • El-Sabbagh AMM, Steuernagel L, Meiners D, et al. Effect of extruder elements on fiber dimensions and mechanical properties of bast natural fiber polypropylene composites. J Appl Polym Sci. 2014;131(12):40435.
  • El-Shekeil YA, Sapuan SM, Jawaid M, et al. Influence of fiber content on mechanical, morphological and thermal properties of Kenaf fibers reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites. Mater Des. 2014;58:130–135.
  • Ahmed AS, Islam MS, Hassan A, et al. Impact of succinic anhydride on the properties of jute fiber/polypropylene biocomposites. Fiber Polym. 2014;15(2):307–314.
  • Baets J, Plastria D, Ivens J, et al. Determination of the optimal flax fibre preparation for use in unidirectional flax-epoxy composites. J Reinf Plast Compos. 2014;33(5):493–502.
  • Baghaei B, Skrifvars M, Rissanen M, et al. Mechanical and thermal characterization of compression moulded polylactic acid natural fiber composites reinforced with hemp and lyocell fibers. J Appl Polym Sci. 2014;131(15):40534.
  • Sathishkumar TP, Navaneethakrishnan P, Shankar S, et al. Investigation of chemically treated longitudinally oriented snake grass fiber-reinforced isophthallic polyester composites. J Reinf Plast Compos. 2013;32(22):1698–1714.
  • Sharma NK, Kumar V. Studies on properties of banana fiber reinforced green composite. J Reinf Plast Compos. 2013;32(8):525–532.
  • Thakur VK, Singha AS, Thakur MK. Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Chem. 2013;18(1):64–72.
  • Xue D, Hu H. Mechanical properties of biaxial weft-knitted flax composites. Mater Des. 2013;46:264–269.
  • Paukszta D, Mankowski J, Kolodziej J, et al. Polypropylene (PP) composites reinforced with stinging nettle (Utrica dioica L.) fiber. J Nat Fiber. 2013;10(2):147–158.
  • Popa MI, Pernevan S, Sirghie C, et al. Mechanical, thermophysical and fire properties of sansevieria fiber-reinforced polyester composites. J Chem. 2013;2013:343068.
  • Ramanaiah K, Prasad AVR, Reddy KHC. Mechanical, thermophysical and fire properties of sansevieria fiber-reinforced polyester composites. Mater Des. 2013;49:986–991.
  • Ramanaiah K, Prasad AVR, Reddy KHC. Mechanical and thermo-physical properties of fish tail palm tree natural fiber-reinforced polyester composites. Int J Polym Anal Chem. 2013;18(2):126–136.
  • Robertson N-LM, Nychka JA, Alemaskin K, et al. Mechanical performance and moisture absorption of various natural fiber reinforced thermoplastic composites. J Appl Polym Sci. 2013;130(2):969–980.
  • Rozite L, Varna J, Joffe R, et al. Nonlinear behavior of PLA and lignin-based flax composites subjected to tensile loading. J Thermoplast Compos Mater. 2013;26(4):476–496.
  • Sarasini F, Puglia D, Fortunati E, et al. Effect of fiber surface treatments on thermo-mechanical behavior of poly(lactic acid)/phormium tenax composites. J Polym Environ. 2013;21(3):881–891.
  • Sathishkumar TP, Navaneethakrishnan P, Shankar S, et al. Mechanical properties of randomly oriented snake grass fiber with banana and coir fiber-reinforced hybrid composites. J Compos Mater. 2013;47(18):2181–2191.
  • Kannan TG, Wu CM, Cheng KB, et al. Effect of reinforcement on the mechanical and thermal properties of flax/polypropylene interwoven fabric composites. J Ind Text. 2013;42(4):417–433.
  • Karaduman Y, Gokcan D, Onal L. Effect of enzymatic pretreatment on the mechanical properties of jute fiber-reinforced polyester composites. J Compos Mater. 2013;47(10):1293–1302.
  • Khan GMA, Shams MSA, Kabir MR, et al. Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites. J Appl Polym Sci. 2013;128(2):1020–1029.
  • Kobayashi S, Takada K. Processing of unidirectional hemp fiber reinforced composites with micro-braiding technique. Compos A. 2013;46:173–179.
  • Lebrun G, Couture A, Laperriere L. Tensile and impregnation behavior of unidirectional hemp/paper/epoxy and flax/paper/epoxy composites. Compos Struct. 2013;103:151–160.
