6,892
Views
225
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Novel nanostructured thermal interface materials: a review

, ORCID Icon, &
Pages 22-45 | Received 01 Nov 2016, Accepted 14 Feb 2017, Published online: 19 Apr 2017

References

  • Moore AL, Shi L. Emerging challenges and materials for thermal management of electronics. Mater Today. 2014;17(4):163–174. doi: 10.1016/j.mattod.2014.04.003
  • ITRS. International technology roadmap for semiconductors – emerging research materials summary. 2013.
  • Subramanian JS, Rodgers P, Newson J, et al. Room temperature soldering of microelectronic components for enhanced thermal performance. Proceedings of the 6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems – EuroSimE 2005. 2005. p. 681–686.
  • Pollack GL. Kapitza resistance. Rev Modern Phys. 1969;41–81(1):48. doi: 10.1103/RevModPhys.41.48
  • Due J, Robinson AJ. Reliability of thermal interface materials: a review. Appl Thermal Eng. 2013;50(1):455–463. doi: 10.1016/j.applthermaleng.2012.06.013
  • Narumanchi S, Mihalic M, Kelly K, et al. Thermal interface materials for power electronics applications. 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. 2008. p. 395–404. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4544297
  • Viswanath R, Group M, Corp I. Thermal performance challenges from silicon to systems. Intel Technol J. Q3. 2000;1–16.
  • Blazej D. Thermal interface materials. 2003. Available from: http://www.electronics-cooling.com/2003/11/thermal-interface-materials/
  • Tong XC. Advanced maters for thermal management of electronic packaging, Vol. 30. Springer; 2011. Available from: http://link.springer.com/10.1007/978-1-4419-7759-5
  • Maguire L, Behnia M, Morrison G. Systematic evaluation of thermal interface materials—a case study in high power amplifier design. Microelectron Reliab. 2005;45(3–4):711–725. doi: 10.1016/j.microrel.2004.10.030
  • Ekpu M, Bhatti R, Ekere N, et al. Effects of thermal interface materials (solders) on thermal performance of a microelectronic package. Dtip. 2012;(April).
  • Wilson J, Thermal conductivity of solders. 2006. Available from: http://www.electronics-cooling.com/2006/08/thermal-conductivity-of-solders/
  • Emerson JA, Rightley MJ, Galloway JA, et al. Minimizing the bondline thermal resistance in thermal interface. Physics. 2005;106–111.
  • Prasher RS, Matayabas JC. Thermal contact resistance of cured gel polymeric thermal interface material. IEEE Trans Compon Packag Technol. 2004;27(4):702–709. doi: 10.1109/TCAPT.2004.838883
  • Gap Pad Products. 2016. Available from: http://www.bergquistcompany.com/thermal_materials/gap-pad.htm
  • de Sorgo M. Understanding phase change materials. 2002. Available from: http://www.electronics-cooling.com/2002/05/understanding-phase-change-materials/
  • Thermally Conductive Adhesives. 2016. Available from: http://www.epoxies.com/products/thermally-conductive/
  • Bischak G, Vogdes C, Thermal management design criteria and solutions. Wescon/98. Conference Proceedings (Cat. No.98CH36265). IEEE; 1998. p. 188–193. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=716447
  • Prasher R. Thermal interface materials: historical perspective, status, and future directions. Proc IEEE. 2006;94(8):1571–1586. doi: 10.1109/JPROC.2006.879796
  • Leung SN, Khan MO, Chan E, et al. Analytical modeling and characterization of heat transfer in thermally conductive polymer composites filled with spherical particulates. Composites Part B: Eng. 2013;45(1):43–49. doi: 10.1016/j.compositesb.2012.10.001
  • Ishida H, Rimdusit S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochimica Acta. 1998;320(1–2):177–186. doi: 10.1016/S0040-6031(98)00463-8
  • Zhou W-Y, Qi S-H, Zhao H-Z, et al. Thermally conductive silicone rubber reinforced with boron nitride particle. Polym Polym Compos. 2007;28(2):23–28. doi: 10.1002/pc.20296
  • Ahn K, Kim K, Kim J. Fabrication of surface-treated BN/ETDS composites for enhanced thermal and mechanical properties. Ceram Int. 2015;41(8):9488–9495. doi: 10.1016/j.ceramint.2015.04.006
  • Wang Z, Fu Y, Meng W, et al. Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers. Nanoscale Res Lett. 2014;9(1):643. doi: 10.1186/1556-276X-9-643
  • Lin Z, Liu Y, Raghavan S, et al. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl Mater Interfaces. 2013;5(15):7633–7640. doi: 10.1021/am401939z
  • Shin YK, Lee WS, Yoo MJ, et al. Effect of BN filler on thermal properties of HDPE matrix composites. Ceram Int. 2013;39(SUPPL.1):S569–S573. doi: 10.1016/j.ceramint.2012.10.137
  • Yuan Z, Yu J, He Z, et al. Improved thermal properties of epoxy composites filled with thermotropic liquid crystalline epoxy grafted aluminum nitride. Fibers Polym. 2014;15(12):2581–2590. doi: 10.1007/s12221-014-2581-x
  • Yu H, Li L, Kido T, et al. Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. J Appl Polym Sci. 2011;1763–1772.
