1,171
Views
1
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Nanostructured photocatalysis in the visible spectrum for the decontamination of air and water

ORCID Icon, & ORCID Icon
Pages 257-282 | Received 03 Mar 2017, Accepted 07 Sep 2017, Published online: 30 Sep 2017

References

  • U. S. E. P. AGENCY. Municipal solid waste. 2016. Available from: http://www3.epa.gov/epawaste/nonhaz/municipal/.
  • Robinson T, McMullan G, Marchant R, et al. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol. 2001;77(3):247–255.
  • Pearce CI, Lloyd JR, Guthrie JT. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigm. 2003;58(3):179–196.
  • Talarposhti AM, Donnelly T, Anderson GK. Colour removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor. Water Res. 2001;35(2):425–432.
  • Shannon MA, Bohn PW, Elimelech M, et al. Science and technology for water purification in the coming decades. Nature. 2008;452(7185):301–310.
  • Broussard PC Sr. Liquid-to-liquid oil absorption system and method. 1992, US Patent 5100546 A.
  • Anon. Toxics in the community, national and local perspectives, in the 1989 toxics release inventory national report, U. S. EPA, Editor. Washington (DC): U.S. Government Printing Office; (1991).
  • Pimentel D, McLaughlin L, Zepp A, et al. Environmental and economic effects of reducing pesticide use. BioSci. 1991;41(6):402–409.
  • Wania F, MacKay D. Peer reviewed: tracking the distribution of persistent organic pollutants. Environ Sci Technol. 1996;30(9):390A–396A.
  • Ghoreishi SM, Haghighi R. Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chem Eng J. 2003;95(1–3):163–169.
  • Ayed L, Chaieb K, Cheref A, et al. Biodegradation of triphenylmethane dye malachite green by sphingomonas paucimobilis. World J Microbiol Biotechnol. 2008;25(4):705–711.
  • Andreozzi R, Caprio V, Insola A, et al. Advanced oxidation processes (AOP) for water purification and recovery. Catal Today. 1999;53(1):51–59.
  • Cooper CM. Biological effects of agriculturally derived surface water pollutants on aquatic systems—a review. J Environ Qual. 1993;22(3).
  • Davidson DA, Wilkinson AC, Blais JM, et al. Orographic cold-trapping of persistent organic pollutants by vegetation in mountains of Western Canada. Environ Sci Technol. 2003;37(2):209–215.
  • Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008;151(2):362–367.
  • Becker S, Mundandhara S, Devlin RB, et al. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: Further mechanistic studies. Toxicol Appl Pharmacol. 2005;207(2, Supplement):269–275.
  • Lisk DJ. Environmental implications of incineration of municipal solid waste and ash disposal. Sci Total Environ. 1988;74:39–66.
  • Giusti L. A review of waste management practices and their impact on human health. Waste Manage. 2009;29(8):2227–2239.
  • Stoner GD, Daniel FB, Schenck KM, et al. Metabolism and DNA binding of benzo [a] pyrene in cultured human bladder and bronchus. Carcinogenesis. 1982;3(2):195–201.
  • Reid WD, Ilett KF, Glick JM, et al. Metabolism and binding of aromatic hydrocarbons in the lung: relationship to experimental bronchiolar necrosis 1. Am Rev Respir Dis. 1973;107(4):539–551.
  • U. S. E. P. Agency. Table of regulated drinking water contaminants. Available at: http://www.epa.gov/your-drinking-water/table-regulated-drinking-water-contaminants.
  • WHO. WHO guidelines for indoor air quality: selected pollutants, W. H. Organiazation, Editor. 2010: Europe. Available at: http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf
  • U. EPA. Reducing risk: setting priorities and strategies for environmental protection, EPA, Editor. 1990, US EPA. Available at: http://www.epa.gov/aboutepa/reducing-risk-setting-priorities-and-strategies-environmental-protection
  • Little JC, Hodgson AT, Gadgil AJ. Modeling emissions of volatile organic compounds from new carpets. Atmos Environ. 1994;28(2):227–234.
  • Meininghaus R, Salthammer T, Knöppel H. Interaction of volatile organic compounds with indoor materials—a small-scale screening method. Atmos Environ. 1999;33(15):2395–2401.
  • Kim YM, Harrad S, Harrison RM. Concentrations and sources of VOCs in urban domestic and public microenvironment. Environ Sci Technol. 2001;35(6):997–1004.
  • Wang S, Ang H, Tade MO. Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int. 2007;33(5):694–705.
  • Auvinen J, Wirtanen L. The influence of photocatalytic interior paints on indoor air quality. Atmos Environ. 2008;42(18):4101–4112.
  • OEHHA. California’s office of environmental health hazard assessment. 2007 viewed. Available from: http://www.oehha.ca.gov/air.html
  • Fisk WJ, Rosenfeld AH. Estimates of improved productivity and health from better indoor environments. Indoor air. 1997;7(3):158–172.
  • Khan FI, Ghoshal AK. Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind. 2000;13(6):527–545.
  • Patkar A, Laznow J. Hazardous air pollutant control technologies. Hazmat World. 1992;2:78.
  • Laznow J, Patkar A. The utilization of pollution prevention programs and technology for industrial growth environmental planning policies in developing countries. WMA Annual Meeting, 1992, Air & Waste Management Association, 92-165.101.
  • Soccol CR, Woiciechowski AL, Vandenberghe LP, et al. Biofiltration: an emerging technology. Indian J Biotechnol. 2003;2(3):396–410.
  • Fulazzaky MA, Talaiekhozani A, Ponraj M, et al. Biofiltration process as an ideal approach to remove pollutants from polluted air. Desalin Water Treat. 2014;52(19–21):3600–3615.
  • Majumdar S, Bhaumik D, Sirkar K, et al. A pilot-scale demonstration of a membrane-based absorption-stripping process for removal and recovery of volatile organic compounds. Environ Prog. 2001;20(1):27–35.
  • Sacchetti M, Aguzzi G, Bianchi G, et al. Process for removing and recovering volatile organic substances from industrial waste gases. 1983, US Patent 4,421,532.
  • Khaleel A, Kapoor PN, Klabunde KJ. Nanocrystalline metal oxides as new adsorbents for air purification. Nanostruct Mater. 1999;11(4):459–468.
  • Bodzek M. Membrane techniques in air cleaning. Pol J Environ Stud. 2000;9(1):1–12.
  • Freemantle M. Membranes for gas separation. Chem Eng News. 2005;83(40):3.
  • Greenlee LF, Lawler DF, Freeman BD, et al. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 2009;43(9):2317–2348.
  • Pérez-González A, Urtiaga A, Ibáñez R, et al. State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res. 2012;46(2):267–283.
  • Fakhru’l-Razi A, Pendashteh A, Abdullah LC, et al. Review of technologies for oil and gas produced water treatment. J Hazard Mater. 2009;170(2):530–551.
  • Pradeep T. Noble metal nanoparticles for water purification: a critical review. Thin Solid Films. 2009;517(24):6441–6478.
  • Dadd RC. Ozone/ultraviolet water purification. 1980, US Patent 4230571 A.
