5,553
Views
15
CrossRef citations to date
0
Altmetric
Full Critical Review

Magnesium extrusion alloys: a review of developments and prospects

, , ORCID Icon, &
Pages 27-62 | Received 03 May 2017, Accepted 18 Dec 2017, Published online: 16 Jan 2018

References

  • Matucha KH. Materials science and technology, structure and properties of nonferrous alloys. Weinheim: Wiley; 1996.
  • Friedrich HE, Mordike BL. Magnesium technology: metallurgy, design data, automotive applications. Berlin: Springer; 2006.
  • Abbott TB. Magnesium: industrial and research developments over the last 15 years. Corrosion. 2015;71(2):120–127.
  • Gusieva K, Davies C, Scully J, et al. Corrosion of magnesium alloys: the role of alloying. Int Mater Rev. 2015;60(3):169–194.
  • Polmear I, StJohn D, Nie JF, et al. Light alloys. 5th ed. Oxford: Elsevier; 2017.
  • Beer AG. Enhancing the extrudability of wrought magnesium alloys. In: Bettles C, Barnett M, editors Advances in wrought magnesium alloys. Cambridge: Woodhead Publishing; 2012. p. 304–322.
  • Bauser M, Siegert K. Extrusion. 2nd ed. Materials Park (OH): ASM International; 2006.
  • Bettles C, Barnett M. Advances in wrought magnesium alloys: fundamentals of processing, properties and applications. Cambridge: Elsevier; 2012.
  • MatWeb.com [Internet]. Virginia: MatWeb; [cited 2017 Mar 30]. Available from: http://www.matweb.com.
  • Sillekens W, Schade van Westrum J, den Bakker AJ, et al. Hydrostatic extrusion of magnesium: process mechanics and performance. Mater Sci Forum. 2003;426:629–636.
  • Sillekens W, Van Hout M, Pravdic F. Extrusion technology for magnesium: avenues for improving performance. 2nd International Light Metals Technology Conference; St. Wolfgang, Austria; LKR-Verl, 137–142; 2005.
  • Esmaily M, Svensson JE, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci. 2017;89:92–193.
  • Chen XB, Birbilis N, Abbott TB. Corrosion. 2011;67(3):1–16.
  • Google Scholar [Internet]. California: Google; [cited 2017 Mar 30]. Available from: http://scholar.google.com.au/scholar?hl=en&q=magnesium+extrusion+alloy&as_sdt=1%2C5&as_sdtp=&oq=.
  • Xu SW, Oh-ishi K, Kamado S, et al. High-strength extruded Mg–Al–Ca–Mn alloy. Scr Mater. 2011;65(3):269–272.
  • Yu H, Park SH, You BS. Development of extraordinary high-strength Mg–8Al–0.5Zn alloy via a low temperature and slow speed extrusion. Mater Sci Eng A. 2014;610:445–449.
  • Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr Mater. 2009;61(6):644–647.
  • Yu Z, Huang Y, Qiu X, et al. Fabrication of a high strength Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy by thermomechanical treatments. Mater Sci Eng A. 2015;622:121–130.
  • Zhang B, Wang Y, Geng L, et al. Effects of calcium on texture and mechanical properties of hot-extruded Mg–Zn–Ca alloys. Mater Sci Eng A. 2012;539:56–60.
  • Park SH, You BS, Mishra RK, et al. Effects of extrusion parameters on the microstructure and mechanical properties of Mg–Zn–(Mn)–Ce/Gd alloys. Mater Sci Eng A. 2014;598:396–406.
  • Zeng ZR, Nie JF, Xu SW, et al. Super-formable pure magnesium at room temperature. Nat Commun. 2017;8(1):986.
  • Nakata T, Mezaki T, Ajima R, et al. High-speed extrusion of heat-treatable Mg–Al–Ca–Mn dilute alloy. Scr Mater. 2015;101:28–31.
  • Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys. Acta Mater. 2017;130:261–270.
  • Xu W, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy. Nat Mater. 2015;14(12):1229–1235.
  • Suh B-C, Shim M-S, Shin KS, et al. Current issues in magnesium sheet alloys: where do we go from here? Scr Mater. 2014;84–85(0):1–6.
  • Kim NJ. Critical assessment 6: magnesium sheet alloys: viable alternatives to steels? Mater Sci Tech. 2014;30(15):1925–1928.
  • Roberts CS. The deformation of magnesium, in magnesium and its alloys. New York (NY): Wiley; 1964.
  • Raynor GV. The physical metallurgy of magnesium and its alloys. Oxford: Pergamon; 1959.
  • Pan H, Ren Y, Fu H, et al. Recent developments in rare-earth free wrought magnesium alloys having high strength: A review. J Alloy Compd. 2016;663:321–331.
  • Abbott TB. Why choose magnesium? Mater Sci Forum. 2009;618–619:3–6.
  • Nie JF. Precipitation and hardening in magnesium alloys. Metall Mater Trans A. 2012;43(11):3891–3939.
  • Griffiths D. Explaining texture weakening and improved formability in magnesium rare earth alloys. Mater Sci Tech. 2014;31(1):10–24.
  • Wu R, Yan Y, Wang G, et al. Recent progress in magnesium–lithium alloys. Int Mater Rev. 2015;60(2):65–100.
  • Hono K, Mendis CL, Sasaki TT, et al. Towards the development of heat-treatable high-strength wrought Mg alloys. Scr Mater. 2010;63(7):710–715.
  • Robson JD. Critical assessment 9: wrought magnesium alloys. Mater Sci Tech. 2015;31(3):257–264.
  • Robson JD, Zhou X, Thompson GE. Magnesium research: scientific challenges. Mater Technol. 2009;24(3):133–136.
  • Atwell LD, Barnett RM. Extrusion limits of magnesium alloys. Metall Mater Trans A. 2007;38(12):3032–3041.