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58. doi: 10.1038/354056a0
  • Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006;6(1):96–100. doi: 10.1021/nl052145f
  • Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001;87(21):215502. doi: 10.1103/PhysRevLett.87.215502
  • Biercuk MJ, Llaguno MC, Radosavljevic M, et al. Carbon nanotube composites for thermal management. Appl Phys Lett. 2002;80(15):2767–2769. doi: 10.1063/1.1469696
  • Bozlar BM, He D, Bai J, et al. Carbon nanotube microarchitectures for enhanced thermal conduction at ultralow mass fraction in polymer composites. Adv Mater. 2010;1654–1658. doi: 10.1002/adma.200901955
  • Grady BP. Carbon nanotube-polymer composites: manufacture, properties, and applications. Hoboken (NJ): Wiley; 2011.
  • Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress Polymer Sci (Oxford). 2011;36(7):914–944 doi: 10.1016/j.progpolymsci.2010.11.004
  • Hong W-T, Tai N-H. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diamond Relat Mater. 2008;17(7–10):1577–1581. doi: 10.1016/j.diamond.2008.03.037
  • Bryning MB, Milkie DE, Islam MF, et al. Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett. 2005;87(16):1–3. doi: 10.1063/1.2103398
  • Huxtable ST, Cahill DG, Shenogin S, et al. Interfacial heat flow in carbon nanotube suspensions. Nature Mater. 2003;2(11):731–734. doi: 10.1038/nmat996
  • Shenogin S, Xue L, Ozisik R, et al. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl Phys. 2004;95(12):8136–8144. doi: 10.1063/1.1736328
  • Lin W, Moon K-S, Wong CP. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: Toward applications as thermal interface materials. Adv Mater. 2009;21(23):2421–2424. doi: 10.1002/adma.200803548
  • Gojny FH, Wichmann MHG, Fiedler B, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer. 2006;47(6):2036–2045. doi: 10.1016/j.polymer.2006.01.029
  • Yujun G, Zhongliang L, Guangmeng Z, et al. Effects of multi-walled carbon nanotubes addition on thermal properties of thermal grease. Int J Heat Mass Transfer. 2014;74:358–367. doi: 10.1016/j.ijheatmasstransfer.2014.03.009
  • Wang H, Tazebay AS, Yang G, et al. Highly deformable thermal interface materials enabled by covalently-bonded carbon nanotubes. Carbon. 2016;106:152–157. doi: 10.1016/j.carbon.2016.05.017
  • Obori M, Nita S, Miura A, et al. Onsite synthesis of thermally percolated nanocomposite for thermal interface material. J Appl Phys. 2016;119(5):055103. doi: 10.1063/1.4941275
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669. doi: 10.1126/science.1102896
  • Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett. 2008;92(15):151911. doi: 10.1063/1.2907977
  • Boyd R, Feldman MW, Transmission C, et al. Two-dimensional phonon transport. Science. 2010;328(April):213–216.
  • Pierson HO. Handbook of carbon, graphite, diamonds and fullerenes. Park Ridge (NJ): Elsevier; 1993.
  • Tang B, Hu G, Gao H, et al. Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials. Int J Heat Mass Transfer. 2015;85:420–429. doi: 10.1016/j.ijheatmasstransfer.2015.01.141
  • Shahil KMF, Balandin AA. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 2012;12(2):861–867. doi: 10.1021/nl203906r
  • Debelak B, Lafdi K. Use of exfoliated graphite filler to enhance polymer physical properties. Carbon. 2007;45(9):1727–1734. doi: 10.1016/j.carbon.2007.05.010
  • Yu A, Ramesh P, Itkis ME, et al. Graphite nanoplatelet - epoxy composite thermal interface materials. Phys Chem C. 2007;111(21):7565–7569. doi: 10.1021/jp071761s
  • Raza Ma, Westwood AVK, Brown AP, et al. Performance of graphite nanoplatelet/silicone composites as thermal interface adhesives. J Mater Sci: Mater Electron. 2012;23(10):1855–1863.
  • Song W-L, Wang W, Veca LM, et al. Polymer/carbon nanocomposites for enhanced thermal transport properties – carbon nanotubes versus graphene sheets as nanoscale fillers. J Mater Chem. 2012;22:17133. doi: 10.1039/c2jm32469e
  • Razeeb KM, Dalton E, Nanowire polymer nanocomposites as thermal interface material. In: Boreddy R, editor. Advances in nanocomposites – synthesis, characterization and industrial applications. Chapter Nanowire p. Rijeka: InTech; 2011. p. 685–706.
  • Xu J, Munari A, Dalton E, et al. Silver nanowire array-polymer composite as thermal interface material. J Appl Phys. 2009;106(12):124310.