  • Leek KF Jr. Domestic grey water purifier using diverter and UV filter treater with preheater. 1992, US Patent 5147532 A.
  • Papić S, Koprivanac N, Božić AL, et al. Removal of some reactive dyes from synthetic wastewater by combined Al (III) coagulation/carbon adsorption process. Dyes Pigm. 2004;62(3):291–298.
  • Shukla A, Zhang Y-H, Dubey P, et al. The role of sawdust in the removal of unwanted materials from water. J Hazard Mater. 2002;95(1):137–152.
  • Kurniawan TA, Chan GY, Lo W-H, et al. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J. 2006;118(1):83–98.
  • Am Water Works Res F, Langlais B, Reckhow DA, et al. Ozone in water treatment: application and engineering. CRC press; 1991.
  • Glaze WH, Kang J-W, Chapin DH. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. 1987.
  • Gupta VK, Ali I, Saleh TA, et al. Chemical treatment technologies for waste-water recycling—an overview. RSC Adv. 2012;2(16):6380–6388.
  • Zularisam A, Ismail A, Salim R. Behaviours of natural organic matter in membrane filtration for surface water treatment—a review. Desalination. 2006;194(1):211–231.
  • Hagen K. Removal of particles, bacteria and parasites with ultrafiltration for drinking water treatment. Desalination. 1998;119(1):85–91.
  • Simpson DR. Biofilm processes in biologically active carbon water purification. Water Res. 2008;42(12):2839–2848.
  • Wiszniowski J, Robert D, Surmacz-Gorska J, et al. Landfill leachate treatment methods: a review. Environ Chem Lett. 2006;4(1):51–61.
  • Sarria V, Parra S, Adler N, et al. Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catal Today. 2002;76(2):301–315.
  • Fujishima A, Honda K-i, Kikuchi S-i. Photosensitized electrolytic oxidation on semiconducting n-type TiO2 electrode. J Soc Chem Ind, Japan. 1969;72(1):108–113.
  • Carp O, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem. 2004;32(1):33–177.
  • Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev. 2014;114(19):9919–9986.
  • Hennig H, Billing R. Advantages and disadvantages of photocatalysis induced by light-sensitive coordination compounds. Coord Chem Rev. 1993;125(1):89–100.
  • Shon H, Phuntsho S, Okour Y, et al. Visible light responsive titanium dioxide (TiO2). J Korean Ind Eng Chem. 2008.
  • Chong MN, Jin B, Chow CW, et al. Recent developments in photocatalytic water treatment technology: a review. Water Res. 2010;44(10):2997–3027.
  • Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev. 1995;95(1):49–68.
  • Chatterjee D, Dasgupta S. Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C: Photochem Rev. 2005;6(2):186–205.
  • Ibhadon AO, Fitzpatrick P. Heterogeneous photocatalysis: recent advances and applications. Catalysts. 2013;3(1):189–218.
  • Doushita K, Inomata H. Photocatalyst article, anti-fogging, anti-soiling articles, and production method of anti-fogging, anti-soiling articles. 2003, Google Patents.
  • Erkan A, Bakir U, Karakas G. Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol A Chem. 2006;184(3):313–321.
  • Bräuer G, Kondruweit S. Surface and coating technologies, In: Bullinger HJ, editor. Technology guide. Berlin: Springer; 2009. p. 42–47.
  • Paz Y. Appl Catal B. 2010;99(3):448–460.
  • Kozlova EA, Smirniotis PG, Vorontsov AV. Application of TiO2 photocatalysis for air treatment: patents' overview. J Photochem Photobiol A. 2004;162(2):503–511.
  • Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009;38(1):253–278.
  • Wunderlich W, Oekermann T, Miao L, et al. Electronic properties of nano porous TiO2 and ZnO thin films – comparison of simulations and experiments. J Ceram Process Res. 2004;5(4):343–354.
  • Nolan NT, Seery MK, Pillai SC. Spectroscopic investigation of the anatase-to-rutile transformation of sol-gel-synthesized TiO2 photocatalysts. J Phys Chem C. 2009;113(36):16151–16157.
  • Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107(7):2891–2959.
  • Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem. 1994;98(51):13669–13679.
  • Liqiang J, Yichun Q, Baiqi W, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells. 2006;90(12):1773–1787.
  • Serpone N, Lawless D, Khairutdinov R, et al. Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes Rp = 1.0–13.4 nm). relevance to heterogeneous photocatalysis. J Phys Chem. 1995;99(45):16655–16661.
  • Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal. 2003;216(1):505–516.
  • Udom I, Goswami D, Ram M, et al. Enhanced TiO2 photocatalytic processing of organic wastes for green space exploration. 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas. 2013, 588.
  • Kato S-i, Masuo F. Titanium dioxide photocatalyzed liquid phase oxidation of tetralin. Kogyo Kagaku Zasshi. 1964;67:1136–1140.
  • McLintock IS, Ritchie M. Reactions on titanium dioxide; photo-adsorption and oxidation of ethylene and propylene. Trans Faraday Soc. 1965;61:1007–1016.
  • Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38.
  • Kamat PV. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev. 1993;93(1):267–300.
  • Mills A, Davies RH, Worsley D. Water purification by semiconductor photocatalysis. Chem Soc Rev. 1993;22(6):417–425.
  • Watanabe T, Kitamura A, Kojima E, et al. Photocatalytic purification and treatment of water and air. Proceedings of the 1st International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air, London, Ontario, Canada. Amsterdam: Elsevier; 1993. p. 747.
  • Pichat P. Partial or complete heterogeneous photocatalytic oxidation of organic compounds in liquid organic or aqueous phases. Catal Today. 1994;19(2):313–333.
  • Hoffmann MR, Martin ST, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95(1):69–96.
  • Mills A, Le Hunte S. An overview of semiconductor photocatalysis. J Photochem Photobiol A: Chem. 1997;108(1):1–35.
  • Sauer ML, Ollis DF. Photocatalyzed oxidation of ethanol and acetaldehyde in humidified air. J Catal. 1996;158(2):570–582.
  • Pichat P, Disdier J, Hoang-Van C, et al. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal Today. 2000;63(2):363–369.
  • Butterfield I, Christensen P, Hamnett A, et al. Applied studies on immobilized titanium dioxide films ascatalysts for the photoelectrochemical detoxification of water. J Appl Electrochem. 1997;27(4):385–395.
  • Bianco Prevot A, Baiocchi C, Brussino MC, et al. Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. Environ Sci Technol. 2001;35(5):971–976.
  • Comparelli R, Fanizza E, Curri M, et al. Photocatalytic degradation of azo dyes by organic-capped anatase TiO2 nanocrystals immobilized onto substrates. Appl Catal, B. 2005;55(2):81–91.
  • Wender H, Feil AF, Diaz LB, et al. Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl Mater Interfaces. 2011;3(4):1359–1365.
  • Mor GK, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006;6(2):215–218.
  • Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature. 1998;395(6702):583–585.
  • O’regan B, Grfitzeli M. A low-cost, high-efficiency solar cell based on dye-sensitized. Nature. 1991;353(6346):737–740.
  • Chiba Y, Islam A, Watanabe Y, et al. Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys. 2006;45(7L):L638.