  • Luo AA, Zhang C, Sachdev AK. Effect of eutectic temperature on the extrudability of magnesium–aluminum alloys. Scr Mater. 2012;66(7):491–494.
  • Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 2001;49(7):1199–1207.
  • Nayeb-Hashemi AA, Clark JB. Phase diagrams of binary magnesium alloys. Materials Park (OH): ASM International; 1985.
  • Doan JP, Ansell G. Some effects of zirconium on extrusion properties of magnesium-base alloys containing zinc. AIME. 1947;171:286–305.
  • Park SH, Jung J-G, Kim YM, et al. A new high-strength extruded Mg-8Al-4Sn-2Zn alloy. Mater Lett. 2015;139:35–38.
  • Zhang T, Shao Y, Meng G, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior. Corros Sci. 2011;53(5):1960–1968.
  • Tong LB, Zheng MY, Cheng LR, et al. Effect of extrusion ratio on microstructure, texture and mechanical properties of indirectly extruded Mg–Zn–Ca alloy. Mater Sci Eng A. 2013;569:48–53.
  • Zhou N, Zhang Z, Dong J, et al. High ductility of a Mg–Y–Ca alloy via extrusion. Mater Sci Eng A. 2013;560:103–110.
  • Dong H, Pan F, Jiang B, et al. Evolution of microstructure and mechanical properties of a duplex Mg–Li alloy under extrusion with an increasing ratio. Mater Design. 2014;57:121–127.
  • Chen Y, Wang Q, Peng J, et al. Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy. J Mater Process Tech. 2007;182(1–3):281–285.
  • Jung J-G, Park SH, You BS. Effect of aging prior to extrusion on the microstructure and mechanical properties of Mg–7Sn–1Al–1Zn alloy. J Alloy Compd. 2015;627:324–332.
  • Jung J-G, Park SH, Yu H, et al. Improved mechanical properties of Mg–7.6Al–0.4Zn alloy through aging prior to extrusion. Scr Mater. 2014;93:8–11.
  • Park SH, Kim HS, Bae JH, et al. Improving the mechanical properties of extruded Mg–3Al–1Zn alloy by cold pre-forging. Scr Mater. 2013;69(3):250–253.
  • Huang H, Yuan G, Chu Z, et al. Microstructure and mechanical properties of double continuously extruded Mg–Zn–Gd-based magnesium alloys. Mater Sci Eng A. 2013;560:241–248.
  • Du YZ, Zheng MY, Qiao XG, et al. The effect of double extrusion on the microstructure and mechanical properties of Mg–Zn–Ca alloy. Mater Sci Eng A. 2013;583:69–77.
  • Li X, Qi W, Zheng K, et al. Enhanced strength and ductility of Mg–Gd–Y–Zr alloys by secondary extrusion. J Magnesium Alloy. 2013;1(1):54–63.
  • Zhang X, Wang Z, Yuan G, et al. Improvement of mechanical properties and corrosion resistance of biodegradable Mg–Nd–Zn–Zr alloys by double extrusion. Mater Sci Eng B. 2012;177(13):1113–1119.
  • Orlov D, Raab G, Lamark TT, et al. Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Mater. 2011;59(1):375–385.
  • Sun HF, Li CJ, Fang WB. Evolution of microstructure and mechanical properties of Mg–3.0Zn–0.2Ca–0.5Y alloy by extrusion at various temperatures. J Mater Process Tech. 2016;229:633–640.
  • Jiang MG, Xu C, Nakata T, et al. Development of dilute Mg–Zn–Ca–Mn alloy with high performance via extrusion. J Alloy Compd. 2016;668:13–21.
  • Zhang BP, Geng L, Huang LJ, et al. Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures. Scr Mater. 2010;63(10):1024–1027.
  • Elsayed FR, Sasaki TT, Ohkubo T, et al. Effect of extrusion conditions on microstructure and mechanical properties of microalloyed Mg–Sn–Al–Zn alloys. Mater Sci Eng A. 2013;588:318–328.
  • Li CJ, Sun HF, Li XW, et al. Microstructure, texture and mechanical properties of Mg-3.0Zn-0.2Ca alloys fabricated by extrusion at various temperatures. J Alloy Compd. 2015;652:122–131.
  • Singh A, Osawa Y, Somekawa H, et al. Ultra-fine grain size and isotropic very high strength by direct extrusion of chill-cast Mg–Zn–Y alloys containing quasicrystal phase. Scr Mater. 2011;64(7):661–664.
  • Shahzad M, Wagner L. Influence of extrusion parameters on microstructure and texture developments, and their effects on mechanical properties of the magnesium alloy AZ80. Mater Sci Eng A. 2009;506(1–2):141–147.
  • Liu X, Zhang Z, Hu W, et al. Effects of extrusion speed on the microstructure and mechanical properties of Mg9Gd3Y1.5Zn0.8Zr alloy. J Mater Sci Technol. 2016;32(4):313–319.
  • Park SH, Kim S-H, Kim HS, et al. High-speed indirect extrusion of Mg–Sn–Al–Zn alloy and its influence on microstructure and mechanical properties. J Alloy Compd. 2016;667:170–177.
  • Yu H, Hyuk Park S, Sun You B, et al. Effects of extrusion speed on the microstructure and mechanical properties of ZK60 alloys with and without 1wt% cerium addition. Mater Sci Eng A. 2013;583:25–35.
  • Tong LB, Zheng MY, Cheng LR, et al. Influence of deformation rate on microstructure, texture and mechanical properties of indirect-extruded Mg–Zn–Ca alloy. Mater Charact. 2015;104:66–72.
  • Cheng WL, Kim HS, You BS, et al. Strength and ductility of novel Mg–8Sn–1Al–1Zn alloys extruded at different speeds. Mater Lett. 2011;65(11):1525–1527.