  • Munari A, Xu J, Dalton E, et al. Metal nanowire-polymer nanocomposite as thermal interface material. 2009 59th Electronic Components and Technology Conference. 2009. p. 448–452. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5074052 doi: 10.1109/ECTC.2009.5074052
  • Wang S, Cheng Y, Wang R, et al. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Appl Mater Interfaces. 2014;6(9):6481–6486. doi: 10.1021/am500009p
  • Pashayi K, Fard HR, Lai F, et al. High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks. J Appl Phys. 2012;111(10):104310. doi: 10.1063/1.4716179
  • Pashayi K, Fard HR, Lai F, et al. Self-constructed tree-shape high thermal conductivity nanosilver networks in epoxy. Nanoscale. 2014;6(8):4292. doi: 10.1039/c3nr06494h
  • Lee HG, Paik KW, Vertically aligned nickel nanowire/epoxy composite for electrical and thermal conducting material. 2012 IEEE 62nd Electronic Components and Technology Conference. 2012. p. 2087–2090. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6249129
  • Razeeb KM, Roy S. Thermal diffusivity of nonfractal and fractal nickel nanowires. J Appl Phys. 2008;103(8):084302. doi: 10.1063/1.2906347
  • Balachander N, Seshadri I, Mehta RJ, et al. Nanowire-filled polymer composites with ultrahigh thermal conductivity. Appl Phys Lett. 2013;102(9):093117. doi: 10.1063/1.4793419
  • Kim SW, Choi H-S, Lee K-S. Thermal conductivity of thermally conductive composites consisting of core–shell particles with nanostructured shell layers. Mater Res Bull. 2014;60:843–848. doi: 10.1016/j.materresbull.2014.09.079
  • Jeong SH, Chen S, Huo J, et al. Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment. Scient Rep. 2015;5(November):18257.
  • Goyal V, Balandin AA. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Appl Phys Lett. 2012;100(7):073113. doi: 10.1063/1.3687173
  • Chen L, Sun Y-Y, Lin J, et al. Modeling and analysis of synergistic effect in thermal conductivity enhancement of polymer composites with hybrid filler. Int J Heat Mass Transfer. 2015;81:457–464. doi: 10.1016/j.ijheatmasstransfer.2014.10.051
  • Lee G-W, Park M, Kim J, et al. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos Part A: Appl Sci Manuf. 2006;37(5):727–734. doi: 10.1016/j.compositesa.2005.07.006
  • Pak SY, Kim HM, Kim SY, et al. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers. Carbon. 2012;50(13):4830–4838. doi: 10.1016/j.carbon.2012.06.009
  • Ren P-G, Si X-H, Sun Z-F, et al. Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultra-high-molecular-weight polyethylene composites with a segregated structure. J Polymer Res. 2016;23(2):21. doi: 10.1007/s10965-015-0908-y
  • Teng C-C, Ma C-CM, Chiou K-C, et al. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater Chem Phys. 2011;126(3):722–728. doi: 10.1016/j.matchemphys.2010.12.053
  • Raza MA, Westwood AVK, Stirling C, et al. Effect of boron nitride addition on properties of vapour grown carbon nanofiber/rubbery epoxy composites for thermal interface applications. Compos Sci Technol. 2015;120:9–16. doi: 10.1016/j.compscitech.2015.10.013
  • Hwang Y, Kim M, Kim J. Improvement of the mechanical properties and thermal conductivity of poly(ether-ether-ketone) with the addition of graphene oxide-carbon nanotube hybrid fillers. Compos Part A: Appl Sci Manuf. 2013;55:195–202. doi: 10.1016/j.compositesa.2013.08.010
  • Im H, Kim J. Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon. 2012;50(15):5429–5440. doi: 10.1016/j.carbon.2012.07.029
  • Yu W, Xie H, Yin L, et al. Exceptionally high thermal conductivity of thermal grease: synergistic effects of graphene and alumina. Int J Thermal Sci. 2015;91:76–82. doi: 10.1016/j.ijthermalsci.2015.01.006
  • Chen H, Wei H, Chen M, et al. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes. Appl Surf Sci. 2013;283:525–531. doi: 10.1016/j.apsusc.2013.06.139
  • Thang BH, Hong PN, Khoi PH, et al. Application of multiwall carbon nanotubes for thermal dissipation in a micro-processor. J Phys: Conf Ser. 2009;187:012051.
  • Liao Q, Liu Z, Liu W, et al. Extremely high thermal conductivity of aligned bulk carbon nanotube-polyethylene composites. Scient Rep. 2015;(November):1–7.
  • Goh PS, Ismail AF, Ng BC. Directional alignment of carbon nanotubes in polymer matrices: contemporary approaches and future advances. Compos Part A: Appl Sci Manuf. 2014;56:103–126. doi: 10.1016/j.compositesa.2013.10.001
  • Martin CA, Sandler JKW, Windle AH, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer. 2005;46(3):877–886. doi: 10.1016/j.polymer.2004.11.081
  • Sharma A, Tripathi B, Vijay YK. Dramatic Improvement in properties of magnetically aligned CNT/polymer nanocomposites. J Membrane Sci. 2010;361(1–2):89–95. doi: 10.1016/j.memsci.2010.06.005
  • Uetani K, Ata S, Tomonoh S, et al. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv Mater. 2014;26(33):5857–5862. doi: 10.1002/adma.201401736
  • Yuan C, Duan B, Li L, et al. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Appl Mater Interfaces. 2015;7(23):13000–13006. doi: 10.1021/acsami.5b03007
  • Tian X, Itkis ME, Bekyarova EB, et al. Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites. Scient Rep. 2013;3:1–6.