  • Maheswari CU, Reddy KO, Muzenda E, et al. Mechanical properties and chemical resistance of short tamarind fiber/unsaturated polyester composites: influence of fiber modification and fiber content. Int J Polym Anal Chem. 2013;18(7):520–533.
  • Martin N, Mouret N, Davies P, et al. Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind Crop Prod. 2013;49:755–767.
  • Mir SS, Nafsin N, Hasan M, et al. Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Mater Des. 2013;52:251–257.
  • Bisanda ETN, Ansell MP. Properties of sisal-cnsl composites. J Mater Sci. 1992;27(6):1690–1700.
  • Deng S, Beehag A, Hillier W, et al. Kenaf-polypropylene composites manufactured from blended fiber mats. J Reinf Plast Compos. 2013;32(16):1198–1210.
  • Fernandes EM, Correlo VM, Mano JF, et al. Natural fibres as reinforcement strategy on cork-polymer composites. In: Pinto AMP, et al., editors. Advanced materials forum VI, Pts 1 and 2. Zurich: Trans Tech Publications Ltd; 2013. p. 373–378.
  • Fernandes EM, Mano JF, Reis RL. Hybrid cork-polymer composites containing sisal fibre: morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Compos Struct. 2013;105:153–162.
  • Gunning MA, Geever LM, Killion JA, et al. Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites. Polymer Testing. 2013;32(8):1603–1611.
  • Hussein MA, Rozman HD, Tay GS. The effect of Kenaf fibre loadings on the properties of UV-cured unsaturated polyester composites. J Reinf Plast Compos. 2013;32(14):1062–1071.
  • Jayaramudu J, Reddy GSM, Varaprasad K, et al. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites. Carbohydr Polym. 2013;93(2):622–627.
  • Kaiser MR, Anuar HB, Samat NB, et al. Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran Polym J. 2013;22(2):123–131.
  • Chen HL, Porter RS. Composite of polyethylene and Kenaf, a natural cellulose fiber. J Appl Polym Sci. 1994;54(11):1781–1783.
  • Costa F, D'Almeida JRM. Effect of water absorption on the mechanical properties of sisal and jute fiber composites. Polym Plast Technol Eng. 1999;38(5):1081–1094.
  • Dash BN, Rana AK, Mishra HK, et al. Novel, low-cost jute-polyester composites. Part 1: processing, mechanical properties, and SEM analysis. Polym Compos. 1999;20(1):62–71.
  • Devi LU, Bhagawan SS, Thomas S. Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci. 1997;64(9):1739–1748.
  • Wollerdorfer M, Bader H. Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crop Prod. 1998;8(2):105–112.
  • Bourmaud A, Ausias G, Lebrun G, et al. Observation of the structure of a composite polypropylene/flax and damage mechanisms under stress. Ind Crop Prod. 2013;43:225–236.
  • Coroller G, Lefeuvre A, Le Duigou A, et al. Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite. Compos A. 2013;51:62–70.
  • Reddy KRN, Rao DKN, Rao KGK, et al. Studies on woven century fiber polyester composites. J Compos Mater. 2012;46(23):2919–2933.
  • Sathishkumar TP, Navaneethakrishnan P, Shankar S. Tensile and flexural properties of snake grass natural fiber reinforced isophthallic polyester composites. Compos Sci Technol. 2012;72(10):1183–1190.
  • Seki Y, Sarikanat M, Ezan MA. Effect of siloxane treatment of jute fabric on the mechanical and thermal properties of jute/HDPE. J Reinf Plast Compos. 2012;31(15):1009–1016.
  • Venkateshwaran N, Elayaperumal A, Sathiya GK. Prediction of tensile properties of hybrid-natural fiber composites. Compos B Eng. 2012;43(2):793–796.
  • Wang X, Cui Y, Zhang H, et al. Effects of methyl methacrylate grafting and polyamide coating on the interfacial behavior and mechanical properties of jute-fiber-reinforced polypropylene composites. J Vinyl Addit Technol. 2012;18(2):113–119.
  • Wu Z, Wei C, Lv L. Preparation and mechanical properties of cotton stalk bast fibers reinforced polypropylene composites. In: Chen W, Liu X, Dai P, et al., editors. Advanced materials research. Zurich: Trans Tech Publications; 2012. p. 929–932.