  • Zhu Y, Shi J, Zhang Z, et al. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal Chem. 2002;74(1):120–124.
  • Savage N, Chwieroth B, Ginwalla A, et al. Composite n–p semiconducting titanium oxides as gas sensors. Sens Actuators, B. 2001;79(1):17–27.
  • Varghese OK, Gong D, Paulose M, et al. Hydrogen sensing using titania nanotubes. Sens Actuators, B. 2003;93(1):338–344.
  • Mor GK, Varghese OK, Paulose M, et al. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin Solid Films. 2006;496(1):42–48.
  • Khan SU, Al-Shahry M, Ingler WB. Efficient photochemical water splitting by a chemically modified n-TiO2. Science. 2002;297(5590):2243–2245.
  • Ni M, Leung MK, Leung DY, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustainable Energy Rev. 2007;11(3):401–425.
  • Anpo M, Yamashita H, Ichihashi Y, et al. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J Electroanal Chem. 1995;396(1):21–26.
  • Anpo M, Chiba K. Photocatalytic reduction of CO2 on anchored titanium oxide catalysts. J Mol Catal. 1992;74(1–3):207–212.
  • Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett. 1985;29(1–2):211–214.
  • Amezaga-Madrid P, Nevarez-Moorillon G, Orrantia-Borunda E, et al. Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO2 based thin films. FEMS Microbiol Lett. 2002;211(2):183–188.
  • Ibáñez JA, Litter MI, Pizarro RA. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: comparative study with other gram bacteria. J Photochem Photobiol A: Chem. 2003;157(1):81–85.
  • Melián JH, Rodrıguez JD, Suárez AV, et al. The photocatalytic disinfection of urban waste waters. Chemosphere. 2000;41(3):323–327.
  • Kühn KP, Chaberny IF, Massholder K, et al. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere. 2003;53(1):71–77.
  • Cornish BJ, Lawton LA, Robertson PK. Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Appl Catal, B. 2000;25(1):59–67.
  • Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46(4):2242–2250.
  • Sullivan W. Weatherability of titanium-dioxide-containing paints. Prog Org Coat. 1972;1(2):157–203.
  • Matskevich L, Bazhinov V. Titanium dioxide optical coatings. Optiko Mekhanicheskaia Promyshlennost. 1977;44:41–43.
  • Day R. The role of titanium dioxide pigments in the degradation and stabilisation of polymers in the plastics industry. Polym Degrad Stab. 1990;29(1):73–92.
  • Tan MH, Commens CA, Burnett L, et al. A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Aust J Dermatol. 1996;37(4):185–187.
  • Sadrieh N, Wokovich AM, Gopee NV, et al. Lack of significant dermal penetration of titanium dioxide (TiO2) from sunscreen formulations containing nano-and sub-micron-size TiO2 particles. Toxicol Sci, 2010, p. 41.
  • Brunette DM, Tengvall P, Textor M, et al. Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. New York: Springer Science & Business Media; 2012.
  • Losee P, Austin FR, Austin BD. Inclusion of tooth whitening oxidation chemistries into a tooth-paste composition. 1998, US Patent 5785957 A.
  • Kamat PV. TiO2 nanostructures: recent physical chemistry advances. J Phys Chem C. 2012;116(22):11849–11851.
  • Mowbray D, Martinez JI, Calle-Vallejo F, et al. Trends in metal oxide stability for nanorods, nanotubes, and surfaces. J Phys Chem C. 2010;115(5):2244–2252.
  • Fang WQ, Gong X-Q, Yang HG. On the unusual properties of anatase TiO2 exposed by highly reactive facets. J Phys Chem Lett. 2011;2(7):725–734.
  • Yu J, Hai Y, Cheng B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. J Phys Chem C. 2011;115(11):4953–4958.
  • Nishijima Y, Ueno K, Yokota Y, et al. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J Phys Chem Lett. 2010;1(13):2031–2036.
  • Tang Z-R, Li F, Zhang Y, et al. Composites of titanate nanotube and carbon nanotube as photocatalyst with high mineralization ratio for gas-phase degradation of volatile aromatic pollutant. J Phys Chem C. 2011;115(16):7880–7886.
  • Ng YH, Lightcap IV, Goodwin K, et al. To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films. J Phys Chem Lett. 2010;1(15):2222–2227.
  • Bell NJ, Ng YH, Du A, et al. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J Phys Chem C. 2011;115(13):6004–6009.
  • Kamat PV. Graphene-based nanoarchitectures: anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett. 2009;1(2):520–527.
  • Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293(5528):269–271.
  • Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl Catal, B. 2003;42(4):403–409.
  • Pillai SC, Periyat P, George R, et al. Synthesis of high-temperature stable anatase TiO2 photocatalyst. J Phys Chem C. 2007;111(4):1605–1611.
  • Wang C-C, Ying JY. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater. 1999;11(11):3113–3120.
  • Zhao G, Kozuka H, Yoko T. Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films. 1996;277(1):147–154.
  • Ansari SA, Khan MM, Ansari MO, et al. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem. 2016;40(4):3000–3009.
  • Richard C, Bosquet F, Pilichowski J-F. Photocatalytic transformation of aromatic compounds in aqueous zinc oxide suspensions: effect of substrate concentration on the distribution of products. J Photochem Photobiol A. 1997;108(1):45–49.
  • Driessen M, Miller T, Grassian V. Photocatalytic oxidation of trichloroethylene on zinc oxide: characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy. J Mol Catal A: Chem. 1998;131(1):149–156.
  • Villaseñor J, Reyes P, Pecchi G. Photodegradation of pentachlorophenol on ZnO. J Chem Technol Biotechnol. 1998;72(2):105–110.
  • Yeber MC, Rodríguez J, Freer J, et al. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere. 2000;41(8):1193–1197.
  • Yu J, Yu X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol. 2008;42(13):4902–4907.
  • Zhang Y, Ram MK, Stefanakos EK, et al. Enhanced photocatalytic activity of iron doped zinc oxide nanowires for water decontamination. Surf Coat Technol. 2013;217:119–123.
  • Mahato T, Prasad G, Singh B, et al. Nanocrystalline zinc oxide for the decontamination of sarin. J Hazard Mater. 2009;165(1):928–932.
  • Sapkota A, Anceno AJ, Baruah S, et al. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology. 2011;22(21):215703.
  • Prasad G, Ramacharyulu P, Singh B, et al. Sun light assisted photocatalytic decontamination of sulfur mustard using ZnO nanoparticles. J Mol Catal A: Chem. 2011;349(1):55–62.
  • Abdollahi Y, Abdullah AH, Zainal Z, et al. Photocatalytic degradation of p-Cresol by zinc oxide under UV irradiation. Int J Mol Sci. 2011;13(1):302–315.
  • Rao GD, Kaushik M, Halve A. An efficient synthesis of naphtha [1, 2-e] oxazinone and 14-substituted-14H-dibenzo [a, j] xanthene derivatives promoted by zinc oxide nanoparticle under thermal and solvent-free conditions. Tetrahedron Lett. 2012;53(22):2741–2744.