  • Bonnet P, Sireude D, Garnier B, et al. Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett. 2007;91(20):201910. doi: 10.1063/1.2813625
  • Jakubinek MB, White MA, Mu M, et al. Temperature dependence of thermal conductivity enhancement in single-walled carbon nanotube/polystyrene composites. Appl Phys Lett. 2010;96:94–97. doi: 10.1063/1.3323095
  • Hong J, Lee J, Hong CK, et al. Effect of dispersion state of carbon nanotube on the thermal conductivity of poly(dimethyl siloxane) composites. Curr Appl Phys. 2010;10(1):359–363. doi: 10.1016/j.cap.2009.06.028
  • Li J, Qi S, Zhang M, et al. Thermal conductivity and electromagnetic shielding effectiveness of composites based on Ag-plating carbon fiber and epoxy. J Appl Polym Sci. 2015;132(33):n/a–n/a. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84930405598&partnerID=tZOtx3y1
  • The European parliament and the council of the European union. Directive 2002/95/EC of the European parliament and of the council. Official J Eur Union. 2003;(37):19–23.
  • Stinson-Bagby K, Huff D, Katsis D, et al. Thermal performance and microstructure of lead versus lead-free solder die attach interface in power device packages. 2004 Conference Record 2004 IEEE International Symposium on Electronics and the Environment; Scottsdale, AZ. 2004. p. 27–32.
  • Kotadia HR, Howes PD, Mannan SH. A review: on the development of low melting temperature Pb-free solders. Microelectronics Reliability. 2014;54(6–7):1253–1273. doi: 10.1016/j.microrel.2014.02.025
  • Deppisch C, Fitzgerald T, Raman A, et al. The material optimization and reliability characterization of an indium-solder thermal interface material for CPU packaging. Jom. 2006;58(6):67–74. doi: 10.1007/s11837-006-0186-6
  • Chaowasakoo T, Ng T.. Indium solder as a thermal interface material using fluxless bonding technology. 25th IEEE SEMI-THERM Symposium. 2009. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4810761
  • Too SS, Touzelbaev M, Khan M, et al. Indium thermal interface material development for microprocessors. 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. 2009. p. 186–192. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4810762
  • Graedel TE, Harper EM, Nassar NT, et al. Criticality of metals and metalloids. Proc Nat Acad Sci USA. 2015;112(14):4257–4262. doi: 10.1073/pnas.1500415112
  • Ekpu M, Bhatti R, Okereke MI, et al. Fatigue life of lead-free solder thermal interface materials at varying bond line thickness in microelectronics. Microelectron Reliab. 2014;54(1):239–244. doi: 10.1016/j.microrel.2013.08.006
  • El-Daly AA, Hammad AE, Al-Ganainy GS, et al. Properties enhancement of low Ag-content Sn-Ag-Cu lead-free solders containing small amount of Zn. J Alloys Compd. 2014;614:20–28. doi: 10.1016/j.jallcom.2014.06.009
  • Dutchak YI, Osipenko VP, Panasyuk PV. Thermal conductivity of Sn-Bi alloys in the solid and liquid states. Soviet Phys J. 1968;11(10):154–156.
  • Chiu C-P, Maveety JG, Tran QA. Characterization of solder interfaces using laser flash metrology. Microelectron Reliab. 2002;42(1):93–100. doi: 10.1016/S0026-2714(01)00129-9
  • Zhang R, Cai J, Wang Q, et al. Thermal resistance analysis of Sn-Bi solder paste used as thermal interface material for power electronics applications. J Electron Packag. 2014;136(1):011012. doi: 10.1115/1.4026616
  • Yu H, Li L, Zhang Y. Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scr Mater. 2012;66(11):931–934. doi: 10.1016/j.scriptamat.2012.02.037
  • Chliasatia V, Fan Z, Ying S, et al. Design optimization of custom engineered silver-nanoparticle thermal interface materials. 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM 2008); Orlando, FL. 2008. p. 419–427.