  • Bohlen J, Yi S, Letzig D, et al. Effect of rare earth elements on the microstructure and texture development in magnesium–manganese alloys during extrusion. Mater Sci Eng A. 2010;527(26):7092–7098.
  • Luo AA, Wu W, Mishra RK, et al. Microstructure and mechanical properties of extruded magnesium-aluminum-cerium alloy tubes. Metall Mater Trans A. 2010;41(10):2662–2674.
  • Liang SJ, Liu ZY, Wang ED. Microstructure and mechanical properties of Mg–Al–Zn alloy deformed by cold extrusion. Mater Lett. 2008;62(17–18):3051–3054.
  • Zhang L, Deng K-K, Nie K-B, et al. Microstructures and mechanical properties of Mg–Al–Ca alloys affected by Ca/Al ratio. Mater Sci Eng A. 2015;636:279–288.
  • Homma T, Hirawatari S, Sunohara H, et al. Room and elevated temperature mechanical properties in the as-extruded Mg–Al–Ca–Mn alloys. Mater Sci Eng A. 2012;539:163–169.
  • Du YZ, Qiao XG, Zheng MY, et al. Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass%Zn alloys. Mater Design. 2016;98:285–293.
  • Bhattacharjee T, Nakata T, Sasaki TT, et al. Effect of microalloyed Zr on the extruded microstructure of Mg–6.2Zn-based alloys. Scr Mater. 2014;90–91:37–40.
  • Jeong HY, Kim B, Kim SG, et al. Effect of Ce addition on the microstructure and tensile properties of extruded Mg–Zn–Zr alloys. Mater Sci Eng A. 2014;612:217–222.
  • Mendis CL, Oh-ishi K, Ohkubo T, et al. Microstructures and mechanical properties of extruded and heat treated Mg–6Zn–1Si–0.5Mn alloys. Mater Sci Eng A. 2012;553:1–9.
  • Hofstetter J, Rüedi S, Baumgartner I, et al. Processing and microstructure–property relations of high-strength low-alloy (HSLA) Mg–Zn–Ca alloys. Acta Mater. 2015;98:423–432.
  • Geng L, Zhang BP, Li AB, et al. Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy. Mater Lett. 2009;63(5):557–559.
  • Tong LB, Zheng MY, Xu SW, et al. Effect of Mn addition on microstructure, texture and mechanical properties of Mg–Zn–Ca alloy. Mater Sci Eng A. 2011;528(10–11):3741–3747.
  • Geng J, Nie JF. Microstructure and mechanical properties of extruded Mg–1Ca–1Zn–0.6Zr alloy. Mater Sci Eng A. 2016;653:27–34.
  • Homma T, Mendis CL, Hono K, et al. Effect of Zr addition on the mechanical properties of as-extruded Mg–Zn–Ca–Zr alloys. Mater Sci Eng A. 2010;527(9):2356–2362.
  • Gunde P, Hänzi AC, Sologubenko AS, et al. High-strength magnesium alloys for degradable implant applications. Mater Sci Eng A. 2011;528(3):1047–1054.
  • Xu SW, Oh-ishi K, Sunohara H, et al. Extruded Mg–Zn–Ca–Mn alloys with low yield anisotropy. Mater Sci Eng A. 2012;558:356–365.
  • Mendis CL, Oh-ishi K, Kawamura Y, et al. Precipitation-hardenable Mg–2.4Zn–0.1Ag–0.1Ca–0.16Zr (at.%) wrought magnesium alloy. Acta Mater. 2009;57(3):749–760.
  • Oh-ishi K, Mendis CL, Homma T, et al. Bimodally grained microstructure development during hot extrusion of Mg–2.4 Zn–0.1 Ag–0.1 Ca–0.16 Zr (at.%) alloys. Acta Mater. 2009;57(18):5593–5604.
  • Luo AA, Mishra RK, Sachdev AK. High-ductility magnesium–zinc–cerium extrusion alloys. Scr Mater. 2011;64(5):410–413.
  • Du YZ, Qiao XG, Zheng MY, et al. Development of high-strength, low-cost wrought Mg–2.5mass% Zn alloy through micro-alloying with Ca and La. Mater Design. 2015;85:549–557.
  • Du YZ, Qiao XG, Zheng MY, et al. The microstructure, texture and mechanical properties of extruded Mg–5.3Zn–0.2Ca–0.5Ce (wt%) alloy. Mater Sci Eng A. 2015;620:164–171.
  • Xu SW, Zheng MY, Kamado S, et al. Dynamic microstructural changes during hot extrusion and mechanical properties of a Mg–5.0 Zn–0.9 Y–0.16 Zr (wt.%) alloy. Mater Sci Eng A. 2011;528(12):4055–4067.
  • Yu H, Kim YM, You BS, et al. Effects of cerium addition on the microstructure, mechanical properties and hot workability of ZK60 alloy. Mater Sci Eng A. 2013;559:798–807.
  • Singh A, Somekawa H, Mukai T. Compressive strength and yield asymmetry in extruded Mg–Zn–Ho alloys containing quasicrystal phase. Scr Mater. 2007;56(11):935–938.
  • Yang Q, Jiang B, Jiang W, et al. Evolution of microstructure and mechanical properties of Mg–Mn–Ce alloys under hot extrusion. Mater Sci Eng A. 2015;628:143–148.
  • Garces G, Muñoz-Morris MA, Morris DG, et al. Optimization of strength by microstructural refinement of MgY2Zn1 alloy during extrusion and ECAP processing. Mater Sci Eng A. 2014;614:96–105.
  • Qi F, Zhang D, Zhang X, et al. Effects of Mn addition and X-phase on the microstructure and mechanical properties of high-strength Mg–Zn–Y–Mn alloys. Mater Sci Eng A. 2014;593:70–78.
  • Liu K, Rokhlin LL, Elkin FM, et al. Effect of ageing treatment on the microstructures and mechanical properties of the extruded Mg–7Y–4Gd–1.5Zn–0.4Zr alloy. Mater Sci Eng A. 2010;527(3):828–834.