  • Lam S-M, Sin J-C, Abdullah AZ, et al. Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalin Water Treat. 2012;41(1–3):131–169.
  • Gaya UI, Abdullah AH, Hussein MZ, et al. Photocatalytic removal of 2, 4, 6-trichlorophenol from water exploiting commercial ZnO powder. Desalination. 2010;263(1):176–182.
  • Sun H, Feng X, Wang S, et al. Combination of adsorption, photochemical and photocatalytic degradation of phenol solution over supported zinc oxide: effects of support and sulphate oxidant. Chem Eng J. 2011;170(1):270–277.
  • Baruah S, Pal SK, Dutta J. Nanostructured zinc oxide for water treatment. Nanosci Nanotechnol-Asia. 2012;2(2):90–102.
  • Chan SHS, Yeong Wu T, Juan JC, et al. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste–water. J Chem Technol Biotechnol. 2011;86(9):1130–1158.
  • Anju S, Yesodharan S, Yesodharan E. Zinc oxide mediated sonophotocatalytic degradation of phenol in water. Chem Eng J. 2012;189:84–93.
  • Kukreja LM, Barik S, Misra P. Variable band gap ZnO nanostructures grown by pulsed laser deposition. J Cryst Growth. 2004;268(3–4):531–535.
  • Neppolian B, Sakthivel S, Arabindoo B, et al. Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts. J Environ Sci Health Part A. 1999;34(9):1829–1838.
  • Zhang Y, Ram MK, Stefanakos EK, et al. Synthesis, characterization, and applications of ZnO nanowires. J Nanomater. 2012;2012:20.
  • Kansal S, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater. 2007;141(3):581–590.
  • Gouvea CA, Wypych F, Moraes SG, et al. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere. 2000;40(4):433–440.
  • Khodja AA, Sehili T, Pilichowski J-F, et al. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J Photochem Photobiol A. 2001;141(2):231–239.
  • Sakthivel S, Neppolian B, Shankar M, et al. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells. 2003;77(1):65–82.
  • Sobana N, Swaminathan M. The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep Purif Technol. 2007;56(1):101–107.
  • Dindar B, Içli S. Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J Photochem Photobiol A. 2001;140(3):263–268.
  • Van Dijken A, Janssen A, Smitsmans M, et al. Size-selective photoetching of nanocrystalline semiconductor particles. Chem Mater. 1998;10(11):3513–3522.
  • Yamaguchi Y, Yamazaki M, Yoshihara S, et al. Photocatalytic ZnO films prepared by anodizing. J Electroanal Chem. 1998;442(1):1–3.
  • Hosono E, Fujihara S, Honma I, et al. The fabrication of an upright–standing zinc oxide nanosheet for use in dye–sensitized solar cells. Adv Mater. 2005;17(17):2091–2094.
  • Du Pasquier A, Chen H, Lu Y. Dye sensitized solar cells using well-aligned zinc oxide nanotip arrays. Appl Phys Lett. 2006;89(25):253513.
  • Tennakone K, Perera V, Kottegoda I, et al. Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin (IV) oxide films. J Phys D: Appl Phys. 1999;32(4):374.
  • Lupan O, Shishiyanu S, Chow L, et al. Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing. Thin Solid Films. 2008;516(10):3338–3345.
  • Nanto H, Minami T, Takata S. Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity. J Appl Phys. 1986;60(2):482–484.
  • Steinfeld A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy. 2002;27(6):611–619.
  • Sahoo S, Maiti M, Ganguly A, et al. Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber. J Appl Polym Sci. 2007;105(4):2407–2415.
  • Ibarra L, Marcos-Fernandez A, Alzorriz M. Mechanistic approach to the curing of carboxylated nitrile rubber (XNBR) by zinc peroxide/zinc oxide. Polymer (Guildf). 2002;43(5):1649–1655.
  • Wong J. Nonlinear resistor material and method of manufacture. 1977, US Patent 4003855 A.
  • Gupta TK. Application of zinc oxide varistors. J Am Ceram Soc. 1990;73(7):1817–1840.
  • Kachynski AV, Kuzmin AN, Nyk M, et al. Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J Phys Chem C. 2008;112(29):10721–10724.
  • Kuschner WG, D’Alessandro A, Wong H, et al. Early pulmonary cytokine responses to zinc oxide fume inhalation. Environ Res. 1997;75(1):7–11.
  • Bates JWW, Keith ICH. Tobacco smoke filter. 1966, US Patent 3251365 A.
  • Espitia PJP, Soares NdFF, dos Reis Coimbra JS, et al. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioproc Tech. 2012;5(5):1447–1464.
  • Johnson JA, Heidenreich JJ, Mantz RA, et al. A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings. Prog Org Coat. 2003;47(3):432–442.
  • Lansdown A, Taylor A. Zinc and titanium oxides: promising UV-absorbers but what influence do they have on the intact skin. Int J Cosmet Sci. 1997;19(4):167–172.
  • Jagtap R, Patil P, Hassan S. Effect of zinc oxide in combating corrosion in zinc-rich primer. Prog Org Coat. 2008;63(4):389–394.
  • Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006;312(5771):242–246.
  • Liqiang J, Dejun W, Baiqi W, et al. Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles. J Mol Catal A: Chem. 2006;244(1):193–200.
  • Stroyuk A, Shvalagin V, Kuchmii SY. Photochemical synthesis and optical properties of binary and ternary metal–semiconductor composites based on zinc oxide nanoparticles. J Photochem Photobiol A. 2005;173(2):185–194.
  • Shaporev A, Ivanov V, Baranchikov A, et al. Hydrothermal synthesis and photocatalytic activity of highly dispersed ZnO powders. Russian J Inorg Chem. 2006;51(10):1523–1527.
  • Xu F, Yuan Z-Y, Du G-H, et al. High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties. Appl Phys A. 2007;86(2):181–185.
  • Akhavan O, Mehrabian M, Mirabbaszadeh K, et al. Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria. J Phys D: Appl Phys. 2009;42(22):225305.
  • Zuo A, Hu P, Bai L, et al. Synthesis of tunable 3D ZnO architectures assemblied with nanoplates. Cryst Res Technol. 2009;44(6):613–618.
  • Wang D, Zhao Y, Song C. Synthesis and properties of cuboid-shaped ZnO hierarchical structures. Solid State Sci. 2010;12(5):776–782.
  • Ladanov M, Algarin-Amaris P, Matthews G, et al. Microfluidic hydrothermal growth of ZnO nanowires over high aspect ratio microstructures. Nanotechnology. 2013;24(37):375301.
  • Ladanov M, Amaris PCA, Matthews G, et al. Microstructured crystalline device in confined space, a dye-sensitized solar cell, and method of preparation thereof. 2013, US Patent 9443662 B2.
  • Wang T, Jiao Z, Chen T, et al. Vertically aligned ZnO nanowire arrays tip-grafted with silver nanoparticles for photoelectrochemical applications. Nanoscale. 2013;5(16):7552–7557.
  • Udom I, Zhang Y, Ram MK, et al. A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification. Thin Solid Films. 2014;564:258–263.
  • Santato C, Odziemkowski M, Ulmann M, et al. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc. 2001;123(43):10639–10649.