  • Dutta I, Raj R, Kumar P, et al. Liquid phase sintered solders with indium as minority phase for next generation thermal interface material applications. J Electron Mater. 2009;38(12):2735–2745. doi: 10.1007/s11664-009-0898-9
  • Liu J, Kumar P, Dutta I, et al. Liquid phase sintered Cu – In composite solders for thermal interface material and interconnect applications. J Mater Sci. 2011;(46):7012–7025. doi: 10.1007/s10853-011-5670-x
  • Liu J, Sahaym U, Dutta I, et al. Interfacially engineered liquid-phase-sintered Cu–In composite solders for thermal interface material applications. J Mater Sci. 2014;49(22):7844–7854. doi: 10.1007/s10853-014-8495-6
  • Kumar P, Awasthi S. Mechanical and thermal modeling of In-Cu composites for thermal interface materials applications. J Compos Mater. 2013;48(11):1391–1398. doi: 10.1177/0021998313486502
  • Gao Y, Liu J. Gallium-based thermal interface material with high compliance and wettability. Appl Phys A: Mater Sci Process. 2012;107(3):701–708. doi: 10.1007/s00339-012-6887-5
  • Roy CK, Bhavnani S, Hamilton MC, et al. Investigation into the application of low melting temperature alloys as wet thermal interface materials. Int J Heat Mass Transfer. 2015;85:996–1002. doi: 10.1016/j.ijheatmasstransfer.2015.02.029
  • Deng Y-G, Liu J. Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device. Applied Physics A. 2009;95(3):907–915. doi: 10.1007/s00339-009-5098-1
  • Yang E, Guo H, Guo J, et al. Thermal performance of low-melting-temperature alloy thermal interface materials. Acta Metall Sin (English Lett). 2014;27(2):290–294. doi: 10.1007/s40195-014-0042-6
  • Raj PM, Gangidi PR, Nataraj N, et al. Coelectrodeposited solder composite films for advanced thermal interface materials. IEEE Trans Comp, Packag Manuf Technol. 2013;3(6):989–996. doi: 10.1109/TCPMT.2013.2249583
  • Nai SML, Wei J, Gupta M. Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Mater Sci Eng A. 2006;423(1–2):166–169. doi: 10.1016/j.msea.2005.10.072
  • Yang L, Du C, Dai J, et al. Effect of nanosized graphite on properties of Sn-Bi solder. J Mater Sci: Mater Electron. 2013;24(11):4180–4185.
  • Kotadia HR, Panneerselvam A, Sugden MW, et al. Electronics assembly and high temperature paste with Zn additives. IEEE Trans Compon, Packag Manuf Technol. 2013;3(10):1786–1793. doi: 10.1109/TCPMT.2013.2279055
  • Huang H, Wei X, Liao F, et al. Preparation and properties of particle reinforced Sn-Zn-based composite solder. J Wuhan Univ Technol, Mater Sci Ed. 2009;24(2):206–209. doi: 10.1007/s11595-009-2206-1
  • Sharma M, Chung DDL. Solder–graphite network composite sheets as high-performance thermal interface materials. J Electron Mater. 2015;44(3):929–947. doi: 10.1007/s11664-014-3589-0
  • Bar-Cohen A, Matin K, Narumanchi S. Nanothermal interface materials: technology review and recent results. J Electron Packag. 2015;137(4):040803. doi: 10.1115/1.4031602
  • Carlberg B, Wang T, Liu J, et al. Polymer-metal nano-composite films for thermal management. Microelectron Int. 2009;26(2):28–36. doi: 10.1108/13565360910960213
  • Zandén C, Luo X, Ye L, et al. Fabrication and characterization of a metal matrix polymer fibre composite for thermal interface material applications. 19th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). Vol. 2013. 2013. p. 286–292. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84898964819&partnerID=tZOtx3y1
  • Zandén C, Luo X, Ye L, et al. A new solder matrix nano polymer composite for thermal management applications. Compos Sci Technol. 2014;94:54–61. doi: 10.1016/j.compscitech.2014.01.015
  • Sun S, Chen S, Luo X, et al. Mechanical and thermal characterization of a novel nanocomposite thermal interface material for electronic packaging. Microelectron Reliab. 2015;56:129–135. doi: 10.1016/j.microrel.2015.10.028
  • Murugesan M, Zandén C, Luo X, et al. A carbon fiber solder matrix composite for thermal management of microelectronic devices. J Mater Chem C. 2014;2(35):7184. doi: 10.1039/C4TC00936C
  • Luo X, Zhang Y, Zandén C, et al. Novel thermal interface materials: Boron nitride nanofiber and indium composites for electronics heat dissipation applications. J Mater Sci: Mater Electron. 2014;25(5):2333–2338.
  • Luo X, Peng J, Zandén C, et al. Unusual tensile behaviour of fibre-reinforced indium matrix composite and its in-situ TEM straining observation. Acta Mater. 2016;104:109–118. doi: 10.1016/j.actamat.2015.10.003
  • Chen HH, Zhao Y, Chen CL. Experimental study of coefficient of thermal expansion of aligned graphite thermal interface materials. Front Heat Mass Transfer. 2013;4(1):1–7. doi: 10.1016/j.icheatmasstransfer.2013.05.004
  • Cola Ba, Fisher TS, Xu X, Carbon nanotube array thermal interfaces. In: Carbon nanotubes: new research. New York (NY): Nova Publishers; 2009.
