3,278
Views
110
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Progress in modelling solidification microstructures in metals and alloys: dendrites and cells from 1700 to 2000

, &
Pages 311-354 | Received 28 May 2018, Accepted 11 Oct 2018, Published online: 19 Nov 2018

References

  • Temple RKG. The genius of China: 3,000 years of science, discovery, and invention. New York (NY): Simon Schuster; 1986.
  • Kepler J. Strena seu de nive sexangula. Frankfurt/Main: G. Tampach; 1611.
  • Descartes R. ‘Les Météores’, 1635, published with Discours de la Méthode. In: Adam C, Tannery P, editors. Oeuvres de Descartes Vol. VI. Paris: L. Cerf; 1902; An English translation was published in London in 1653.
  • Frank FC. Snow crystals. Contemp Phys. 1982;23:3–22.
  • Zannichelli GG. De Ferro Ejusque Nivis Praeparatione Dissertatio Physico-Chymica in qua Varia de ipso Metallo Explicantur a J. H. Z. Venetiis; 1713.
  • Mariaux A. Partial translation of Zannichelli [5].
  • Baker H. Employment for the microscope: in two parts. London: R. and J. Dodsley; 1764.
  • Grignon P-C. Mémoires de physique sur l’art de fabriquer le fer, d’en fondre et forger des canons d’artillerie; sur l’histoire naturelle, et sur divers sujets particuliers de physique et d’économie. Paris: A. Delalain; 1775; p. 71.
  • Chambers E. Cyclopaedia: or, an universal dictionary of arts and sciences. 1st ed. London: E. Chambers; 1728.
  • Strange J. An account of two giants causeways, or groups of prismatic basaltine columns, and other curious vulcanic concretions, in the Venetian state in Italy. Philos Trans R Soc London. 1775;65:5–47.
  • Osmond F, Werth J. Théorie Cellulaire des Propriétés de l’Acier. Ann Mines. 1885;8:5–84.
  • Chernoff D. On the structure of cast steel ingots. Arch Proc Inst Mech Eng. 1880;31:152–183.
  • Tschermak G. Die Bildung der Meteoriten und der Vulcanismus. Wien: Sitzungs Berichte Akad Wiss. 1875;71:661–673.
  • Le Chatelier H. Les alliages métalliques. Rev Générale Sci Pures Appliquées. 1895;6:529–538.
  • Belaiew NT. Crystallisation of metals. London: University of London Press; 1922.
  • Osmond F, Carthaud G. Sur la cristallographie du fer. Ann Mines. 1900;18:113–153.
  • Lehmann O. Molekularphysik mit besonderer Berücksichtigung mikroskopischer Untersuchungen und Anleitung zu solchen sowie einem Anhang über mikroskopische Analyse. Leipzig: W. Engelmann; 1888; p. 337.
  • Wilson HA. On velocity of solidification. Proc Cambridge Phil Soc. 1898;10:25–35.
  • Friedländer J, Tammann G. Über die Krystallisationsgeschwindigkeit. Z Phys Chem. 1897;24:152–159.
  • Desch CH. Growth of metallic crystals. Trans Amer Inst Mining Metall. 1927;75:526–547.
  • Ewald PP. For Achille Papapetrou. Gen Relativ Gravit. 1977;8:539–540.
  • Papapetrou A. Untersuchungen über dendritisches Wachstum von Kristallen. Z Kristallogr – Cryst Mater. 1935;92:89–130.
  • Papapetrou A. Lectures on general relativity. Dordrecht: Reidel; 1974.
  • Schlipf J. Vorgänge beim Kristallwachstum. Z Kristallogr – Cryst Mater. 1956;107:35–64.
  • Ivantsov GP. Temperature field around a spherical, cylindrical, and needle-shaped crystal, growing in an undercooled melt. Dokl Akad Nauk SSSR. 1947;58:567–569.
  • Kurz W, Fisher DJ. Fundamentals of solidification. 4th Rev. ed. Uetikon-Zuerich: Trans Tech; 1998.