  • Granqvist CG. Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells. 2000;60(3):201–262.
  • Baeck SH, Choi KS, Jaramillo TF, et al. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv Mater. 2003;15(15):1269–1273.
  • Solis J, Saukko S, Kish L, et al. Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films. 2001;391(2):255–260.
  • Qu W, Wlodarski W. A thin-film sensing element for ozone, humidity and temperature. Sens Actuators, B. 2000;64(1):42–48.
  • Li Y, Bando Y, Golberg D. Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv Mater. 2003;15(15):1294–1296.
  • Bechinger C, Burdis M, Zhang J-G. Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films. Solid State Commun. 1997;101(10):753–756.
  • Svensson J, Granqvist C. Electrochromic tungsten oxide films for energy efficient windows. Sol Energy Mater. 1984;11(1):29–34.
  • Avendano E, Berggren L, Niklasson GA, et al. Electrochromic materials and devices: brief survey and new data on optical absorption in tungsten oxide and nickel oxide films. Thin Solid Films. 2006;496(1):30–36.
  • Livage J, Guzman G. Aqueous precursors for electrochromic tungsten oxide hydrates. Solid State Ionics. 1996;84(3):205–211.
  • Subrahmanyam A, Karuppasamy A. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films. Sol Energ Mater Sol Cells. 2007;91(4):266–274.
  • Jelle B, Hagen G. Transmission spectra of an electrochromic window based on polyaniline, prussian blue and tungsten oxide. J Electrochem Soc. 1993;140(12):3560–3564.
  • Granqvist CG. Electrochromic materials: Microstructure, electronic bands, and optical properties. Appl Phys A; 57(1):3–12.
  • Bamwenda GR, Arakawa H. The visible light induced photocatalytic activity of tungsten trioxide powders. Appl Catal, A. 2001;210(1–2):181–191.
  • Le Bellac D, Azens A, Granqvist C. Angular selective transmittance through electrochromic tungsten oxide films made by oblique angle sputtering. Appl Phys Lett. 1995;66(14):1715–1716.
  • Zheng H, Ou JZ, Strano MS, et al. Nanostructured tungsten oxide–properties, synthesis, and applications. Adv Funct Mater. 2011;21(12):2175–2196.
  • Tao C, Ruan S, Xie G, et al. Role of tungsten oxide in inverted polymer solar cells. Appl Phys Lett. 2009;94(4):29.
  • Han S, Shin WS, Seo M, et al. Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes. Org Electron. 2009;10(5):791–797.
  • Lethy K, Beena D, Mahadevan Pillai V, et al. Bandgap renormalization in titania modified nanostructured tungsten oxide thin films prepared by pulsed laser deposition technique for solar cell applications. J Appl Phys. 2008;104(3):3515.
  • Tan Za, Li L, Cui C, et al. Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells. J Phys Chem C. 2012;116(35):18626–18632.
  • Zhao ZG, Miyauchi M. Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew Chem. 2008;120(37):7159–7163.
  • Nemoto Y, Shigeta S, Yokokawa Y. Optical recording medium. 1985, US Patent 4548889 A.
  • Aoki T, Matsushita T, Suzuki A, et al. Write-once optical recording using WO2 films prepared by pulsed laser deposition. Thin Solid Films. 2006;509(1):107–112.
  • Maekawa T, Tamaki J, Miura N, et al. Gold-loaded tungsten oxide sensor for detection of ammonia in air. Chem Lett. 1992;(4):639–642.
  • Polleux J, Gurlo A, Barsan N, et al. Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew Chem. 2006;118(2):267–271.
  • Ponzoni A, Comini E, Sberveglieri G, et al. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl Phys Lett. 2006;88(20):203101.
  • Kim YS, Ha S-C, Kim K, et al. Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl Phys Lett. 2005;86(21):3105.
  • Akiyama M, Tamaki J, Miura N, et al. Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2. Chem Lett. 1991;(9):1611–1614.
  • Sekimoto S, Nakagawa H, Okazaki S, et al. A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sens Actuators, B. 2000;66(1):142–145.
  • Rout CS, Hegde M, Rao C. H2S sensors based on tungsten oxide nanostructures. Sens Actuators, B. 2008;128(2):488–493.
  • Tamaki J, Zhang Z, Fujimori K, et al. Grain-size effects in tungsten oxide-based sensor for nitrogen oxides. J Electrochem Soc. 1994;141(8):2207–2210.
  • Zhou J, Gong L, Deng SZ, et al. Growth and field-emission property of tungsten oxide nanotip arrays. Appl Phys Lett. 2005;87(22):223108.
  • Liu J, Zhang Z, Zhao Y, et al. Tuning the field-emission properties of tungsten oxide nanorods. Small. 2005;1(3):310–313.
  • Chang MT, Chou LJ, Chueh YL, et al. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties. Small. 2007;3(4):658–664.
  • Seelaboyina R, Huang J, Park J, et al. Multistage field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions. Nanotechnology. 2006;17(19):4840.
  • Sayama K, Mukasa K, Abe R, et al. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−I− shuttle redox mediator under visible light irradiation. Chem Commun. 2001;(23):2416–2417.
  • Zhang L, Li Y, Zhang Q, et al. Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. CrystEngComm. 2013;15(30):5986–5993.
  • Hwang DW, Kim J, Park TJ, et al. Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting. Catal Lett; 80(1):53–57.
  • Hameed A, Gondal MA, Yamani ZH. Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal Commun. 2004;5(11):715–719.
  • Tang J, Ye J. Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides. J Mater Chem. 2005;15(39):4246–4251.
  • Xiang Q, Meng GF, Zhao HB, et al. Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J Phys Chem C. 2010;114(5):2049–2055.
  • Bhowmik R, Saravanan A. Surface magnetism, morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3 (hematite) nanograins. J Appl Phys. 2010;107(5):053916.
  • Lin S. Magnetic properties of hematite single crystals. I. Magnetization isotherms, antiferromagnetic susceptibility, and weak ferromagnetism of a natural crystal. Phys Rev. 1959;116(6):1447.
  • Prior DJ, Trimby PW, Weber UD, et al. Orientation contrast imaging of microstructures in rocks using forescatter detectors in the scanning electron microscope. Mineral Mag. 1996;60(6):859–869.
  • Laurent S, Saei AA, Behzadi S, et al. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11(9):1449–1470.
  • Gou X, Wang G, Park J, et al. Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology. 2008;19(12):125606.
  • Fang X-L, Chen C, Jin M-S, et al. Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment. J Mater Chem. 2009;19(34):6154–6160.
  • Gou X, Wang G, Kong X, et al. Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterisation and application for gas-sensing. Chem Eur J. 2008;14(19):5996–6002.
  • Chen J, Xu L, Li W, et al. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater. 2005;17(5):582–586.
  • Wu Z, Yu K, Zhang S, et al. Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J Phys Chem C. 2008;112(30):11307–11313.
  • Meng F, Li J, Cushing SK, et al. Photocatalytic water oxidation by hematite/reduced graphene oxide composites. ACS Catal. 2013;3(4):746–751.
  • Chen Y-H, Li F-A. Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J Colloid Interface Sci. 2010;347(2):277–281.