  • Marconnet AM, Panzer MA, Goodson KE. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev Modern Phys. 2013;85(3):1295–1326. doi: 10.1103/RevModPhys.85.1295
  • Tong TTT, Zhao YZY, Delzeit L, et al. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans Compon Packag Technol. 2007;30(1):92–100. doi: 10.1109/TCAPT.2007.892079
  • Cola Ba, Xu J, Fisher TS. Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int J Heat Mass Transfer. 2009;52(15–16):3490–3503. doi: 10.1016/j.ijheatmasstransfer.2009.03.011
  • Cola BA, Xu J, Cheng C, et al. Photoacoustic characterization of carbon nanotube array thermal interfaces. J Appl Phys. 2007;101(5):1–9. doi: 10.1063/1.2510998
  • Panzer MA, Zhang G, Mann D, et al. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J Heat Transfer. 2008;130(5):052401. doi: 10.1115/1.2885159
  • Panzer MA, Duong HM, Okawa J, et al. Temperature-dependent phonon conduction and nanotube engagement in metalized single wall carbon nanotube films. Nano Lett. 2010;10(7):2395–2400. doi: 10.1021/nl100443x
  • Kaur S, Raravikar N, Helms BA, et al. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat Commun. 2014;5:1–8. doi: 10.1038/ncomms4082
  • Xu J, Fisher TS. Enhancement of thermal interface materials with carbon nanotube arrays. Int J Heat Mass Transfer. 2006;49(9–10):1658–1666. doi: 10.1016/j.ijheatmasstransfer.2005.09.039
  • Li Q, Liu C, Fan S. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers. Nano Lett. 2009;9:3805–3809. doi: 10.1021/nl901988t
  • Hu XJ, Panzer MA, Goodson KE. Infrared microscopy thermal characterization of opposing carbon nanotube arrays. J Heat Transfer – Trans ASME. 2007;129(1):91–93. doi: 10.1115/1.2401202
  • Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosc Nanotechnol. 2010;10(6):3739–3758. doi: 10.1166/jnn.2010.2939
  • Yao Y, Tey JN, Li Z, et al. High-quality vertically aligned carbon nanotubes for applications as thermal interface materials. IEEE Trans Compon, Packag Manuf Technol. 2014;4(2):232–239. doi: 10.1109/TCPMT.2013.2296370
  • Cola BA, Amama PB, Xu X, et al. Effects of growth temperature on carbon nanotube array thermal interfaces. J Heat Transfer. 2008;130:114503. doi: 10.1115/1.2969758
  • Amama PB, Cola BA, Sands TD, et al. Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance. Nanotechnology. 2007;18(38):385303. doi: 10.1088/0957-4484/18/38/385303
  • Liu X, Zhang Y, Cassell AM, et al. Implications of catalyst control for carbon nanotube based thermal interface materials. J Appl Phys. 2008;104(8):084310.
  • Gu W, Lin W, Yao Y, et al. Synthesis of high quality, closely packed vertically aligned carbon nanotube array and a quantitative study of the influence of packing density on the collective thermal conductivity. 2011 IEEE 61st Electronic Components and Technology Conference (ECTC); Lake Buena Vista, FL. 2011. p. 1239–1243.
  • Na N, Hasegawa K, Zhou X, et al. Denser and taller carbon nanotube arrays on Cu foils useable as thermal interface materials. Japanese J Appl Phys. 2015;54(9). doi: 10.7567/JJAP.54.095102
  • Lin W, Shang J, Gu W, et al. Parametric study of intrinsic thermal transport in vertically aligned multi-walled carbon nanotubes using a laser flash technique. Carbon. 2012;50(4):1591–1603. doi: 10.1016/j.carbon.2011.11.038
  • Lin W, Moon K-S, Zhang S, et al. Microwave makes carbon nanotubes less defective. ACS Nano. 2010;4(3):1716–1722. doi: 10.1021/nn901621c
  • Wasniewski JR, Altman DH, Hodson SL, et al. Characterization of metallically bonded carbon nanotube-based thermal interface materials using a high accuracy 1D steady-state technique. J Electron Packag. 2012;134(2):20901. doi: 10.1115/1.4005909
  • Liu X, Bigioni TP, Xu Y, et al. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates. J Phys Chem B. 2006;110(41):20102–20106. doi: 10.1021/jp0647378
  • Gao Y, Marconnet AM, Xiang R, et al. Heat capacity, thermal conductivity, and interface resistance extraction for single-walled carbon nanotube films using frequency-domain thermoreflectance. IEEE Trans Compon Packag Manuf Technol. 2013;3(9):1524–1532.
  • Cola BA, Xu X, Fisher TS, et al. Carbon nanotube array thermal interfaces for high-temperature silicon carbide devices. Nanoscale Microscale Thermophys Eng. 2008;12(November):228–237. doi: 10.1080/15567260802183015
  • Gao ZL, Zhang K, Yuen MMF. Fabrication of carbon nanotube thermal interface material on aluminum alloy substrates with low pressure CVD. Nanotechnology. 2011;22(26):265611. doi: 10.1088/0957-4484/22/26/265611
  • Kai Z, Yuen MMF, Xiao DGW, et al. Directly synthesizing CNT-TIM on aluminum alloy heat sink for HB-LED thermal management. In: 2008 58th Electronic Components and Technology Conference; Lake Buena Vista. 2008. p. 1659–1663.