  • Zhang L, Zhang J, Leng Z, et al. Microstructure and mechanical properties of high-performance Mg–Y–Er–Zn extruded alloy. Mater Design. 2014;54:256–263.
  • Li RG, Nie JF, Huang GJ, et al. Development of high-strength magnesium alloys via combined processes of extrusion, rolling and ageing. Scr Mater. 2011;64(10):950–953.
  • Liu K, Zhang J, Lu H, et al. Effect of the long periodic stacking structure and W-phase on the microstructures and mechanical properties of the Mg–8Gd–xZn–0.4Zr alloys. Mater Design. 2010;31(1):210–219.
  • He SM, Zeng XQ, Peng LM, et al. J Alloy Compd. 2007;427(1–2):316–323.
  • Liu XB, Chen RS, Han EH. Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J Alloy Compd. 2008;465(1–2):232–238.
  • Xu C, Zheng M, Xu S, et al. Improving strength and ductility of Mg–Gd–Y–Zn–Zr alloy simultaneously via extrusion, hot rolling and ageing. Mater Sci Eng A. 2015;643:137–141.
  • Zheng L, Liu C, Wan Y, et al. Microstructures and mechanical properties of Mg–10Gd–6Y–2Zn–0.6Zr(wt.%) alloy. J Alloy Compd. 2011;509(35):8832–8839.
  • Liu K, Wang X, Du W. Development of extraordinary high-strength-toughness Mg alloy via combined processes of repeated plastic working and hot extrusion. Mater Sci Eng A. 2013;573:127–131.
  • Yu ZJ, Huang Y, Qiu X, et al. Fabrication of magnesium alloy with high strength and heat-resistance by hot extrusion and ageing. Mater Sci Eng A. 2013;578:346–353.
  • Pan H, Qin G, Xu M, et al. Enhancing mechanical properties of Mg–Sn alloys by combining addition of Ca and Zn. Mater Design. 2015;83:736–744.
  • Sasaki TT, Ju JD, Hono K, et al. Heat-treatable Mg–Sn–Zn wrought alloy. Scr Mater. 2009;61(1):80–83.
  • Sasaki TT, Elsayed FR, Nakata T, et al. Strong and ductile heat-treatable Mg–Sn–Zn–Al wrought alloys. Acta Mater. 2015;99:176–186.
  • Park SH, You BS. Effect of homogenization temperature on the microstructure and mechanical properties of extruded Mg–7Sn–1Al–1Zn alloy. J Alloy Compd. 2015;637:332–338.
  • Park SH, Kim HS, You BS. Prediction of grain size and yield strength of Mg-7Sn-1Al-1Zn alloys extruded at various temperatures and speeds. Met Mater-int. 2014;20(2):291–296.
  • Sasaki TT, Yamamoto K, Honma T, et al. A high-strength Mg–Sn–Zn–Al alloy extruded at low temperature. Scr Mater. 2008;59(10):1111–1114.
  • She J, Pan F, Peng P, et al. Microstructure and mechanical properties of asextruded Mg–x Al–5Sn–0·3Mn alloys (x = 1,3,6 and 9). Mater Sci Tech. 2015;31(3):344–348.
  • Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc. 1951;64:747–753.
  • Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;173:25–28.
  • Hanawa S, Sugamata M, Kaneko J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. J Japan Inst Light Metals. 1997;47(2):84–89.
  • Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa. Mater Trans. 2001;42:1171–1174.
  • Inoue A, Kawamura Y, Matsushita M, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg–Zn–Y system. J Mater Res. 2001;16(07):1894–1900.
  • Barnett MR. Twinning and its role in wrought magnesium alloys. In: Bettles C, Barnett M, editors. Advances in wrought magnesium alloys. Cambridge: Woodhead Publishing; 2012.
  • Barnett MR. Forming of magnesium and its alloys. In: Pekguleryuz M, Kainer K, Kaya K, editors. Fundamentals of magnesium alloy metallurgy. Cambridge: Woodhead Publishing; 2013.
  • Nakata T, Mezaki T, Xu C, et al. Improving tensile properties of dilute Mg-0.27Al-0.13Ca-0.21Mn (at.%) alloy by low temperature high speed extrusion. J Alloy Compd. 2015;648:428–437.
  • Liang SJ, Liu ZY, Wang ED. Microstructure and mechanical properties of Mg–Al–Zn alloy sheet fabricated by cold extrusion. Mater Lett. 2008;62(24):4009–4011.
  • Jing B, Yangshan S, Feng X, et al. Effect of extrusion on microstructures, and mechanical and creep properties of Mg–Al–Sr and Mg–Al–Sr–Ca alloys. Scr Mater. 2006;55(12):1163–1166.
  • Uematsu Y, Tokaji K, Matsumoto M. Effect of aging treatment on fatigue behaviour in extruded AZ61 and AZ80 magnesium alloys. Mater Sci Eng A. 2009;517(1–2):138–145.
  • Luo AA, Powell BR, Balogh MP. Creep and microstructure of magnesium-aluminum-calcium based alloys. Metall Mater Trans A. 2002;33(3):567–574.
  • Barnett MR. Twinning and the ductility of magnesium alloys. Mater Sci Eng A. 2007;464(1–2):1–7.
  • Zeng ZR, Bian MZ, Xu SW, et al. Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet. Mater Sci Eng A. 2016;674:459–471.
  • Bohlen J, Nürnberg MR, Senn JW, et al. The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 2007;55(6):2101–2112.
  • Safi-Naqvi SH, Hutchinson WB, Barnett MR. Texture and mechanical anisotropy in three extruded magnesium alloys. Mater Sci Tech. 2008;24(10):1283–1292.
  • Ball EA, Prangnell PB. Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scr Metall Mater. 1994;31(2):111–116.