  • Ivantsov GP. About the growth of spherical and needle crystals in a binary melt. Dokl Akad Nauk SSSR. 1952;83:573–576.
  • Ivantsov GP. Heat and diffusion processes in crystal growth. In: Shubnikov AV, Sheftal’ NN, editors. Growth of crystals, Vol. 3. Moscow: Academy Sci. USSR; 1961; p. 75–84.
  • Horvay G, Cahn JW. Dendritic and spheroidal growth. Acta Metall. 1961;9:695–705.
  • Zener C. Kinetics of the decomposition of austenite. Trans AIME. 1946;167:550–595.
  • Carpenter H, Robertson JM. Metals. Oxford: Oxford University Press; 1939; Chapters 5 and 6.
  • Hillert M. Impact of Clarence Zener upon metallurgy. J Appl Phys. 1986;60:1868–1876.
  • Fisher JC. Private communication to B. Chalmers. In: Chalmers B. Principles of solidification. New York (NY): Wiley; 1964; p. 105.
  • Zener C. Theory of growth of spherical precipitates from solid solution. J Appl Phys. 1949;20:950–953.
  • Weinberg F, Chalmers B. Further observations on dendritic growth in metals. Can J Phys. 1952;30:488–502.
  • Hillert M. The role of interfacial energy during solid state phase transformations. Jernkont Ann. 1957;141:757–789.
  • Trivedi R, Pound GM. Growth kinetics of plate-like precipitates. J Appl Phys. 1969;40:4293–4300.
  • Temkin DE. Growth rate of the needle-crystal formed in a supercooled melt. Dokl Akad Nauk SSSR. 1960;132:1307–1310.
  • Temkin DE. Kinetics of growth of a crystal needle in a supercooled binary melt. Sov Phys Crystallogr. 1962;7:354–357.
  • Bolling GF, Tiller WA. Growth from the melt. III. Dendritic growth. J Appl Phys. 1961;32:2587–2605.
  • Bolling GF, Tiller WA. Erratum: Growth from the melt. III. Dendritic growth. J Appl Phys. 1962;33:2400–2400.
  • Kotler GR, Tarshis LA. On the dendritic growth of pure materials. J Cryst Gr. 1968;3–4:603–610.
  • Trivedi R. The role of interfacial free energy and interface kinetics during the growth of precipitate plates and needles. Metall Trans. 1970;1:921–927.
  • Trivedi R. Growth of dendritic needles from a supercooled melt. Acta Metall. 1970;18:287–296.
  • Holzmann EG. Excess velocity potential of the needle crystal. J Appl Phys. 1970;41:1460–1469.
  • Holzmann EG. Excess velocity potential of the platelet crystal in a supercooled melt. J Appl Phys. 1970;41:4769–4775.
  • Sekerka RF, Seidensticker RG, Hamilton DR, et al. Investigation of desalination by freezing. Westinghous Res Lab Rep; 1967.
  • Sekerka RF. Modified Ivantsov model. Pittsburgh (PA): Carnegie Mellon University; 2013; (This 5 page report on the model from ref. [47] can be obtained from R.F. Sekerka or from the corresponding author.).
  • Trivedi R, Tiller WA. Interface morphology during crystallization—I. Single filament, unconstrained growth from a pure melt. Acta Metall. 1978;26:671–678.
  • Trivedi R, Tiller WA. Interface morphology during crystallization—II. Single filament, unconstrained growth from a binary alloy melt. Acta Metall. 1978;26:679–687.
  • Tarshis LA, Walker JL, Gigliotti MFX. Solidification. Ann Rev Mater Sci. 1972;2:181–216.
  • Nash GE, Glicksman ME. Capillarity-limited steady-state dendritic growth—I. Theoretical development. Acta Metall. 1974;22:1283–1290.
  • Nash GE, Glicksman ME. Capillarity-limited steady-state dendritic growth—II. Numerical results. Acta Metall. 1974;22:1291–1299.
  • Pelcé P, Pomeau Y. Dendrites in the small undercooling limit. Studies Appl Math. 1986;74:245–258.