  • Lin W, Zhang R, Moon K-S, et al. Synthesis of high-quality vertically aligned carbon nanotubes on bulk copper substrate for thermal management. IEEE Trans Adv Packag. 2010;33(2):370–376. doi: 10.1109/TADVP.2009.2034335
  • Rong H, Lin W-Q, Zheng J-C, et al. Thermal characterization of a bridge-link carbon nanotubes array used as a thermal adhesive. Int J Adhesion Adhes. 2014;49:58–63. doi: 10.1016/j.ijadhadh.2013.12.006
  • Cross R, Cola BA, Fisher T, et al. A metallization and bonding approach for high performance carbon nanotube thermal interface materials. Nanotechnology. 2010;21(44):445705. doi: 10.1088/0957-4484/21/44/445705
  • Hodson SL, Bhuvana T, Cola BA, et al. Palladium thiolate bonding of carbon nanotube thermal interfaces. J Electron Packag. 2011;133(2):20907. doi: 10.1115/1.4004094
  • Barako MT, Gao Y, Won Y, et al. Reactive metal bonding of carbon nanotube arrays for thermal interface applications. IEEE Trans Compon, Packag Manuf Technol. 2014;4(12):1906–1913. doi: 10.1109/TCPMT.2014.2369371
  • Ni Y, Le Khanh H, Chalopin Y, et al. Highly efficient thermal glue for carbon nanotubes based on azide polymers. Appl Phys Lett. 2012;100(19):193118. doi: 10.1063/1.4711809
  • Taphouse JH, Bougher TL, Singh V, et al. Carbon nanotube thermal interfaces enhanced with sprayed on nanoscale polymer coatings. Nanotechnology. 2013;24(10):105401. doi: 10.1088/0957-4484/24/10/105401
  • Chai Y, Gong J, Zhang K, et al. Flexible transfer of aligned carbon nanotube films for integration at lower temperature. Nanotechnology. 2007;18:429–434.
  • Daon J, Sun S, Jiang D, et al. Electrically conductive thermal interface materials based on vertically aligned carbon nanotubes mats. In: Therminic 20th International workshop; 2014. p. 1–4.
  • Lin W, Zhang R, Moon K-S, et al. Molecular phonon couplers at carbon nanotube/substrate interface to enhance interfacial thermal transport. Carbon. 2010;48(1):107–113. doi: 10.1016/j.carbon.2009.08.033
  • Taphouse JH, Smith OL, Marder SR, et al. A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts. Adv Funct Mater. 2014;24(4):465–471. doi: 10.1002/adfm.201301714
  • Kumar A, Pushparaj VL, Kar S, et al. Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl Phys Lett. 2006;89(16):14–17.
  • Fu Y, Qin Y, Wang T, et al. Ultrafast transfer of metal-enhanced carbon nanotubes at low temperature for large-scale electronics assembly. Adv Mater. 2010;22(44):5039–5042. doi: 10.1002/adma.201002415
  • Hamdan A, Cho J, Johnson R, et al. Evaluation of a thermal interface material fabricated using thermocompression bonding of carbon nanotube turf. Nanotechnology. 2010;21(1):015702. doi: 10.1088/0957-4484/21/1/015702
  • Chen MX, Song XH, Gan ZY, et al. Low temperature thermocompression bonding between aligned carbon nanotubes and metallized substrate. Nanotechnology. 2011;22(34):345704. doi: 10.1088/0957-4484/22/34/345704
  • Cola BA, Xu X, Fisher TS. Increased real contact in thermal interfaces: a carbon nanotube/foil material. Appl Phys Lett. 2007;90(9):9–11. doi: 10.1063/1.2644018
  • Wang H, Feng JY, Hu XJ, et al. Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material. Chem Eng Sci. 2010;65(3):1101–1108. doi: 10.1016/j.ces.2009.09.064
  • Huang H, Liu C, Wu Y, et al. Aligned carbon nanotube composite films for thermal management. Adv Mater. 2005;17:1652–1656. doi: 10.1002/adma.200500467
  • Lee YT, Shanmugan S, Mutharasu D. Thermal resistance of CNTs-based thermal interface material for high power solid state device packages. Appl Phys A: Mater Sci Process. 2014;114(4):1145–1152. doi: 10.1007/s00339-013-7676-5
  • Lin W, Moon K-S, Wong CP. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: toward applications as thermal interface materials. Adv Mater. 2009;21(23):2421–2424. doi: 10.1002/adma.200803548
  • Wang M, Chen H, Lin W, et al. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film. ACS Appl Mater Interfaces. 2014;6(1):539–44. doi: 10.1021/am404594m
  • Marconnet AM, Yamamoto N, Panzer MA, et al. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano. 2011;5(6):4818–4825. doi: 10.1021/nn200847u
  • Zhang K, Chai Y, Yuen MMF, et al. Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology. 2008;19(21):215706. doi: 10.1088/0957-4484/19/21/215706
  • Barako MT, Solder-bonded carbon nanotube thermal interface materials. 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm); San Diego, CA. 2012. p. 1225–1233.