  • Stanford N, Atwell D. The effect of Mn-rich precipitates on the strength of AZ31 extrudates. Metall Mater Trans A. 2013;44(10):4830–4843.
  • Mishra RK, Gupta AK, Rao PR, et al. Influence of cerium on the texture and ductility of magnesium extrusions. Scr Mater. 2008;59(5):562–565.
  • Sandlöbes S, Zaefferer S, Schestakow I, et al. On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys. Acta Mater. 2011;59(2):429–439.
  • Sandlöbes S, Pei Z, Friák M, et al. Ductility improvement of Mg alloys by solid solution: ab initio modeling, synthesis and mechanical properties. Acta Mater. 2014;70(0):92–104.
  • Hase T, Ohtagaki T, Yamaguchi M, et al. Effect of aluminum or zinc solute addition on enhancing impact fracture toughness in Mg–Ca alloys. Acta Mater. 2016;104:283–294.
  • Zeng ZR, Bian MZ, Xu SW, et al. Texture evolution during cold rolling of dilute Mg alloys. Scr Mater. 2015;108:6–10.
  • Zeng ZR, Zhu YM, Xu SW, et al. Texture evolution during static recrystallization of cold-rolled magnesium alloys. Acta Mater. 2016;105:479–494.
  • Stanford N, Barnett MR. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater Sci Eng A. 2008;496(1–2):399–408.
  • Stanford N, Atwell D, Beer A, et al. Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scr Mater. 2008;59(7):772–775.
  • Stanford N. Micro-alloying Mg with Y, Ce, Gd and La for texture modification—a comparative study. Mater Sci Eng A. 2010;527(10–11):2669–2677.
  • Shi BQ, Chen RS, Ke W. Effects of yttrium and zinc on the texture, microstructure and tensile properties of hot-rolled magnesium plates. Mater Sci Eng A. 2013;560(0):62–70.
  • Hantzsche K, Bohlen J, Wendt J, et al. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr Mater. 2010;63(7):725–730.
  • Al-Samman T, Li X. Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater Sci Eng A. 2011;528(10–11):3809–3822.
  • Mackenzie LWF, Pekguleryuz MO. The recrystallization and texture of magnesium–zinc–cerium alloys. Scr Mater. 2008;59(6):665–668.
  • Jung I-H, Sanjari M, Kim J, et al. Role of RE in the deformation and recrystallization of Mg alloy and a new alloy design concept for Mg–RE alloys. Scr Mater. 2015;102(0):1–6.
  • Yi S, Bohlen J, Heinemann F, et al. Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets. Acta Mater. 2010;58(2):592–605.
  • Stanford N, Sabirov I, Sha G, et al. Effect of Al and Gd solutes on the strain rate sensitivity of magnesium alloys. Metall Mater Trans A. 2010;41(3):734–743.
  • Wu YP, Zhang XM, Deng YL, et al. Microstructure, texture, and enhanced mechanical properties of an extruded Mg–rare earth alloy after hot compression. J Mater Res. 2015;30(24):3776–3783.
  • Kim DW, Suh BC, Shim MS, et al. Texture evolution in Mg-Zn-Ca alloy sheets. Metall Mater Trans A. 2013;44(7):2950–2961.
  • Chino Y, Sassa K, Huang X, et al. Effects of zinc concentration on the stretch formability at room temperature of the rolled Mg-Zn-Ca alloys. J Japan Inst Metals Mater. 2011;75(1):35–41.
  • Chino Y, Ueda T, Otomatsu Y, et al. Effects of Ca on tensile properties and stretch formability at room temperature in Mg-Zn and Mg-Al alloys. Mater Trans. 2011;52(7):1477–1482.
  • Kim KH, Suh BC, Bae JH, et al. Microstructure and texture evolution of Mg alloys during twin-roll casting and subsequent hot rolling. Scr Mater. 2010;63(7):716–720.
  • Beer AG, Barnett MR. Microstructural development during hot working of Mg-3Al-1Zn. Metall Mater Trans A. 2007;38(8):1856–1867.
  • Robson JD, Henry DT, Davis B. Particle effects on recrystallization in magnesium–manganese alloys: particle-stimulated nucleation. Acta Mater. 2009;57(9):2739–2747.
  • Robson JD, Stanford N, Barnett MR. Effect of particles in promoting twin nucleation in a Mg–5wt.% Zn alloy. Scr Mater. 2010;63(8):823–826.
  • Basu I, Al-Samman T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Mater. 2014;67(0):116–133.
  • Basu I, Al-Samman T, Gottstein G. Shear band-related recrystallization and grain growth in two rolled magnesium-rare earth alloys. Mater Sci Eng A. 2013;579(0):50–56.
  • Molodov KD, Al-Samman T, Molodov DA, et al. Mechanisms of exceptional ductility of magnesium single crystal during deformation at room temperature: multiple twinning and dynamic recrystallization. Acta Mater. 2014;76(0):314–330.
  • Al-Samman T, Molodov KD, Molodov DA, et al. Softening and dynamic recrystallization in magnesium single crystals during c-axis compression. Acta Mater. 2012;60(2):537–545.
  • Guan D, Rainforth WM, Ma L, et al. Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 2017;126:132–144.
  • Stanford N, Barnett M. Effect of composition on the texture and deformation behaviour of wrought Mg alloys. Scr Mater. 2008;58(3):179–182.
  • Barnett MR, Nave MD, Bettles CJ. Deformation microstructures and textures of some cold rolled Mg alloys. Mater Sci Eng A. 2004;386(1–2):205–211.
  • Humphreys FJ, Hatherly M. Recrystallisation and related annealing phenomena. Oxford: Elsevier; 2004.
  • Gottstein G, Shvindlerman LS. Grain boundary migration in metals: thermodynamics, kinetics, applications. Boca Raton: Taylor & Francis; 1999.
  • Gottstein G, Al Samman T. Texture development in pure Mg and Mg alloy AZ31. Mater Sci Forum. 2005;495–497:10.