  • Wu Z, Wei C, Tian Z. Preparation and mechanical properties of cotton stalk bast fibers reinforced polylactic acid biodegradable composites. In: Zeng J, Kim Y-H, Chen Y, editors. Advanced materials research. Zurich: Trans Tech Publications Ltd; 2012. p. 1367–1371.
  • Yang Y, Murakami M, Hamada H. Molding method, thermal and mechanical properties of jute/PLA injection molding. J Polym Environ. 2012;20(4):1124–1133.
  • Fischer H, Werwein E, Graupner N. Nettle fibre (Urtica dioica L.) reinforced poly(lactic acid): a first approach. J Compos Mater. 2012;46(24):3077–3087.
  • Haque MM, Ali ME, Hasan M, et al. Chemical treatment of coir fiber reinforced polypropylene composites. Ind Eng Chem Res. 2012;51(10):3958–3965.
  • Jiang AJ, Xu XQ, Wu HW. Study on the bio-composite from sisal fiber reinforced cellulose acetate. In: Cui C, Li Y, Yuan Z, editors. Advanced materials research. Zurich: Trans Tech Publications Ltd; 2012. p. 2301–2306.
  • Khan RA, Khan MA, Zaman HU, et al. Fabrication and characterization of jute fabric-reinforced PVC-based composite. J Thermoplast Compos Mater. 2012;25(1):45–58.
  • Lopez JP, Vilaseca F, Barbera L, et al. Processing and properties of biodegradable composites based on Mater-Bi (R) and hemp core fibres. Resour Conserv Recy. 2012;59:38–42.
  • Lu N, Swan RH Jr., Ferguson I. Composition, structure, and mechanical properties of hemp fiber reinforced composite with recycled high-density polyethylene matrix. J Compos Mater. 2012;46(16):1915–1924.
  • Nascimento DCO, Ferreira AS, Monteiro SN, et al. Studies on the characterization of piassava fibers and their epoxy composites. Compos A. 2012;43(3):353–362.
  • Porras A, Maranon A. Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric. Compos B Eng. 2012;43(7):2782–2788.
  • Rachini A, Mougin G, Delalande S, et al. Hemp fibers/polypropylene composites by reactive compounding: Improvement of physical properties promoted by selective coupling chemistry. Polym Degrad Stabil. 2012;97(10):1988–1995.
  • Ramanaiah K, Prasad AVR, Reddy KHC. Thermal and mechanical properties of waste grass broom fiber-reinforced polyester composites. Mater Des. 2012;40:103–108.
  • Reddy KO, Shukla M, Maheswari CU, et al. Evaluation of mechanical behavior of chemically modified Borassus fruit short fiber/unsaturated polyester composites. J Compos Mater. 2012;46(23):2987–2998.
  • Tran Huu N, Ogihara S, Kobayashi S. Interfacial, mechanical and thermal properties of coir fiber-reinforced poly(lactic acid) biodegradable composites. Adv Compos Mater. 2012;21(1):103–122.
  • Tran Huu N, Ogihara S, Nakatani H, et al. Mechanical and thermal properties and water absorption of jute fiber reinforced poly(butylene succinate) biodegradable composites. Adv Compos Mater. 2012;21(3):241–258.
  • Arrakhiz FZ, Elachaby M, Bouhfid R, et al. Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater Des. 2012;35:318–322.
  • Bajpai PK, Singh I, Madaan J. Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. J Reinf Plast Compos. 2012;31(24):1712–1724.
  • Christian SJ, Billington SL. Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications. Compos B Eng. 2011;42(7):1920–1928.
  • Dani J, Reddy JPD, Rajulu VA, et al. Green composites from wheat protein isolate and hildegardia populifolia natural fabric. Polym Compos. 2011;32(3):398–406.
  • De Rosa IM, Santulli C, Sarasini F. Mechanical characterization of untreated waste office paper/woven jute fabric hybrid reinforced epoxy composites. J Appl Polym Sci. 2011;119(3):1366–1373.
  • El-Shekeil YA, Sapuan SM, Abdan K, et al. Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des. 2012;40:299–303.
  • El-Shekeil YA, Sapuan SM, Khalina A, et al. Effect of alkali treatment on mechanical and thermal properties of Kenaf fiber-reinforced thermoplastic polyurethane composite. J Therm Anal Calorim. 2012;109(3):1435–1443.
