1,027
Views
22
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Biodegradable polyol-based polymers for biomedical applications

, & ORCID Icon
Pages 288-309 | Received 21 Jan 2018, Accepted 21 Jul 2018, Published online: 19 Aug 2018

References

  • Seegers WH. Blood clotting enzymology. New York: Academic Press; 2013.
  • Hethershaw E, Cilia La Corte A, Duval C, et al. The effect of blood coagulation factor xiii on fibrin clot structure and fibrinolysis. J Thromb Haemostasis. 2014;12:197–205.
  • Di Lullo GA, Sweeney SM, Körkkö J, et al. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem. 2002;277:4223–4231.
  • Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration: integrating signals from front to back. Science. 2003;302:1704–1709.
  • Wenger MP, Bozec L, Horton MA, et al. Mechanical properties of collagen fibrils. Biophys J. 2007;93:1255–1263.
  • Harley R, James D, Miller A, et al. Phonons and the elastic moduli of collagen and muscle. Nature. 1977;267:285–287.
  • van der Rijt JA, van der Werf KO, Bennink ML, et al. Micromechanical testing of individual collagen fibrils. Macromol Biosci. 2006;6:697–702.
  • Bigi A, Panzavolta S, Rubini K. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials. 2004;25:5675–5680.
  • Wang S-F, Shen L, Zhang W-D, et al. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules. 2005;6:3067–3072.
  • Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 2010;6:2467–2476.
  • Oksman K, Skrifvars M, Selin J-F. Natural fibres as reinforcement in polylactic acid (Pla) composites. Compos Sci Technol. 2003;63:1317–1324.
  • Daniels A, Chang MK, Andriano KP, et al. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater. 1990;1:57–78.
  • Wang L, Zhang Z, Chen H, et al. Preparation and characterization of biodegradable thermoplastic elastomers (plca/plga blends). J Polym Res. 2010;17:77.
  • Park JH, Jana SC. The relationship between nano-and micro-structures and mechanical properties in pmma–epoxy–nanoclay composites. Polymer (Guildf). 2003;44:2091–2100.
  • Aziz T, Waters M, Jagger R. Analysis of the properties of silicone rubber maxillofacial prosthetic materials. J Dent. 2003;31:67–74.
  • Martin DP, Williams SF. Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J. 2003;16:97–105.
  • Chen Q-Z, Bismarck A, Hansen U, et al. Characterisation of a soft elastomer poly (glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials. 2008;29:47–57.
  • Xu B, Li Y, Fang X, et al. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes. J Mech Behav Biomed Mater. 2013;28:354–365.
  • Bettinger CJ, Bruggeman JP, Borenstein JT, et al. In vitro and in vivo degradation of poly (1, 3-diamino-2-hydroxypropane-co-polyol sebacate) elastomers. J Biomed Mater Res A. 2009;91:1077–1088.
  • Nagata M, Ibuki H, Sakai W, et al. And enzymatic degradation of novel regular network aliphatic polyesters based on pentaerythritol. Macromolecules. 1997;30:6525–6530.
  • Han YK, Um JW, Im SS, et al. Synthesis and characterization of high molecular weight branched Pba. J Polym Sci A Polym Chem. 2001;39:2143–2150.
  • Bruggeman JP, Bettinger CJ, Nijst CL, et al. Biodegradable xylitol-based polymers. Adv Mater. 2008;20:1922–1927.
  • Selvam S, Pithapuram MV, Victor SP, et al. Injectable in situ forming xylitol–Peg-based hydrogels for cell encapsulation and delivery. Colloids Surf B. 2015;126:35–43.
  • Zhang M, Wu Y, Zhao X, et al. Biocompatible degradable injectable hydrogels from methacrylated poly (ethylene glycol)-co-poly (xylitol sebacate) and cyclodextrins for release of hydrophilic and hydrophobic drugs. RSC Adv. 2015;5:66965–66974.
  • Komeri R, Thankam FG, Muthu J. Free radical scavenging injectable hydrogels for regenerative therapy. Mater Sci Eng C. 2017;71:100–110.
  • Bruggeman JP, Bettinger CJ, Langer R. Biodegradable xylitol-based elastomers: in vivo behavior and biocompatibility. J Biomed Mater Res A. 2010;95:92–104.
  • Dong W, Li T, Xiang S, et al. Influence of glutamic acid on the properties of poly (xylitol glutamate sebacate) bioelastomer. Polymers (Basel). 2013;5:1339–1351.
  • Dasgupta Q, Chatterjee K, Madras G. Combinatorial approach to develop tailored biodegradable poly (xylitol dicarboxylate) polyesters. Biomacromolecules. 2014;15:4302–4313.