  • Bhattacharyya JJ, Agnew SR, Muralidharan G. Texture enhancement during grain growth of magnesium alloy AZ31B. Acta Mater. 2015;86(0):80–94.
  • Steiner MA, Bhattacharyya JJ, Agnew SR. The origin and enhancement of {0001}<11–20> texture during heat treatment of rolled AZ31B magnesium alloys. Acta Mater. 2015;95:443–455.
  • Hadorn JP, Sasaki TT, Nakata T, et al. Solute clustering and grain boundary segregation in extruded dilute Mg–Gd alloys. Scr Mater. 2014;93(0):28–31.
  • Nie JF, Zhu YM, Liu JZ, et al. Periodic segregation of solute atoms in fully coherent twin boundaries. Science. 2013;340(6135):957–960.
  • Robson J. Effect of rare-earth additions on the texture of wrought magnesium alloys: the role of grain boundary segregation. Metall Mater Trans A. 2014;45(8):3205–3212.
  • Stanford N, Sha G, Xia JH, et al. Solute segregation and texture modification in an extruded magnesium alloy containing gadolinium. Scr Mater. 2011;65(10):919–921.
  • Wu Z, Curtin WA. The origins of high hardening and low ductility in magnesium. Nature. 2015;526(7571):62–67.
  • Somekawa H, Mukai T. Hall–Petch breakdown in fine-grained pure magnesium at low strain rates. Metall Mater Trans A. 2015;46(2):894–902.
  • Figueiredo RB, Sabbaghianrad S, Giwa A, et al. Evidence for exceptional low temperature ductility in polycrystalline magnesium processed by severe plastic deformation. Acta Mater. 2017;122:322–331.
  • Choi HJ, Kim Y, Shin JH, et al. Deformation behavior of magnesium in the grain size spectrum from nano- to micrometer. Mater Sci Eng A. 2010;527(6):1565–1570.
  • Figueiredo RB, Poggiali FSJ, Silva CLP, et al. The influence of grain size and strain rate on the mechanical behavior of pure magnesium. J Mater Sci. 2016;51(6):3013–3024.
  • Südholz AD, Birbilis N, Bettles CJ, et al. Corrosion behaviour of Mg-alloy AZ91E with atypical alloying additions. J Alloy Compd. 2009;471(1):109–115.
  • Ralston KD, Birbilis N, Davies CHJ. Revealing the relationship between grain size and corrosion rate of metals. Scr Mater. 2010;63(12):1201–1204.
  • Birbilis N, Ralston KD, Virtanen S, et al. Grain character influences on corrosion of ECAPed pure magnesium. Corros Eng Sci Technol. 2010;45(3):224–230.
  • op’t Hoog C, Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route. Adv Eng Mater. 2008;10(6):579–582.
  • Jeong YS, Kim WJ. Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion. Corros Sci. 2014;82:392–403.
  • Kim HS, Kim GH, Kim H, et al. Enhanced corrosion resistance of high strength Mg–3Al–1Zn alloy sheets with ultrafine grains in a phosphate-buffered saline solution. Corros Sci. 2013;74:139–148.
  • Gui Z, Kang Z, Li Y. Mechanical and corrosion properties of Mg-Gd-Zn-Zr-Mn biodegradable alloy by hot extrusion. J Alloy Compd. 2016;685:222–230.
  • He W, Zhang E, Yang K. Effect of Y on the bio-corrosion behavior of extruded Mg–Zn–Mn alloy in Hank’s solution. Mater Sci Eng: C. 2010;30(1):167–174.
  • Xia X, Davies CHJ, Nie JF, et al. Influence of composition and processing on the corrosion of magnesium alloys containing binary and ternary additions of zinc and strontium. Corrosion. 2015;71(1):38–49.
  • Simanjuntak S, Cavanaugh MK, Gandel DS, et al. The influence of iron, manganese, and zirconium on the corrosion of magnesium: an artificial neural network approach. Corrosion. 2015;71(2):199–208.
  • Argade GR, Panigrahi SK, Mishra RS. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros Sci. 2012;58:145–151.
  • Aung NN, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros Sci. 2010;52(2):589–594.
  • Zhou Y-L, Li Y, Luo D-M, et al. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg–Mn–Zn–Nd alloys for biomedical applications. Mater Sci Eng C. 2015;49:93–100.
  • Chang JW, Guo XW, Fu PH, et al. Effect of heat treatment on corrosion and electrochemical behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy. Electrochim Acta. 2007;52(9):3160–3167.
  • Südholz A, Kirkland N, Buchheit R, et al. Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys. Electrochem Solid State Lett. 2011;14(2):C5–C7.
  • Ben-Haroush M, Ben-Hamu G, Eliezer D, et al. The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures. Corros Sci. 2008;50(6):1766–1778.
  • Zhang X, Yuan G, Niu J, et al. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg–Nd–Zn–Zr alloy with different extrusion ratios. J Mech Behav Biomed Mater. 2012;9:153–162.
  • Zhang X, Ba Z, Wang Z, et al. Effect of LPSO structure on mechanical properties and corrosion behavior of as-extruded GZ51K magnesium alloy. Mater Lett. 2016;163:250–253.
  • Peng Q, Li X, Ma N, et al. Effects of backward extrusion on mechanical and degradation properties of Mg–Zn biomaterial. J Mech Behav Biomed Mater. 2012;10:128–137.
  • Zhang XB, Yuan GY, Wang ZZ. Effects of extrusion ratio on microstructure, mechanical and corrosion properties of biodegradable Mg–Nd–Zn–Zr alloy. Mater Sci Tech. 2013;29(1):111–116.
  • Song D, Ma A, Jiang J, et al. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros Sci. 2010;52(2):481–490.