  • Elzubair A, Miguez Suarez JC. Mechanical behavior of recycled polyethylene/piassava fiber composites. Mater Sci Eng A Struct Mater Prop Microstruct Process. 2012;557:29–35.
  • Farahani GN, Ahmad I, Mosadeghzad Z. Effect of fiber content, fiber length and alkali treatment on properties of Kenaf fiber/UPR composites based on recycled PET wastes. Polym-Plast Technol Eng. 2012;51(6):634–639.
  • Gohil PP, Shaikh AA. Cotton-epoxy composites: development and mechanical characterization. Key Eng Mater. 2011;471–472: 291–296.
  • Khalili SMR, Farsani RE, Rafiezadeh S. An experimental study on the behavior of PP/EPDM/JUTE composites in impact, tensile and bending loadings. J Reinf Plast Compos. 2011;30(16):1341–1347.
  • Prasad AVR, Rao KM. Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater Des. 2011;32(8–9):4658–4663.
  • Reddy N, Yang Y. Biocomposites developed using water-plasticized wheat gluten as matrix and jute fibers as reinforcement. Polym Int. 2011;60(4):711–716.
  • Reddy N, Yang Y. Completely biodegradable soyprotein-jute biocomposites developed using water without any chemicals as plasticizer. Ind Crop Prod. 2011;33(1):35–41.
  • Suardana NPG, Abdalla A, Yoon HC, et al. Characterization and possibility of coconut filter fibers as reinforcement for polymers. In: Mark Z, editor. Advanced materials research. Zurich: Trans Tech Publications Ltd; 2011. p. 1202–1207.
  • Way C, Dean K, Wu DY, et al. Polylactic acid composites utilising sequential surface treatments of lignocellulose: chemistry, morphology and properties. J Polym Environ. 2011;19(4):849–862.
  • Wirawan R, Sapuan SM, Yunus R, et al. The effects of thermal history on tensile properties of poly(vinyl chloride) and its composite with sugarcane bagasse. J Thermoplast Compos Mater. 2011;24(4):567–579.
  • Wood BM, Coles SR, Maggs S, et al. Use of lignin as a compatibiliser in hemp/epoxy composites. Compos Sci Technol. 2011;71(16):1804–1810.
  • Yang Y, Ota T, Morii T, et al. Mechanical property and hydrothermal aging of injection molded jute/polypropylene composites. J Mater Sci. 2011;46(8):2678–2684.
  • Zhang L, Huang G, Liu ZZ. Study on the natural fiber/pp wrap spun yarns reinforced thermoplastic composites. In: Zeng J, Li T, Ma S, editors. Advanced materials research. Zurich: Trans Tech Publications Ltd; 2011. p. 1470–1475.
  • Abdrahman MF, Zainudin ES. Properties of Kenaf filled unplasticized polyvinyl chloride composites. In: Sapuan SM, et al., editors. Composite science and technology, Pts 1 and 2. Los Angeles (CA): Sage; 2011. p. 507–512.
  • Anuar H, Hassan NA, Mohd Fauzey F, et al. Compatibilized PP/EPDM-Kenaf fibre composite using melt blending method. In: Hashmi MSJ, Mridha S, Naher S, editors. Advanced materials research. Zurich: Trans Tech Publications Ltd; 2011. p. 743–747.
  • Anuar H, Zuraida A. Improvement in mechanical properties of reinforced thermoplastic elastomer composite with Kenaf bast fibre. Compos B Eng. 2011;42(3):462–465.
  • Chaudhary SN, Borkar SP, Mantha SS. Sunnhemp fiber-reinforced waste polyethylene bag composites. J Reinf Plast Compos. 2010;29(15):2241–2252.
  • Deo C, Acharya SK. Effect of moisture absorption on mechanical properties of chopped natural fiber reinforced epoxy composite. J Reinf Plast Compos. 2010;29(16):2513–2521.
  • Ibrahim MM, Dufresne A, El-Zawawy WK, et al. Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohyd Polym. 2010;81(4):811–819.
  • Kumar R, Zhang L. Aligned ramie fiber reinforced arylated soy protein composites with improved properties. Compos Sci Technol. 2009;69(5):555–560.
  • Leao AL, Souza SF, Cherian BM, et al. Pineapple leaf fibers for composites and cellulose. Mol Cryst Liq Cryst. 2010;522:336–341.
  • Liang Z, Pan P, Zhu B, et al. Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci. 2010;115(6):3559–3567.