  • Tong G, Guan J, Zhang Q. Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic properties. Mater Chem Phys. 2011;127(1):371–378.
  • Young KM, Klahr BM, Zandi O, et al. Photocatalytic water oxidation with hematite electrodes. Catal Sci Technol. 2013;3(7):1660–1671.
  • Batzill M, Diebold U. The surface and materials science of tin oxide. Prog Surf Sci. 2005;79(2):47–154.
  • Park Y, Choong V, Gao Y, et al. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl Phys Lett. 1996;68(19):2699–2701.
  • Ishibashi S, Higuchi Y, Ota Y, et al. Low resistivity indium–tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films. J Vacuum Sci Technol A. 1990;8(3):1403–1406.
  • Ohta H, Orita M, Hirano M, et al. Highly electrically conductive indium–tin–oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition. Appl Phys Lett. 2000;76(19):2740–2742.
  • Jones CA, Leonard JJ, Sofranko JA. Methane conversion. 1984, US Patent 4444984 A.
  • Jinkawa T, Sakai G, Tamaki J, et al. Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides. J Mol Catal A: Chem. 2000;155(1):193–200.
  • Furuta S, Matsuhashi H, Arata K. Catalytic action of sulfated tin oxide for etherification and esterification in comparison with sulfated zirconia. Appl Catal, A. 2004;269(1):187–191.
  • Coles GS, Williams G, Smith BM. Tin oxide gas sensors. 1995, US Patent 5427740 A.
  • Watson J. The tin oxide gas sensor and its applications. Sens Actuators. 1984;5(1):29–42.
  • Suehle JS, Cavicchi RE, Gaitan M, et al. Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing. IEEE Electron Device Lett. 1993;14(3):118–120.
  • Wlodek S, Colbow K, Consadori F. Signal-shape analysis of a thermally cycled tin-oxide gas sensor. Sens Actuators, B. 1991;3(1):63–68.
  • Wang G, Lu W, Li J, et al. V-shaped tin oxide nanostructures featuring a broad photocurrent signal: an effective visible-light-driven photocatalyst. Small. 2006;2(12):1436–1439.
  • Habibi MH, Talebian N. Photocatalytic degradation of an azo dye X6G in water: a comparative study using nanostructured indium tin oxide and titanium oxide thin films. Dyes Pigm. 2007;73(2):186–194.
  • Dholam R, Patel N, Santini A, et al. Efficient indium tin oxide/Cr-doped-TiO2 multilayer thin films for H2 production by photocatalytic water-splitting. Int J Hydrogen Energy. 2010;35(18):9581–9590.
  • Dholam R, Patel N, Miotello A. Efficient H2 production by water-splitting using indium–tin-oxide/V-doped TiO2 multilayer thin film photocatalyst. Int J Hydrogen Energy. 2011;36(11):6519–6528.
  • Vinodgopal K, Kamat PV. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ Sci Technol. 1995;29(3):841–845.
  • Tennakone K, Bandara J. Photocatalytic activity of dye-sensitized tin (IV) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites. Appl Catal, A. 2001;208(1):335–341.
  • Lin J, Jimmy CY, Lo D, et al. Photocatalytic activity of rutile Ti1− x SnxO2 solid solutions. J Catal. 1999;183(2):368–372.
  • Pan R, Pan S, Zhou J, et al. Surface-modification of indium tin oxide nanoparticles with titanium dioxide by a nonaqueous process and its photocatalytic properties. Appl Surf Sci. 2009;255(6):3642–3647.
  • Bessekhouad Y, Robert D, Weber JV. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J Photochem Photobiol A. 2003;157(1):47–53.
  • Kim KD, Kim HT. Synthesis of titanium dioxide nanoparticles using a continuous reaction method. Colloids Surf, A. 2002;207(1–3):263–269.
  • Kuznetsova IN, Blaskov V, Stambolova I, et al. TiO2 pure phase brookite with preferred orientation, synthesized as a spin-coated film. Mater Lett. 2005;59(29–30):3820–3823.
  • Lee JH, Yang YS. Effect of hydrolysis conditions on morphology and phase content in the crystalline TiO2 nanoparticles synthesized from aqueous TiCl4 solution by precipitation. Mater Chem Phys. 2005;93(1):237–242.
  • Manorama SV, Madhusudan Reddy K, Gopal Reddy CV, et al. Photostabilization of dye on anatase titania nanoparticles by polymer capping. J Phys Chem Solids. 2002;63(1):135–143.
  • Sugimoto T, Okada K, Itoh H. Synthetic of uniform spindle-type titania particles by the gel-sol method. J Colloid Interface Sci. 1997;193(1):140–143.
  • Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method: 3. Formation process and size control. J Colloid Interface Sci. 2003;259(1):43–52.
  • Znaidi L, Séraphimova R, Bocquet JF, et al. A semi-continuous process for the synthesis of nanosize TiO2 powders and their use as photocatalysts. Mater Res Bull. 2001;36(5–6):811–825.
  • Sato G, Arima Y, Tanaka H, et al. Titanium oxide sol and process for preparation thereof. 1995, US Patent 5403513 A.
  • Niederberger M, Bartl MH, Stucky GD. Benzyl alcohol and titanium tetrachloride a versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem Mater. 2002;14(10):4364–4370.
  • Parala H, Devi A, Bhakta R, et al. Synthesis of nano-scale TiO2 particles by a nonhydrolytic approach. J Mater Chem. 2002;12(6):1625–1627.
  • Tang J, Redl F, Zhu Y, et al. An organometallic synthesis of TiO2 nanoparticles. Nano Lett. 2005;5(3):543–548.
  • Lafond V, Mutin P, Vioux A. Control of the texture of titania-silica mixed oxides prepared by nonhydrolytic sol-gel. Chem Mater. 2004;16(25):5380–5386.
  • Trentler TJ, Denler TE, Bertone JF, et al. Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J Am Chem Soc. 1999;121(7):1613–1614.
  • Andersson M, Österlund L, Ljungstroem S, et al. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B. 2002;106(41):10674–10679.
  • Yuan Z-Y, Su B-L. Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf, A. 2004;241(1):173–183.
  • Barbe CJ, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc. 1997;80(12):3157–3171.
  • Sterte J. Synthesis and properties of titanium oxide cross-linked montmorillonite. Clays Clay Miner. 1986;34(6):658–664.
  • Chae SY, Park MK, Lee SK, et al. Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem Mater. 2003;15(17):3326–3331.
  • Yang J, Mei S, Ferreira JM. Hydrothermal synthesis of nanosized titania powders: influence of peptization and peptizing agents on the crystalline phases and phase transitions. J Am Ceram Soc. 2000;83(6):1361–1368.
  • Yang J, Mei S, Ferreira JM. In situ preparation of weakly flocculated aqueous anatase suspensions by a hydrothermal technique. J Colloid Interface Sci. 2003;260(1):82–88.
  • Xie R-C, Shang JK. Morphological control in solvothermal synthesis of titanium oxide. J Mater Sci. 2007;42(16):6583–6589.