  • Song GL, Mishra R, Xu Z. Crystallographic orientation and electrochemical activity of AZ31 Mg alloy. Electrochem Commun. 2010;12(8):1009–1012.
  • Xin R, Luo Y, Zuo A, et al. Texture effect on corrosion behavior of AZ31 Mg alloy in simulated physiological environment. Mater Lett. 2012;72:1–4.
  • Fu B-Q, Liu W, Li Z-L. Calculation of the surface energy of hcp-metals with the empirical electron theory. Appl Surf Sci. 2009;255(23):9348–9357.
  • Xu SW, Oh-ishi K, Kamado S, et al. Effects of different cooling rates during two casting processes on the microstructures and mechanical properties of extruded Mg–Al–Ca–Mn alloy. Mater Sci Eng A. 2012;542:71–78.
  • Suzuki A, Saddock ND, TerBush JR, et al. Precipitation strengthening of a Mg-Al-Ca–based AXJ530 die-cast alloy. Metall Mater Trans A. 2008;39(3):696–702.
  • Suzuki A, Saddock ND, Jones JW, et al. Solidification paths and eutectic intermetallic phases in Mg–Al–Ca ternary alloys. Acta Mater. 2005;53(9):2823–2834.
  • Nie JF. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr Mater. 2003;48(8):1009–1015.
  • Gao X, Nie JF. Characterization of strengthening precipitate phases in a Mg–Zn alloy. Scr Mater. 2007;56(8):645–648.
  • Hofstetter J, Becker M, Martinelli E, et al. High-strength low-alloy (HSLA) Mg–Zn–Ca alloys with excellent biodegradation performance. JOM. 2014;66(4):566–572.
  • Zhang DF, Shi GF, Zhao XF, et al. Microstructure evolution and mechanical properties of Mg-x%Zn-1%Mn (x=4, 5, 6, 7, 8, 9) wrought magnesium alloys. Trans Nonferr Metal Soc. 2011;21(1):15–25.
  • Somekawa H, Mukai T. High strength and fracture toughness balance on the extruded Mg–Ca–Zn alloy. Mater Sci Eng A. 2007;459(1–2):366–370.
  • Kirkland N, Staiger M, Nisbet D, et al. Performance-driven design of biocompatible Mg alloys. JOM. 2011;63(6):28–34.
  • Mendis CL, Bae JH, Kim NJ, et al. Microstructures and tensile properties of a twin roll cast and heat-treated Mg–2.4Zn–0.1Ag–0.1Ca–0.1Zr alloy. Scr Mater. 2011;64(4):335–338.
  • Buha J. The effect of Ba on the microstructure and age hardening of an Mg–Zn alloy. Mater Sci Eng A. 2008;491(1–2):70–79.
  • Buha J, Ohkubo T. Natural aging in Mg-Zn(-Cu) alloys. Metall Mater Trans A. 2008;39(9):2259–2273.
  • Geng J, Gao X, Fang XY, et al. Enhanced age-hardening response of Mg–Zn alloys via Co additions. Scr Mater. 2011;64(6):506–509.
  • Buha J. The effect of micro-alloying addition of Cr on age hardening of an Mg–Zn alloy. Mater Sci Eng A. 2008;492(1–2):293–299.
  • Lorimer GW. Proc. London Conf. on Magnesium Technology, London, UK, Inst. of Metals, 47–53; 1987.
  • Buha J. Grain refinement and improved age hardening of Mg–Zn alloy by a trace amount of V. Acta Mater. 2008;56(14):3533–3542.
  • Wang J, Liu R, Luo T, et al. A high strength and ductility Mg–Zn–Al–Cu–Mn magnesium alloy. Mater Design. 2013;47:746–749.
  • Mendis CL, Muddle BC, Nie JF. Proc. 4th Pacific Rim Int. Conf. Advanced Materials and Processing (PRICM-4), Sendai, Japan. Japan Inst. of Metal, 1207–1210; 2001.
  • Hirsch J, Al-Samman T. Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013;61(3):818–843.
  • Chino Y, Huang X, Suzuki K, et al. Influence of Zn concentration on stretch formability at room temperature of Mg–Zn–Ce alloy. Mater Sci Eng A. 2010;528(2):566–572.
  • Lee J-Y, Yun Y-S, Suh B-C, et al. Comparison of static recrystallization behavior in hot rolled Mg–3Al–1Zn and Mg–3Zn–0.5Ca sheets. J Alloy Compd. 2014;589:240–246.
  • Chino Y, Kado M, Mabuchi M. Compressive deformation behavior at room temperature – 773K in Mg–0.2mass%(0.035at.%)Ce alloy. Acta Mater. 2008;56(3):387–394.
  • Zhang Y, Zeng X, Liu L, et al. Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg–Zn–Y–Zr alloys. Mater Sci Eng A. 2004;373(1–2):320–327.
  • Somekawa H, Singh A, Osawa Y, et al. High strength and fracture toughness balances in extruded Mg-Zn-RE alloys by dispersion of quasicrystalline phase particles. Mater Trans. 2008;49(9):1947–1952.
  • Yuan G, Liu Y, Ding W, et al. Effects of extrusion on the microstructure and mechanical properties of Mg–Zn–Gd alloy reinforced with quasicrystalline particles. Mater Sci Eng A. 2008;474(1–2):348–354.
  • Jiang MG, Xu C, Nakata T, et al. Rare earth texture and improved ductility in a Mg-Zn-Gd alloy after high-speed extrusion. Mater Sci Eng A. 2016;667:233–239.
  • Ross NG, Barnett MR, Beer AG. Effect of alloying and extrusion temperature on the microstructure and mechanical properties of Mg–Zn and Mg–Zn–RE alloys. Mater Sci Eng A. 2014;619:238–246.
  • Singh A, Nakamura M, Watanabe M, et al. Quasicrystal strengthened Mg–Zn–Y alloys by extrusion. Scr Mater. 2003;49(5):417–422.