  • Oksman K, Mathew AP, Langstrom R, et al. The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol. 2009;69(11-12):1847–1853.
  • Paul SA, Joseph K, Mathew G, et al. Preparation of polypropylene fiber/banana fiber composites by novel commingling method. Polym Compos. 2010;31(5):816–824.
  • Phuong NT, Sollogoub C, Guinault A. Relationship between fiber chemical treatment and properties of recycled pp/bamboo fiber composites. J Reinf Plast Compos. 2010;29(21):3244–3256.
  • Rao KMM, Rao KM, Prasad AVR. Fabrication and testing of natural fibre composites: Vakka, sisal, bamboo and banana. Mater Des. 2010;31(1):508–513.
  • Shubhra QTH, Alam AKMM, Gafur MA, et al. Characterization of plant and animal based natural fibers reinforced polypropylene composites and their comparative study. Fiber Polym. 2010;11(5):725–731.
  • Singha AS, Thakur VK. Fabrication and characterization of S-cilliare fibre reinforced polymer composites. Bull Mater Sci. 2009;32(1):49–58.
  • Su S-K, Wu C-S. The processing and characterization of polyester/natural fiber composites. Polym-Plast Technol Eng. 2010;49(10):1022–1029.
  • Taib RM, Ramarad S, Ishak ZAM, et al. Properties of Kenaf fiber/polylactic acid biocomposites plasticized with polyethylene glycol. Polym Compos. 2010;31(7):1213–1222.
  • Tasdemir M, Akalin M, Kocak D, et al. Investigation of properties of polymer/textile fiber composites. Int J Polym Mater. 2010;59(3):200–214.
  • Tayommai T, Aht-Ong D. Natural fiber/PLA composites: mechanical properties and biodegradability by gravimetric measurement respirometric (GMR) system. In: Suttiruengwong S, Sricharussin W, editors. Advanced materials research. Zurich: Trans Tech Publications Ltd; 2010. p. 223–226.
  • Wang X-Y, Wang Q-H, Huang G. Research on mechanical behavior of the flax/polyactic acid composites. J Reinf Plast Compos. 2010;29(17):2561–2567.
  • Acha BA, Marcovich NE, Reboredo MM. Lignin in jute fabric-polypropylene composites. J Appl Polym Sci. 2009;113(3):1480–1487.
  • Alam MM, Ahmed T, Haque MM, et al. Mechanical properties of natural fiber containing polymer composites. Polym-Plast Technol Eng. 2009;48(1):110–113.
  • Ashori A, Nourbakhsh A. Polypropylene cellulose-based composites: the effect of bagasse reinforcement and polybutadiene isocyanate treatment on the mechanical properties. J Appl Polym Sci. 2009;111(4):1684–1689.
  • Bax B, Muessig J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol. 2008;68(7–8):1601–1607.
  • de Farias MA, Farina MZ, Pezzin APT, et al. Unsaturated polyester composites reinforced with fiber and powder of peach palm: mechanical characterization and water absorption profile. Mater Sci Eng C Biomim Supramol Syst. 2009;29(2):510–513.
  • El-Tayeb NSM. Development and characterisation of low-cost polymeric composite materials. Mater Des. 2009;30(4):1151–1160.
  • Graupner N. Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. J Mater Sci. 2008;43(15):5222–5229.
  • Habibi Y, Ei-Zawawy WK, Ibrahim MM, et al. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos Sci Technol. 2008;68(7–8):1877–1885.
  • Hagstrand PO, Oksman K. Mechanical properties and morphology of flax fiber reinforced melamine-formaldehyde composites. Polym Compos. 2001;22(4):568–578.
  • Khoathane MC, Vorster OC, Sadiku ER. Hemp fiber-reinforced 1-pentene/polypropylene copolymer: the effect of fiber loading on the mechanical and thermal characteristics of the composites. J Reinf Plast Compos. 2008;27(14):1533–1544.
  • Kim S-J, Moon J-B, Kim G-H, et al. Mechanical properties of polypropylene/natural fiber composites: comparison of wood fiber and cotton fiber. Polym Test. 2008;27(7):801–806.
  • Kunanopparat T, Menut P, Morel MH, et al. Reinforcement of plasticized wheat gluten with natural fibers: from mechanical improvement to deplasticizing effect. Compos A. 2008;39(5):777–785.