  • Meiron DI. Selection of steady states in the two-dimensional symmetric model of dendritic growth. Phys Rev A. 1986;33:2704–2715.
  • Kessler DA, Levine H. Velocity selection in dendritic growth. Phys Rev B. 1986;33:7867–7870.
  • Saito Y, Goldbeck-Wood G, Müller-Krumbhaar H. Numerical simulation of dendritic growth. Phys Rev A. 1988;38:2148–2157.
  • Ben Amar M, Moussallam B. Absence of selection in directional solidification. Phys Rev Lett. 1988;60:317–320.
  • Langer JS, Müller-Krumbhaar J. Stability effects in dendritic crystal growth. J Cryst Gr. 1977;42:11–14.
  • Glicksman ME, Schaefer RJ, Ayers JD. Dendritic growth – a test of theory. Metall Trans A. 1976;7:1747–1759.
  • Chopra MA, Glicksman ME, Singh NB. Dendritic solidification in binary alloys. Metall Trans A. 1988;19:3087–3096.
  • Kotler GR, Tiller WA. Stability of the needle crystal. J Cryst Gr. 1968;2:287–307.
  • Oldfield W, Geering GT, Tiller WA. The evolution of crystal shape: a computer model. Mater Sci Eng. 1967;2:91–106.
  • Oldfield W. Numerical study of dendrite growth. In: Solidification of metals. London: Iron & Steel Institute, ISI Publ. 110; 1968; p. 70–73.
  • Oldfield W. Computer model studies of dendritic growth. Mater Sci Eng. 1973;11:211–218.
  • Glicksman ME. Discussion. In: Solidification of metals. London: Iron and Steel Institute, ISI Publ. 110; 1968; p. 126.
  • Langer JS, Müller-Krumbhaar H. Theory of dendritic growth—I. Elements of a stability analysis. Acta Metall. 1978;26:1681–1687.
  • Langer JS, Müller-Krumbhaar H. Theory of dendritic growth—II. Instabilities in the limit of vanishing surface tension. Acta Metall. 1978;26:1689–1695.
  • Müller-Krumbhaar H, Langer JS. Theory of dendritic growth—III. Effects of surface tension. Acta Metall. 1978;26:1697–1708.
  • Müller-Krumbhaar H. Private communication. 2017.
  • Langer JS, Sekerka RF, Fujioka T. Evidence for a universal law of dendritic growth rates. J Cryst Gr. 1978;44:414–418.
  • Langer JS. Instabilities and pattern formation in crystal growth. Rev Mod Phys. 1980;52:1–28.
  • Cantor B, Vogel A. Dendritic solidification and fluid flow. J Cryst Gr. 1977;41:109–123.
  • Doherty RD, Cantor B, Fairs SJM. Further analysis of dendritic growth data for succinonitrile. Metall Trans A. 1978;9:621–624.
  • Lesoult G. 1978. Cited in [67].
  • Mullins WW, Sekerka RF. Morphological stability of a particle growing by diffusion or heat flow. J Appl Phys. 1963;34:323–329.
  • Trivedi R. Theory of dendritic growth during the directional solidification of binary alloys. J Cryst Gr. 1980;49:219–232.
  • Trivedi R. Morphological stability of a solid particle growing from a binary alloy melt. J Cryst Gr. 1980;48:93–99.
  • Trivedi R. Theory of dendritic growth under rapid solidification conditions. J Cryst Gr. 1985;73:289–303.
  • Sekerka RF. Optimum stability conjecture for the role of interface kinetics in selection of the dendrite operating state. J Cryst Gr. 1995;154:377–385.
  • Huang S-C, Glicksman ME. Fundamentals of dendritic solidification—I. Steady-state tip growth. Acta Metall. 1981;29:701–715.
  • Huang S-C, Glicksman ME. Fundamentals of dendritic solidification—II. Development of sidebranch structure. Acta Metall. 1981;29:717–734.
  • Kurz W, Fisher DJ. Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall. 1981;29:11–20.
  • Fisher DJ, Kurz W. A theory of branching limited growth of irregular eutectics. Acta Metall. 1980;28:777–794.