  • Yoshimoto S, Yamasaki M, Kawamura Y. Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure. Mater Trans. 2006;47(4):959–965.
  • Noda M, Mayama T, Kawamura Y. Evolution of mechanical properties and microstructure in extruded Mg96Zn2Y2 alloys by annealing. Mater Trans. 2009;50(11):2526–2531.
  • Liu H, Xue F, Bai J, et al. Effect of heat treatments on the microstructure and mechanical properties of an extruded Mg95.5Y3Zn1.5 alloy. Mater Sci Eng A. 2013;585:261–267.
  • Yamasaki M, Anan T, Yoshimoto S, et al. Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Scr Mater. 2005;53(7):799–803.
  • Liu X, Hu W, Le Q, et al. Microstructures and mechanical properties of high performance Mg–6Gd–3Y–2Nd–0.4Zr alloy by indirect extrusion and aging treatment. Mater Sci Eng A. 2014;612:380–386.
  • Hou X, Peng Q, Cao Z, et al. Structure and mechanical properties of extruded Mg–Gd based alloy sheet. Mater Sci Eng A. 2009;520(1–2):162–167.
  • Yu Z, Huang Y, Mendis CL, et al. Microstructural evolution and mechanical properties of Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr alloy prepared via pre-ageing and hot extrusion. Mater Sci Eng A. 2015;624:23–31.
  • Yamasaki M, Hashimoto K, Hagihara K, et al. Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy. Acta Mater. 2011;59(9):3646–3658.
  • Nie JF, Zhu YM, Morton AJ. On the structure, transformation and deformation of long-period stacking ordered phases in Mg-Y-Zn alloys. Metall Mater Trans A. 2014;45(8):3338–3348.
  • Zhu YM, Weyland M, Morton AJ, et al. The building block of long-period structures in Mg–RE–Zn alloys. Scr Mater. 2009;60(11):980–983.
  • Kawamura Y, Yamasaki M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure. Mater Trans. 2007;48(11):2986–2992.
  • Okouchi H, Seki Y, Sekigawa T, et al. Nanocrystalline LPSO Mg-Zn-Y-Al alloys with high mechanical strength and corrosion resistance. Mater Sci Forum. 2010;638–642:1476–1481.
  • Egusa D, Yamasaki M, Kawamura Y, et al. Micro-Kinking of the long-period stacking/order (LPSO) phase in a hot-extruded Mg97Zn1Y2 alloy. Mater Trans. 2013;54(5):698–702.
  • Shao XH, Yang ZQ, Ma XL. Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater. 2010;58(14):4760–4771.
  • Vostrý P, Smola B, Stulíková I, et al. Microstructure evolution in isochronally heat treated Mg–Gd alloys. Physica Status Solidi A. 1999;175(2):491–500.
  • Nie JF, Gao X, Zhu SM. Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scr Mater. 2005;53(9):1049–1053.
  • Park SH, Kim HS, You BS. Improving the tensile strength of Mg–7Sn–1Al–1Zn alloy through artificial cooling during extrusion. Mater Sci Eng A. 2015;625:369–373.
  • Park SH, Lee JH, Yu H, et al. Effect of cold pre-forging on the microstructure and mechanical properties of extruded Mg–8Sn–1Al–1Zn alloy. Mater Sci Eng A. 2014;612:197–201.
  • Mendis CL, Bettles CJ, Gibson MA, et al. Refinement of precipitate distributions in an age-hardenable Mg–Sn alloy through microalloying. Phil Mag Lett. 2006;86(7):443–456.
  • Mendis CL, Bettles CJ, Gibson MA, et al. An enhanced age hardening response in Mg–Sn based alloys containing Zn. Mater Sci Eng A. 2006;435–436:163–171.
  • Dong H, Pan F, Jiang B, et al. Mechanical properties and deformation behaviors of hexagonal Mg–Li alloys. Mater Design. 2015;65:42–49.
  • Son H-T, Kim Y-H, Kim D-W, et al. Effects of Li addition on the microstructure and mechanical properties of Mg–3Zn–1Sn–0.4Mn based alloys. J Alloy Compd. 2013;564:130–137.
  • Li J, Qu Z, Wu R, et al. Microstructure, mechanical properties and aging behaviors of as-extruded Mg–5Li–3Al–2Zn–1.5Cu alloy. Mater Sci Eng A. 2011;528(10–11):3915–3920.
  • Wang T, Zhang M, Wu R. Microstructure and properties of Mg–8Li–1Al–1Ce alloy. Mater Lett. 2008;62(12–13):1846–1848.
  • Zhang J, Zhang L, Leng Z, et al. Experimental study on strengthening of Mg–Li alloy by introducing long-period stacking ordered structure. Scr Mater. 2013;68(9):675–678.
  • Xu DK, Liu L, Xu YB, et al. The strengthening effect of icosahedral phase on as-extruded Mg–Li alloys. Scr Mater. 2007;57(3):285–288.
  • Chen Z, Dong Z, Yu C, et al. Microstructure and properties of Mg–5.21Li–3.44Zn–0.32Y–0.01Zr alloy. Mater Sci Eng A. 2013;559:651–654.
  • Zhang Y, Zhang J, Wu G, et al. Microstructure and tensile properties of as-extruded Mg–Li–Zn–Gd alloys reinforced with icosahedral quasicrystal phase. Mater Design. 2015;66(Part A):162–168.
  • Metal.com [Internet]. Shanghai: Shanghi Metals Market; [cited 2017 Mar 30]. Available from: http://www.metal.com/.
  • Nie JF, Wilson NC, Zhu YM, et al. Solute clusters and GP zones in binary Mg–RE alloys. Acta Mater. 2016;106:260–271.
  • Bohlen J, Wendt J, Nienaber M, et al. Calcium and zirconium as texture modifiers during rolling and annealing of magnesium–zinc alloys. Mater Charact. 2015;101(0):144–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.