  • Polsen ES, McNerny DQ, Viswanath B, et al. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Scient Rep. 2015;5:10257. doi: 10.1038/srep10257
  • Arcila-velez MR, Zhu J, Childress A. Roll-to-roll synthesis of vertically aligned carbon nanotube electrodes for electrical double layer capacitors. Nano Energy. 2014;8:9–16. doi: 10.1016/j.nanoen.2014.05.004
  • Kempers R, Kerslake S. In situ testing of metal micro-textured thermal interface materials in telecommunications applications. J Phys: Conf Ser. 2014;525:012016.
  • Kempers R, Robinson A, Alan L. Characterization of metal micro-textured thermal interface materials. Thermal Investigations of ICs and Systems, 2009 THERMINIC 2009 15th International Workshop. 2009. (November).
  • Kempers R, Lyons AM, Robinson AJ. Modeling and experimental characterization of metal microtextured thermal interface materials. J Transfer. 2013;136(1):011301.
  • Feng B, Faruque F, Bao P, et al. Double-sided tin nanowire arrays for advanced thermal interface materials. Appl Phys Lett. 2013;102(9):093105. doi: 10.1063/1.4791575
  • Barako MT, Roy-Panzer S, English TS, et al. Thermal conduction in vertically aligned copper nanowire arrays and composites. ACS Appl Mater Interfaces. 2015;7(34):19251–19259. doi: 10.1021/acsami.5b05147
  • Chen R, Lu M-C, Srinivasan V, et al. Nanowires for enhanced boiling heat transfer. Nano Lett. 2009;9(2):548–553. doi: 10.1021/nl8026857
  • Shaddock D, Weaver S, Chasiotis I, et al. Development of a compliant nanothermal interface material. In: ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS, Vol. 2. ASME; 2011. p. 13–17. Available from: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1630089
  • Shen S, Henry A, Tong J, et al. Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol. 2010;5(4):251–255. doi: 10.1038/nnano.2010.27
  • Singh V, Bougher TL, Weathers A, et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol. 2014;9(5):384–390. doi: 10.1038/nnano.2014.44
  • Kim G-H, Lee D, Shanker A, et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater. 2015;14(3):295–300. doi: 10.1038/nmat4141
  • Memon MO, Haillot S, Lafdi K. Carbon nanofiber based buckypaper used as a thermal interface material. Carbon. 2011;49(12):3820–3828. doi: 10.1016/j.carbon.2011.05.015
  • Chen H, Chen M, Di J, et al. Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C. 2012;116(6):3903–3909. doi: 10.1021/jp2086158
  • Warzoha RJ, Zhang D, Feng G, et al. Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials. Carbon. 2013;61:441–457. doi: 10.1016/j.carbon.2013.05.028
  • Qiu L, Wang X, Su G, et al. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film. Scient Rep. 2016;6(October 2015):1–14.
  • Zhang X, Yeung KK, Gao Z, et al. Exceptional thermal interface properties of a three-dimensional graphene foam. Carbon. 2014;66:201–209. doi: 10.1016/j.carbon.2013.08.059
  • Lv P, Tan X-W, Yu K-H, et al. Super-elastic graphene/carbon nanotube aerogel: a novel thermal interface material with highly thermal transport properties. Carbon. 2016;99:222–228. doi: 10.1016/j.carbon.2015.12.026
  • Zhang Y, Han H, Wang N, et al. Improved heat spreading performance of functionalized graphene in microelectronic device application. Adv Funct Mater. 2015;25(28):4430–4435. doi: 10.1002/adfm.201500990
  • Liang Q, Yao X, Wang W, et al. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano. 2011;5(3):2392–2401. doi: 10.1021/nn200181e
  • Bhimanapati GR, Lin Z, Meunier V, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano. 2015;9(12):11509–11539. doi: 10.1021/acsnano.5b05556
  • Jo I, Pettes MT, Kim J, et al. Thermal conductivity and phonon transport in suspended few- layer hexagonal boron nitride. Nano Lett. 2013;13:550–554. doi: 10.1021/nl304060g
  • Huang X, Zhi C, Jiang P, et al. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater. 2013;23(14):1824–1831. doi: 10.1002/adfm.201201824
  • Loeblein M, Tsang SH, Han Y, et al. Heat dissipation enhancement of 2.5D package with 3D graphene & 3d boron nitride networks as thermal interface material (TIM). In: 2016 IEEE 66th Electronic Components and Technology Conference; 2016. p. 707–713.
  • Aoyagi Y, Chung DDL. Antioxidant-based phase-change thermal interface materials with high thermal stability. J Electron Mater. 2008;37(4):448–461. doi: 10.1007/s11664-007-0376-1
  • Hu K, Chung DDL. Flexible graphite modified by carbon black paste for use as a thermal interface material. Carbon. 2011;49(4):1075–1086. doi: 10.1016/j.carbon.2010.10.058

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.