  • Langer JS. Dendritic solidification of dilute solutions. Phys-Chem Hydrodyn. 1980;1:41–49.
  • Karma A, Langer JS. Impurity effects in dendritic solidification. Phys Rev A. 1984;30:3147–3155.
  • Lipton J, Glicksman ME, Kurz W. Dendritic growth into undercooled alloy metals. Mater Sci Eng. 1984;65:57–63.
  • Lipton J, Glicksman ME, Kurz W. Equiaxed dendrite growth in alloys at small supercooling. Metall Trans A. 1987;18:341–345.
  • Lindenmeyer CS, Chalmers B. Growth rate of ice dendrites in aqueous solutions. J Chem Phys. 1966;45:2807–2808.
  • Bobadilla M, Lacaze J, Lesoult G. Influence des conditions de solidification sur le déroulement de la solidification des aciers inoxydables austénitiques. J Cryst Gr. 1988;89:531–544.
  • Rappaz M, Boettinger WJ. On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients. Acta Mater. 1999;47:3205–3219.
  • Hunziker O. Theory of plane front and dendritic growth in multicomponent alloys. Acta Mater. 2001;49:4191–4203.
  • Coates DE, Subramanian SV, Purdy GR. Solid-liquid interface stability during solidification of dilute ternary alloys. Trans Met Soc AIME. 1968;242:800–809.
  • Trivedi R, Kurz W. Modeling of solidification microstructures in concentrated solutions and intermetallic systems. Metall Trans A. 1990;21:1311–1318.
  • Caroli B, Müller-Krumbhaar H. Recent advances in the theory of free dendritic growth. ISIJ Int. 1995;35:1541–1550.
  • Ben-Jacob E, Goldenfeld N, Langer JS, et al. Dynamics of interfacial pattern formation. Phys Rev Lett. 1983;51:1930–1932.
  • Langer JS. Existence of needle crystals in local models of solidification. Phys Rev A. 1986;33:435–441.
  • Ben-Jacob E, Goldenfeld N, Langer JS, et al. Boundary-layer model of pattern formation in solidification. Phys Rev A. 1984;29:330–340.
  • Ben-Jacob E, Goldenfeld N, Kotliar BG, et al. Pattern selection in dendritic solidification. Phys Rev Lett. 1984;53:2110–2113.
  • Brower RC, Kessler DA, Koplik J, et al. Geometrical approach to moving-interface dynamics. Phys Rev Lett. 1983;51:1111–1114.
  • Brower RC, Kessler DA, Koplik J, et al. Geometrical models of interface evolution. Phys Rev A. 1984;29:1335–1342.
  • Kessler DA, Koplik J, Levine H. Geometrical models of interface evolution. II. Numerical simulation. Phys Rev A. 1984;30:3161–3174.
  • Kessler DA, Koplik J, Levine H. Geometrical models of interface evolution. III. Theory of dendritic growth. Phys Rev A. 1985;31:1712–1717.
  • Kessler DA, Koplik J, Levine H. Pattern selection in fingered growth phenomena. Adv Phys. 1988;37:255–339.
  • Goldenfeld N. Dynamics of dendritic growth. J Power Sources. 1989;26:121–128.
  • Caroli B, Caroli C, Roulet B, et al. Solvability condition for needle crystals at large undercooling in a nonlocal model of solidification. Phys Rev A. 1986;33:442–452.
  • Barbieri A, Hong DC, Langer JS. Velocity selection in the symmetric model of dendritic crystal growth. Phys Rev A. 1987;35:1802–1808.
  • Caroli B, Caroli C, Misbah C, et al. On velocity selection for needle-crystals in a fully non-local model of solidification. J Physique. 1987;48:547–552.
  • Amar M B, Pomeau Y. Theory of dendritic growth in a weakly undercooled melt. Europhys Lett. 1986;2:307–314.
  • Ben Amar M, Pelcé P. Impurity effect on dendritic growth. Phys Rev A. 1989;39:4263–4269.