  • Li G, Gray KA. Preparation of mixed-phase titanium dioxide nanocomposites via solvothermal processing. Chem Mater. 2007;19(5):1143–1146.
  • Yang HG, Liu G, Qiao SZ, et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc. 2009;131(11):4078–4083.
  • Kominami H, Ishii Y, Kohno M, et al. Nanocrystalline brookite-type titanium (IV) oxide photocatalysts prepared by a solvothermal method: correlation between their physical properties and photocatalytic activities. Catal Letters. 2003;91(1–2):41–47.
  • Choi HG, Jung YH, Kim DK. Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J Am Ceram Soc. 2005;88(6):1684–1686.
  • Zhao L, Chen X, Wang X, et al. One-step solvothermal synthesis of a carbon@ TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv Mater. 2010;22(30):3317–3321.
  • Gaya UI, Abdullah AH. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C. 2008;9(1):1–12.
  • Su C, Hong B-Y, Tseng C-M. Sol-gel preparation and photocatalysis of titanium dioxide. Catal Today. 2004;96(3):119–126.
  • Sanchez C, Lebeau B, Chaput F, et al. Optical properties of functional hybrid organic–inorganic nanocomposites. Adv Mater. 2003;15(23):1969–1994.
  • Su C, Hong BY, Tseng CM. Sol-gel preparation and photocatalysis of titanium dioxide. Catal Today. 2004;96(3):119–126.
  • Banfield J. Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem. 1998;8(9):2073–2076.
  • Zhang H, Banfield JF. Size dependence of the kinetic rate constant for phase transformation in TiO2 nanoparticles. Chem Mater. 2005;17(13):3421–3425.
  • Zhang H, Finnegan M, Banfield JF. Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature. Nano Lett. 2001;1(2):81–85.
  • Spanhel L, Anderson MA. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc. 1991;113(8):2826–2833.
  • Tang W, Cameron D. Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process. Thin Solid Films. 1994;238(1):83–87.
  • Asakuma N, Hirashima H, Imai H, et al. Crystallization and reduction of sol-gel-derived zinc oxide films by irradiation with ultraviolet lamp. J Solgel Sci Technol. 2003;26(1–3):181–184.
  • Natsume Y, Sakata H. Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films. 2000;372(1):30–36.
  • Lauf RJ, Bond W. Fabrication of high-field zinc oxide varistors by sol-gel processing. Am Ceram Soc Bull (United States). 1984;63(2.
  • Li H, Wang J, Liu H, et al. Sol-gel preparation of transparent zinc oxide films with highly preferential crystal orientation. Vacuum. 2004;77(1):57–62.
  • Sinha R, Ganesana M, Andreescu S, et al. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides. Anal Chim Acta. 2010;661(2):195–199.
  • Ladanov M, Amaris PA, Villalba P, et al. ZnO nanowires grown on ZnO thin film deposited by atomic layer deposition. AIP Conference Proceedings, 2012, American Institute of Physics, Ste. 1 NO 1 Melville NY 11747-4502 United States.
  • Laudise R, Ballman A. Hydrothermal synthesis of zinc oxide and zinc sulfide. J Phys Chem. 1960;64(5):688–691.
  • Laudise R, Kolb E, Caporaso A. Hydrothermal growth of large sound crystals of zinc oxide. J Am Ceram Soc. 1964;47(1):9–12.
  • Xu H, Wang H, Zhang Y, et al. Hydrothermal synthesis of zinc oxide powders with controllable morphology. Ceram Int. 2004;30(1):93–97.
  • Joo J, Chow BY, Prakash M, et al. Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nat Mater. 2011;10(8):596–601.
  • Dem’Yanets L, Li L, Uvarova T. Zinc oxide: hydrothermal growth of nano-and bulk crystals and their luminescent properties. J Mater Sci. 2006;41(5):1439–1444.
  • Ladanov M, Algarin-Amaris P, Villalba P, et al. Effects of the physical properties of atomic layer deposition grown seeding layers on the preparation of ZnO nanowires. J Phys Chem Solids. 2013;74(11):1578–1588.
  • Becheri A, Dürr M, Nostro PL, et al. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res. 2008;10(4):679–689.
  • Sugunan A, Warad HC, Boman M, et al. Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine. J Solgel Sci Technol. 2006;39(1):49–56.
  • Ladanov M, Ram M, Kumar A, et al. Novel aster-like ZnO nanowire clusters for nanocomposites. MRS Proceedings, 2011, Cambridge University Press, mrsf10-1312-ii1303-1323.
  • Sivakumar R, Jayachandran M, Sanjeeviraja C. Studies on the effect of substrate temperature on (VI–VI) textured tungsten oxide (WO3) thin films on glass, SnO2: F substrates by PVD: EBE technique for electrochromic devices. Mater Chem Phys. 2004;87(2):439–445.
  • Miller EL, Marsen B, Cole B, et al. Low-temperature reactively sputtered tungsten oxide films for solar-powered water splitting applications. Electrochem Solid-State Lett. 2006;9(7):G248–G250.
  • Baek Y, Yong K. Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder. J Phys Chem C. 2007;111(3):1213–1218.
  • Hong K, Xie M, Hu R, et al. Synthesizing tungsten oxide nanowires by a thermal evaporation. Appl Phys Lett. 2007;90(17):173121.
  • Senthil K, Yong K. Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing. Nanotechnology. 2007;18(39):395604.
  • Breedon M, Spizzirri P, Taylor M, et al. Synthesis of nanostructured tungsten oxide thin films: A simple, controllable, inexpensive, aqueous sol-gel method. Cryst Growth Des. 2009;10(1):430–439.
  • Takase A, Miyakawa K. Raman study on sol-gel derived tungsten oxides from tungsten ethoxide. Jpn J Appl Phys. 1991;30(8B):L1508.
  • Özer N. Optical and electrochemical characteristics of sol-gel deposited tungsten oxide films: a comparison. Thin Solid Films. 1997;304(1):310–314.
  • Nishide T, Mizukami F. Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process. Thin Solid Films. 1995;259(2):212–217.
  • Deepa M, Singh P, Sharma S, et al. Effect of humidity on structure and electrochromic properties of sol-gel-derived tungsten oxide films. Sol Energy Mater Sol Cells. 2006;90(16):2665–2682.
  • Song X, Zhao Y, Zheng Y. Hydrothermal synthesis of tungsten oxide nanobelts. Mater Lett. 2006;60(28):3405–3408.
  • You L, Sun Y, Ma J, et al. Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment. Sens Actuators, B. 2011;157(2):401–407.
  • Li Y, Su X, Jian J, et al. Ethanol sensing properties of tungsten oxide nanorods prepared by microwave hydrothermal method. Ceram Int. 2010;36(6):1917–1920.
  • Mukherjee N, Paulose M, Varghese OK, et al. Fabrication of nanoporous tungsten oxide by galvanostatic anodization. J Mater Res. 2003;18(10):2296–2299.
  • Di Paola A, Di Quarto F, Sunseri C. Electrochromism in anodically formed tungsten oxide films. J Electrochem Soc. 1978;125(8):1344–1347.
  • Di Paola A, Di Quarto F, Sunseri C. Anodic oxide films on tungsten—I. The influence of anodizing parameters on charging curves and film composition. Corros Sci. 1980;20(8):1067–1078.