  • Ochi S. Mechanical properties of Kenaf fibers and Kenaf/PLA composites. Mech Mater. 2008;40(4–5):446–452.
  • Oksman K, Wallstrom L, Berglund LA, et al. Morphology and mechanical properties of unidirectional sisal-epoxy composites. J Appl Polym Sci. 2002;84(13):2358–2365.
  • Puglia D, Terenzi A, Barbosa SE, et al. Polypropylene-natural fibre composites. Analysis of fibre structure modification during compounding and its influence on the final properties. Compos Interfaces. 2008;15(2–3):111–129.
  • Shibata M, Takachiyo KI, Ozawa K, et al. Biodegradable polyester composites reinforced with short abaca fiber. J Appl Polym Sci. 2002;85(1):129–138.
  • Singha AS, Thakur VK. Synthesis and characterization of grewia optiva fiber-reinforced PF-based composites. Int J Polym Mater. 2008;57(12):1059–1074.
  • Tragoonwichian S, Yanumet N, Ishida H. A study on sisal fiber-reinforced benzoxazine/epoxy copolymer based on diamine-based benzoxazine. Compos Interfaces. 2008;15(2–3):321–334.
  • Xu Y, Wu Q, Lei Y, et al. Natural fiber reinforced poly(vinyl chloride) composites: effect of fiber type and impact modifier. J Polym Environ. 2008;16(4):250–257.
  • Yao F, Wu Q, Lei Y, et al. Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading. Ind Crop Prod. 2008;28(1):63–72.
  • Niu H, Jiao X, Wang R, et al. Direct manufacturing of flax fibers reinforced low melting point PET composites from nonwoven mats. Fiber Polym. 2010;11(2):218–222.
  • Ben Brahim S, Ben Cheikh R. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol. 2007;67(1):140–147.
  • Bodros E, Pillin I, Montrelay N, et al. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?. Compos Sci Technol. 2007;67(3–4):462–470.
  • Dhakal HN, Zhang ZY, Richardson MOW. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol. 2007;67(7–8):1674–1683.
  • Hu R, Lim J-K. Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater. 2007;41(13):1655–1669.
  • Joshy MK, Mathew L, Joseph R. Studies on interfacial adhesion in unidirectional isora fibre reinforced polyester composites. Compos Interfaces. 2007;14(7–9):631–646.
  • Khondker OA, Ishiaku US, Nakai A, et al. A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos A. 2006;37(12):2274–2284.
  • Mutje P, Girones J, Lopez A, et al. Hemp strands: PP composites by injection molding: effect of low cost physico-chemical treatments. J Reinf Plast Compos. 2006;25(3):313–327.
  • Mutje P, Vallejos ME, Girones J, et al. Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. J Appl Polym Sci. 2006;102(1):833–840.
  • Nam S, Netravali AN. Green composites. II. Environment-friendly, biodegradable composites using ramie fibers and soy protein concentrate (SPC) resin. Fiber Polym. 2006;7(4):380–388.
  • Ramaraj B. Mechanical and thermal properties of polypropylene/sugarcane bagasse composites. J Appl Polym Sci. 2007;103(6):3827–3832.
  • Sastra HY, Siregar JP, Sapuan SM, et al. Tensile properties of Arenga pinnata fiber-reinforced epoxy composites. Polym-Plast Technol Eng. 2006;45(1):149–155.
  • Tserki V, Matzinos P, Zafeiropoulos NE, et al. Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. J Appl Polym Sci. 2006;100(6):4703–4710.
  • Vilaseca F, Mendez JA, Pelach A, et al. Composite materials derived from biodegradable starch polymer and jute strands. Process Biochem. 2007;42(3):329–334.
  • Ben G, Kihara Y. Development and evaluation of mechanical properties for Kenaf fibers/PLA composites. In: Kim JK, et al., editors. Advances in composite materials and structures, Pts 1 and 2. Zurich: Trans Tech Publications Ltd; 2007. p. 489–492.
  • Bledzki AK, Jaszkiewicz A. Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres – a comparative study to PP. Compos Sci Technol. 2010;70(12):1687–1696.
  • Bledzki AK, Jaszkiewicz A, Scherzer D. Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos A. 2009;40(4):404–412.
  • Brahmakumar M, Pavithran C, Pillai RM. Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Compos Sci Technol. 2005;65(3–4):563–569.