  • Corneillie S, Smet M. Pla architectures: the role of branching. Polym Chem. 2015;6:850–867.
  • Li Y, Chen QZ. Fabrication of mechanically tissue-like fibrous poly (xylitol sebacate) using core/shell electrospinning technique. Adv Eng Mater. 2015;17:324–329.
  • Ma P, Li T, Wu W, et al. Novel poly (xylitol sebacate)/hydroxyapatite bio-nanocomposites via one-step synthesis. Polym Degrad Stab. 2014;110:50–55.
  • Dasgupta Q, Chatterjee K, Madras G. Controlled release of salicylic acid from biodegradable cross-linked polyesters. Mol Pharm. 2015;12:3479–3489.
  • Dasgupta Q, Madras G, Chatterjee K. Controlled release kinetics of P-aminosalicylic acid from biodegradable crosslinked polyesters for enhanced anti-mycobacterial activity. Acta Biomater. 2016;30:168–176.
  • Chandorkar Y, Madras G, Basu B. Structure, tensile properties and cytotoxicity assessment of sebacic acid based biodegradable polyesters with ricinoleic acid. J Mater Chem B. 2013;1:865–875.
  • Sathiskumar P, Madras G. Synthesis, characterization, degradation of biodegradable castor oil based polyesters. Polym Degrad Stab. 2011;96:1695–1704.
  • Natarajan J, Madras G, Chatterjee K. Localized delivery and enhanced osteogenic differentiation with biodegradable galactitol polyester elastomers. RSC Adv. 2016;6:61492–61504.
  • Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897–5909.
  • Williams D, Black J, Doherty P. Second consensus conference on definitions in biomaterials. In: Doherty PJ, editor. Biomaterial-tissue interfaces; advances in biomaterials. London: Elsevier Publishers; 1992. p. 525–533.
  • Ponticiello MS, Schinagl RM, Kadiyala S, et al. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res A. 2000;52:246–255.
  • Yao C-H, Liu B-S, Chang C-J, et al. Preparation of networks of gelatin and genipin as degradable biomaterials. Mater Chem Phys. 2004;83:204–208.
  • Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49:780–792.
  • Suh J-KF, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–2598.
  • Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 2010;3:1863–1887.
  • Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–1017.
  • Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651–2670.
  • Cachinho SC, Correia RN. Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour. J Mater Sci Mater Med. 2008;19:451–457.
  • Hoshiba T, Lu H, Kawazoe N, et al. Decellularized matrices for tissue engineering. Expert Opin Biol Ther. 2010;10:1717–1728.
  • Ott HC, Matthiesen TS, Goh S-K, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–221.
  • Schwarcz J. The Right Chemistry: 108 Enlightening, Nutritious, Health-Conscious and Occasionally Bizarre Inquiries into the Science of Daily Life. Doubleday Canada: 2012.
  • Leenslag JW, Pennings AJ, Bos RR, et al. Resorbable materials of poly (L-lactide). Vi. plates and screws for internal fracture fixation. Biomaterials. 1987;8:70–73.
  • Faia-Torres AB, Guimond-Lischer S, Rottmar M, et al. Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials. 2014;35:9023–9032.
  • Deng Y, Liu X, Xu A, et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite composite. Int J Nanomed. 2015;10:1425.
  • Wen JH, Vincent LG, Fuhrmann A, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater. 2014;13:979–987.
  • Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-a scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341:1240104.
  • Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:3074–3082.
  • Tzoneva R, Faucheux N, Groth T. Wettability of substrata controls cell–substrate and cell–cell adhesions. Biochim Biophys Acta. 2007;1770:1538–1547.
  • Viswanathan P, Ondeck MG, Chirasatitsin S, et al. 3D surface topology guides stem cell adhesion and differentiation. Biomaterials. 2015;52:140–147.
  • O’Brien FJ, Harley B, Yannas IV, et al. The effect of pore size on cell adhesion in collagen-gag scaffolds. Biomaterials. 2005;26:433–441.
  • Bhattacharyya J, Bellucci JJ, Weitzhandler I, et al. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms abraxane in multiple murine cancer models. Nat Commun. 2015;6:7939.
  • Suk JS, Xu Q, Kim N, et al. Pegylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.
  • Yu B, Tang C, Yin C. Enhanced antitumor efficacy of folate modified amphiphilic nanoparticles through Co-delivery of chemotherapeutic drugs and genes. Biomaterials. 2014;35:6369–6378.