  • Supothina S, Seeharaj P, Yoriya S, et al. Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram Int. 2007;33(6):931–936.
  • Xu Z, Tabata I, Hirogaki K, et al. Preparation of platinum-loaded cubic tungsten oxide: a highly efficient visible light-driven photocatalyst. Mater Lett. 2011;65(9):1252–1256.
  • Yu J, Yu H, Cheng B, et al. Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. J Mol Catal A: Chem. 2006;253(1–2):112–118.
  • Yu JC, Lin J, Lo D, et al. Influence of thermal treatment on the adsorption of oxygen and photocatalytic activity of TiO2. Langmuir. 2000;16(18):7304–7308.
  • Pan X, Zhao Y, Liu S, et al. Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl Mater Interfaces. 2012;4(8):3944–3950.
  • Yang G, Jiang Z, Shi H, et al. Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem. 2010;20(25):5301–5309.
  • Wang J, Tafen DN, Lewis JP, et al. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc. 2009;131(34):12290–12297.
  • Lai Y-K, Huang J-Y, Zhang H-F, et al. Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. J Hazard Mater. 2010;184(1):855–863.
  • He Z, Zhan L, Hong F, et al. A visible light-responsive iodine-doped titanium dioxide nanosphere. J Environ Sci. 2011;23(1):166–170.
  • Hong X, Wang Z, Cai W, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem Mater. 2005;17(6):1548–1552.
  • Song S, Tu J, He Z, et al. Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination. Appl Catal, A. 2010;378(2):169–174.
  • Song S, Hong F, He Z, et al. Influence of zirconium doping on the activities of zirconium and iodine co-doped titanium dioxide in the decolorization of methyl orange under visible light irradiation. Appl Surf Sci. 2011;257(23):10101–10108.
  • He Z, Xu X, Song S, et al. A visible light-driven titanium dioxide photocatalyst codoped with lanthanum and iodine: an application in the degradation of oxalic acid. J Phys Chem C. 2008;112(42):16431–16437.
  • Momeni MM, Ghayeb Y. Preparation of cobalt coated TiO2 and WO3–TiO2 nanotube films via photo-assisted deposition with enhanced photocatalytic activity under visible light illumination. Ceram Int. 2016;42(6):7014–7022.
  • Seery MK, George R, Floris P, et al. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol A. 2007;189(2–3):258–263.
  • Yu J, Dai G, Huang B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J Phys Chem C. 2009;113(37):16394–16401.
  • Wu JC-S, Chen C-H. A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. J Photochem Photobiol A. 2004;163(3):509–515.
  • Shen X-Z, Liu Z-C, Xie S-M, et al. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. J Hazard Mater. 2009;162(2–3):1193–1198.
  • Wang C, Ao Y, Wang P, et al. Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. J Hazard Mater. 2010;178(1–3):517–521.
  • Li Q, Shang JK. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance. Environ Sci Technol. 2009;43(23):8923–8929.
  • Ren W, Ai Z, Jia F, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal, B. 2007;69(3–4):138–144.
  • Wang S, Zhou S. Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. J Hazard Mater. 2011;185(1):77–85.
  • Jing L, Yuan F, Hou H, et al. Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles. Sci China Ser B: Chem; 48(1):25–30.
  • Lin H-F, Liao S-C, Hung S-W. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J Photochem Photobiol A. 2005;174(1):82–87.
  • Liu H, Yang J, Liang J, et al. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. J Am Ceram Soc. 2008;91(4):1287–1291.
  • Lu Y, Lin Y, Wang D, et al. A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties. Nano Res. 2011;4(11):1144–1152.
  • Li D, Haneda H. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition. J Photochem Photobiol A. 2003;155(1–3):171–178.
  • Ullah R, Dutta J. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater. 2008;156(1–3):194–200.
  • Liu S, Li C, Yu J, et al. Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm. 2011;13(7):2533–2541.
  • Kaneva NV, Dimitrov DT, Dushkin CD. Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light. Appl Surf Sci. 2011;257(18):8113–8120.
  • Wu C, Huang Q. Synthesis of Na-doped ZnO nanowires and their photocatalytic properties. J Lumin. 2010;130(11):2136–2141.
  • Saoud K, Alsoubaihi R, Bensalah N, et al. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications. Mater Res Bull. 2015;63:134–140.
  • Šutka A, Käämbre T, Pärna R, et al. Co doped ZnO nanowires as visible light photocatalysts. Solid State Sci. 2016;56:54–62.
  • Feng S, Li D, Low Z-x, et al. ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter. J Memb Sci. 2017;531:86–93.
  • Sadeghi M, Yekta S, Ghaedi H. Decontamination of chemical warfare sulfur mustard agent simulant by ZnO nanoparticles. Int Nano Lett. 2016;6(3):161–171.
  • Di Mauro A, Cantarella M, Nicotra G, et al. Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications. Scientific reports, 2017, 7.
  • Bora T, Sathe P, Laxman K, et al. Defect engineered visible light active ZnO nanorods for photocatalytic treatment of water. Catal Today. 2017;284:11–18.
  • Abe R, Takami H, Murakami N, et al. Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Chem Soc. 2008;130(25):7780–7781.
  • Leghari SAK, Sajjad S, Chen F, et al. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chem Eng J. 2011;166(3):906–915.
  • Yu J, Qi L. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity. J Hazard Mater. 2009;169(1–3):221–227.
  • Jitta RR, Guje R, Veldurthi NK, et al. Preparation, characterization and photocatalytic studies of N, Sn-doped defect pyrochlore oxide KTi0.5W1.5O6. J Alloys Compd. 2015;618:815–823.
  • Wang X, Pang L, Hu X, et al. Fabrication of ion doped WO3 photocatalysts through bulk and surface doping. J Environ Sci. 2015;35:76–82.
  • Sakai Y, Shimanaka A, Shioi M, et al. Fabrication of high-sensitivity palladium loaded tungsten trioxide photocatalyst by photodeposite method. Catal Today, 2015; 241(Part A): 2–7.
  • Lee J, Gouma PI. Flame-spray-processed CuO-WO3 nanopowders as photocatalysts. J Am Ceram Soc. 2014;97(12):3719–3720.
  • Song H, Li Y, Lou Z, et al. Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl Catal, B. 2015;166–167:112–120.
  • Chang X, Sun S, Zhou Y, et al. Solvothermal synthesis of Ce-doped tungsten oxide nanostructures as visible-light-driven photocatalysts. Nanotechnology. 2011;22(26):265603.
  • Udom I, Ram MK, Stefanakos EK, et al. One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater Sci Semicond Process. 2013;16(6):2070–2083.
  • Gunti S, Kumar A, Ram MK. Comparative organics remediation properties of nanostructured graphene doped titanium oxide and graphene doped zinc oxide photocatalysts. Am J Analyt Chem. 2015;6(8):708.
  • Gunti S, McCrory M, Kumar A, et al. Enhanced photocatalytic remediation using graphene (G)-titanium oxide (TiO2) nanocomposite material in visible light radiation. Am J Analyt Chem. 2016;7(07):576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.