  • Cao Y, Wu Y-q. Evaluation of statistical strength of bamboo fiber and mechanical properties of fiber reinforced green composites. J Central South Univ Technol. 2008;15:564–567.
  • Esteves JL, Estevao T, Ferreira O, et al. Mechanical behaviour of composite materials with long jute fibers. 15th International Conference on Experimental Mechanics; July 22–27, Porto; 2012.
  • Foulk JA, Chao WY, Akin DE, et al. Analysis of flax and cotton fiber fabric blends and recycled polyethylene composites. J Polym Environ. 2006;14(1):15–25.
  • Gouanve F, Meyer M, Grenet J, et al. Unsaturated polyester resin (UPR) reinforced with flax fibers, untreated and cold He plasma-treated: thermal, mechanical and DMA studies. Compos Interfaces. 2006;13(4–6):355–364.
  • Hu R-H, Lim J-K, Kim C-I, et al. Biodegradable composites based on polylactic acid(PLA) and China jute fiber. In: Zhou Y, et al., editors. Progresses in fracture and strength of materials and structures, 1–4. Zurich: Trans Tech Publications Ltd; 2007. p. 1302–1305.
  • Idicula M, Neelakantan NR, Oommen Z, et al. A study of the mechanical properties of randomly oriented short banana and sisal hybrid fiber reinforced polyester composites. J Appl Polym Sci. 2005;96(5):1699–1709.
  • Ismail AE, Awang MK, Sa'At, MH. Tensile strength of natural fiber reinforced polyester composite. 2nd international conference on Solid State Science and Technology; 2006; Kuala Terengganu, Malaysia. AIP Publishing; 2007. p. 174–179.
  • Joshy MK, Mathew L, Joseph R. Studies on short isora fibre-reinforced polyester composites. Compos Interfaces. 2006;13(4–6):377–390.
  • Kakroodi AR, Bainier J, Rodrigue D. Mechanical and morphological properties of flax fiber reinforced high density polyethylene/recycled rubber composites. Int Polym Process. 2012;27(2):196–204.
  • Nascimento DCO, Lopes FPD, Monteiro SN. Tensile behavior of lignocellulosic fiber reinforced polymer composites: Part I piassava/epoxy. Matéria (Rio de Janeiro). 2010;15(2):189–194.
  • Pohl T, Bierer M, Natter E, et al. Properties of compression moulded new fully biobased thermoset composites with aligned flax fibre textiles. Plast Rubber Compos. 2011;40(6–7):294–299.
  • Portela TGR, da Costa LL, Santos NSS, et al. Tensile behavior of lignocellulosic fiber reinforced polymer composites: Part II buriti petiole/polyester. Materia-Rio De Janeiro. 2010;15(2):216–222.
  • Rodriguez E, Petrucci R, Puglia D, et al. Characterization of composites based on natural and glass fibers obtained by vacuum infusion. J Compos Mater. 2005;39(3):265–282.
  • Singha AS, Kaith BS, Khanna AJ. Synthesis and characterization of cannabis indica fiber reinforced composites. BioResources. 2011;6(2):2101–2117.
  • Singha AS, Thakur VK. Fabrication and study of lignocellulosic Hibiscus sabdariffa fiber reinforced polymer composites. BioResources. 2008;3(4):1173–1186.
  • Wirawan R, Sapuan SM, Abdan K, et al. Tensile and impact properties of sugarcane bagasse/poly (vinyl chloride) composites. In: Sapuan SM, et al., editors. Composite science and technology, Pts 1 and 2. Zurich: Trans Tech Publications Ltd; 2011. p. 167–172.
  • Yu T, Li Y, Ren J. Preparation and properties of short natural fiber reinforced poly(lactic acid) composites. Trans Nonferr Metals Soc China. 2009;19:S651–S655.
  • Baiardo M, Zini E, Scandola M. Flax fibre-polyester composites. Compos A. 2004;35(6):703–710.
  • Biagiotti J, Puglia D, Torre L, et al. A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym Compos. 2004;25(5):470–479.
  • Gomes A, Goda K, Ohgi J. Effects of alkali treatment to reinforcement on tensile properties of curaua fiber green composites. JSME Int J Series A-Solid Mech Mater Eng. 2004;47(4):541–546.
  • Jayaraman K. Manufacturing sisal-polypropylene composites with minimum fibre degradation. Compos Sci Technol. 2003;63(3–4):367–374.