  • Groen N, Guvendiren M, Rabitz H, et al. Stepping into the omics era: opportunities and challenges for biomaterials science and engineering. Acta Biomater. 2016;34:133–142.
  • Hulsman M, Hulshof F, Unadkat H, et al. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology. Acta Biomater. 2015;15:29–38.
  • Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16.
  • Rezwan K, Chen Q, Blaker J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–3431.
  • Kumar S, Bose S, Chatterjee K. Amine-functionalized multiwall carbon nanotubes impart osteoinductive and bactericidal properties in poly (Ε-caprolactone) composites. RSC Adv. 2014;4:19086–19098.
  • Bennewitz NL, Babensee JE. The effect of the physical form of poly (lactic-co-glycolic acid) carriers on the humoral immune response to co-delivered antigen. Biomaterials. 2005;26:2991–2999.
  • Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49:832–864.
  • Franz S, Rammelt S, Scharnweber D, et al. Immune responses to implants–a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32:6692–6709.
  • Dewitt GG. Synthetic Polymers and Shaped Articles Therefrom. In Google Patents: 1940.
  • Heaven C, Davison C, Cockcroft P. Bacterial contamination of nylon corneal sutures. Eye. 1995;9:116–118.
  • Shahinian L, Brown SI. Postoperative complications with protruding monofilament nylon sutures. Am J Ophthalmol. 1977;83:546–548.
  • Copolymers of Hydroxyacetic Acid with Other Alcohol Acids. In Google Patents: 1954.
  • Emil SE, Albert PR. Surgical Sutures. In Google Patents: 1967.
  • Schmitt EE, Polistina RA. Surgical Dressings of Absorbable Polymers. In Google Patents: 1975.
  • Ray J, Doddi N, Regula D, et al. Polydioxanone (Pds), a novel monofilament synthetic absorbable suture. Surg Gynecol Obstet. 1981;153:497–507.
  • Eggers MD, McArthur MJ, Figueira TA, et al. Pilot in vivo study of an absorbable polydioxanone vena cava filter. J Vasc Surg. 2015;3:409–420.
  • Jones KS. In Effects of Biomaterial-Induced Inflammation on Fibrosis and Rejection, Seminars in immunology, 2008; Elsevier: 2008; pp 130-136.
  • Gentile P, Chiono V, Carmagnola I, et al. An overview of poly (lactic-co-glycolic) acid (plga)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15:3640–3659.
  • Levental I, Georges PC, Janmey PA. Soft biological materials and their impact on cell function. Soft Matter. 2007;3:299–306.
  • Wang Y, Kim YM, Langer R. In vivo degradation characteristics of poly (glycerol sebacate). J Biomed Mater Res A. 2003;66:192–197.
  • Ravichandran R, Venugopal JR, Sundarrajan S, et al. Minimally invasive injectable short nanofibers of poly (glycerol sebacate) for cardiac tissue engineering. Nanotechnology. 2012;23:385102.
  • Sundback CA, Shyu JY, Wang Y, et al. Biocompatibility analysis of poly (glycerol sebacate) as a nerve guide material. Biomaterials. 2005;26:5454–5464.
  • Allen RA, Wu W, Yao M, et al. Nerve regeneration and elastin formation within poly (glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model. Biomaterials. 2014;35:165–173.
  • Kemppainen JM, Hollister SJ. Tailoring the mechanical properties of 3d-designed poly (glycerol sebacate) scaffolds for cartilage applications. J Biomed Mater Res A. 2010;94:9–18.
  • Pritchard CD, Arnér KM, Neal RA, et al. The use of surface modified poly (glycerol-co-sebacic acid) in retinal transplantation. Biomaterials. 2010;31:2153–2162.
  • Yi F, LaVan DA. Poly (glycerol sebacate) nanofiber scaffolds by core/shell electrospinning. Macromol Biosci. 2008;8:803–806.
  • Chen Q-Z, Ishii H, Thouas GA, et al. An elastomeric patch derived from poly (glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials. 2010;31:3885–3893.
  • Bettinger CJ, Orrick B, Misra A, et al. Microfabrication of poly (glycerol–sebacate) for contact guidance applications. Biomaterials. 2006;27:2558–2565.
  • Gaharwar AK, Nikkhah M, Sant S, et al. Anisotropic poly (glycerol sebacate)-poly (ϵ-caprolactone) electrospun fibers promote endothelial cell guidance. Biofabrication. 2014;7:015001.
  • Engelmayr GC, Cheng M, Bettinger CJ, et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater. 2008;7:1003–1010.
  • Yeh Yi-Cheun, Highley Christopher B, Liliang Ouyang, et al. 3D printing of photocurable poly (glycerol sebacate) elastomers. Biofabrication. 2016;8:045004.