  • Keller A. Compounding and mechanical properties of biodegradable hemp fibre composites. Compos Sci Technol. 2003;63(9):1307–1316.
  • Li HJ, Sain MM. High stiffness natural fiber-reinforced hybrid polypropylene composites. Polym-Plast Technol Eng. 2003;42(5):853–862.
  • Oksman K, Skrifvars M, Selin JF. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol. 2003;63(9):1317–1324.
  • Sameni JK, Ahmad SH, Zakaria S. Mechanical properties of Kenaf-thermoplastic natural rubber composites. Polym-Plast Technol Eng. 2003;42(3):345–355.
  • Singleton ACN, Baillie CA, Beaumont PWR, et al. On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite. Compos B Eng. 2003;34(6):519–526.
  • Sreekala MS, Thomas S, Neelakantan NR. Utilization of short oil palm empty fruit bunch fiber (OPEFB) as a reinforcement in phenol-formaldehyde resins: studies on mechanical properties. J Polym Eng. 1997;16(4):265–294.
  • van den Oever MJA, Bos HL, van Kemenade M. Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl Compos Mater. 2000;7(5–6):387–402.
  • Williams GI, Wool RP. Composites from natural fibers and soy oil resins. Appl Compos Mater. 2000;7(5–6):421–432.
  • Callister WD. Materials science and engineering: an introduction. New York: John Wiley & Sons; 2010.
  • Shah DU, Schubel PJ, Licence P, et al. Determining the minimum, critical and maximum fibre content for twisted yarn reinforced plant fibre composites. Compos Sci Technol. 2012;72(15):1909–1917.
  • Shah DU. Natural fibre composites: comprehensive Ashby-type materials selection charts. Mater Des. 2014;62:21–31.
  • Dicker MPM, Duckworth PF, Baker AB, et al. Green composites: a review of material attributes and complementary applications. Compos A: Appl Sci Manuf. 2014;56:280–289.
  • Madsen B, Thygesen A, Lilholt H. Plant fibre composites – porosity and volumetric interaction. Compos Sci Technol. 2007;67(7–8):1584–1600.
  • Aslan M, Mehmood S, Madsen B. Effect of consolidation pressure on volumetric composition and stiffness of unidirectional flax fibre composites. J Mater Sci. 2013;48(10):3812–3824.
  • Shah DU, Schubel PJ, Clifford MJ, et al. The tensile behavior of off-axis loaded plant fiber composites: an insight on the nonlinear stress-strain response. Polym Compos. 2012;33(9):1494–1504.
  • Baets J, Plastria D, Ivens J, et al. Determination of the optimal flax fibre preparation for use in UD-epoxy composites. ICCM International Conferences on Composite Materials; 2011.
  • Shamsuddin SR, Lee KY, Bismarck A. Ductile unidirectional continuous rayon fibre-reinforced hierarchical composites. Compos A. 2016;90:633–641.
  • Hajlane A, Kaddami H, Joffe R, et al. Design and characterization of cellulose fibers with hierarchical structure for polymer reinforcement. Cellulose. 2013;20(6):2765–2778.
  • Joshi SV, Drzal LT, Mohanty AK, et al. Are natural fiber composites environmentally superior to glass fiber reinforced composites?. Compos A. 2004;35(3):371–376.
  • Kim S, Dale BE, Drzal LT, et al. Life cycle assessment of Kenaf fiber reinforced biocomposite. J Biobased Mater Bioenergy. 2008;2(1):85–93.
  • Duflou JR, Yelin D, Van Acker K, et al. Comparative impact assessment for flax fibre versus conventional glass fibre reinforced composites: are bio-based reinforcement materials the way to go?. CIRP Annals Manuf Technol. 2014;63(1):45–48.
  • Garkhail SK. Composites based on natural fibres and thermoplastic matrices. London: Queen Mary University of London; 2001.
  • Dhakal HN, Zhang ZY, Richardson MOW, et al. The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites. Compos Struct. 2007;81(4):559–567.
  • Lee KY, Bismarck A. Assessing the moisture uptake behavior of natural fibres. In: Zafeiropoulos NE, editor. Interface engineering of natural fibre composites for maximum performance. Cambridge: Woodhead Publishing; 2011. p. 275–288.
  • Baltazar-Y-Jimenez A, Bismarck A. Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibres. Cellulose. 2007;14(2):115–127.