  • Rai R, Tallawi M, Barbani N, et al. Biomimetic poly (glycerol sebacate)(Pgs) membranes for cardiac patch application. Mater Sci Eng C. 2013;33:3677–3687.
  • Sun Z-J, Chen C, Sun M-Z, et al. The application of poly (glycerol–sebacate) as biodegradable drug carrier. Biomaterials. 2009;30:5209–5214.
  • Brannigan RP, Dove AP. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater Sci. 2017;5:9–21.
  • Manavitehrani I, Fathi A, Badr H, et al. Biomedical applications of biodegradable polyesters. Polymers (Basel). 2016;8:20.
  • Tham WH, Wahit MU, Kadir A, et al. Polyol-based biodegradable polyesters: a short review. Rev Chem Eng. 2016;32:201–221.
  • Guo B, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem. 2014;57:490–500.
  • Usman A, Zia KM, Zuber M, et al. Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. Int J Biol Macromol. 2016;86:630–645.
  • Ly KA, Milgrom P, Rothen M. Xylitol, sweeteners, and dental caries. Pediatr Dent. 2006;28:154–163.
  • Nabors, L.; Gelardi, R., Alternative sweeteners: an overview. Alternative Sweeteners 2001, 2, 1-10.
  • Barrett DG, Luo W, Yousaf MN. Aliphatic polyester elastomers derived from erythritol and Α, Ω-diacids. Polym Chem. 2010;1:296–302.
  • Bruggeman JP, de Bruin B-J, Bettinger CJ, et al. Biodegradable poly (polyol sebacate) polymers. Biomaterials. 2008;29:4726–4735.
  • Li Y, Thouas GA, Shi H, et al. Enzymatic and oxidative degradation of poly (polyol sebacate). J Biomater Appl. 2014;28:1138–1150.
  • Teng L, Xu X, Nie W, et al. Synthesis and degradability of a star-shaped polylactide based on L-lactide and xylitol. J Polym Res. 2015;22:83.
  • Salaün F, Bedek G, Devaux E, et al. Microencapsulation of a cooling agent by interfacial polymerization: influence of the parameters of encapsulation on poly (urethane–urea) microparticles characteristics. J Memb Sci. 2011;370:23–33.
  • de Gracia Garcıa-Martın M, Pérez RoR, Hernández EB, et al. Synthesis of L-arabinitol and xylitol monomers for the preparation of polyamides. preparation of an L-arabinitol-based polyamide. Carbohydr Res. 2001;333:95–103.
  • García-Martín MdG, Benito Hernández E, Ruiz Pérez R, et al. Synthesis and characterization of linear polyamides derived from L-arabinitol and xylitol. Macromolecules. 2004;37:5550–5556.
  • Wong TW, Wahit MU, Kadir MRA, et al. A novel poly (xylitol-co-dodecanedioate)/hydroxyapatite composite with shape-memory behaviour. Mater Lett. 2014;126:105–108.
  • Dasgupta Q, Madras G, Chatterjee K. Controlled release of usnic acid from biodegradable polyesters to inhibit biofilm formation. ACS Biomater Sci Eng. 2016;3:291–303.
  • Dasgupta Q, Movva S, Chatterjee K, et al. Controlled release from aspirin based linear biodegradable poly (anhydride esters) for anti-inflammatory activity. Int J Pharm. 2017;528:732–740.
  • Chandorkar Y, Bhagat RK, Madras G, et al. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study. Biomacromolecules. 2014;15:863–875.
  • Chandorkar Y, Bhaskar N, Madras G, et al. Long-term sustained release of salicylic acid from cross-linked biodegradable polyester induces a reduced foreign body response in mice. Biomacromolecules. 2015;16:636–649.
  • Barrett DG, Merkel TJ, Luft JC, et al. One-step syntheses of photocurable polyesters based on a renewable resource. Macromolecules. 2010;43:9660–9667.
  • Tham WH, Wahit MU, Kadir MRA, et al. Mechanical and thermal properties of biodegradable hydroxyapatite/poly (sorbitol sebacate malate) composites. Songklanakarin J Sci Technol. 2012;35:57–67.
  • Stebbins ND, Yu W, Uhrich KE. Linear, mannitol-based poly (anhydride-esters) with high ibuprofen loading and anti-inflammatory activity. Biomacromolecules. 2015;16:3632–3639.
  • Natarajan J, Madras G, Chatterjee K. Tailoring the degradation rate and release kinetics from poly (galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose. Int J Biol Macromol. 2016;93:1591–1602.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.