  • Kessler DA, Levine H. Stability of dendritic crystals. Phys Rev Lett. 1986;57:3069–3072.
  • Langer JS. Dendritic sidebranching in the three-dimensional symmetric model in the presence of noise. Phys Rev A. 1987;36:3350–3358.
  • Barber MN, Barbieri A, Langer JS. Dynamics of dendritic sidebranching in the two-dimensional symmetric model of solidification. Phys Rev A. 1987;36:3340–3349.
  • Ben Amar M, Brener E. Theory of pattern selection in three-dimensional nonaxisymmetric dendritic growth. Phys Rev Lett. 1993;71:589–592.
  • Brener E. Needle-crystal solution in three-dimensional dendritic growth. Phys Rev Lett. 1993;71:3653–3656.
  • Brener E, Melnikov VI. Velocity selection and instability spectrum in 3D dendritic growth. JETP. 1995;80:341–345.
  • LaCombe JC, Koss MB, Fradkov VE, et al. Three-dimensional dendrite-tip morphology. Phys Rev E. 1995;52:2778–2786.
  • Karma A. Fluctuations in solidification. Phys Rev E. 1993;48:3441–3458.
  • Brener E, Temkin D. Noise-induced sidebranching in the three-dimensional nonaxisymmetric dendritic growth. Phys Rev E. 1995;51:351–359.
  • Bisang U, Bilgram JH. Shape of the tip and the formation of sidebranches of xenon dendrites. Phys Rev Lett. 1995;75:3898–3901.
  • Karma A, Rappel W-J. Phase-field model of dendritic sidebranching with thermal noise. Phys Rev E. 1999;60:3614–3625.
  • Karma A, Kotliar BG. Pattern selection in a boundary-layer model of dendritic growth in the presence of impurities. Phys Rev A. 1985;31:3266–3275.
  • Pelcé P. Théorie des formes de croissance: digitations, dendrites et flammes. Les Ulis: EDP Sciences and CNRS Editions; 2000; English translation: New visions on form and growth: fingered growth, dendrites, and flames. Oxford University Press; 2004.
  • Langer JS. Recent developments in the theory of pattern formation. Physica A. 1986;140:44–50.
  • Langer JS, Hong DC. Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy. Phys Rev A. 1986;34:1462–1471.
  • Trivedi R, Kurz W. Dendritic growth. Int Mater Rev. 1994;39:49–74.
  • Karma A, Rappel W-J. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E. 1998;57:4323–4349.
  • Müller-Krumbhaar H, Kurz W, Brener E. Solidification. In: Kostorz G, editor. Phase transformations in materials. Weinheim: Wiley-VCH; 2001; p. 81–170.
  • Karma A. Dendritic growth. In: Fleury V, Gouyet J-F, Leonetti M, editors. Branching in nature: dynamics and morphogenesis of branching structures, from cell to river networks. Berlin: Springer; 2001; p. 365–401.
  • Brener E, Müller-Krumbhaar H, Temkin D. Kinetic phase diagram and scaling relations for stationary diffusional growth. Europhys Lett. 1992;17:535–540.
  • Brener E, Müller-Krumbhaar H, Temkin D. Structure formation and the morphology diagram of possible structures in two-dimensional diffusional growth. Phys Rev E. 1996;54:2714–2722.
  • Losert W, Stillman DA, Cummins HZ, et al. Selection of doublet cellular patterns in directional solidification through spatially periodic perturbations. Phys Rev E. 1998;58:7492–7506.
  • Akamatsu S, Faivre G, Ihle T. Symmetry-broken double fingers and seaweed patterns in thin-film directional solidification of a nonfaceted cubic crystal. Phys Rev E. 1995;51:4751–4773.
  • Brener EA, Temkin DE. Cellular, dendritic, and doublon patterns in directional crystallization. J Exp Theor Phys. 1996;82:559–566.
  • Umantsev AR, Vinograd VV, Borisov VT. Sov Phys Crystallogr. 1986;31:596–599.
  • Tarabaev LP, Mashikhin AY, Esin VO. Dendritic crystal growth in supercooled melt. J Cryst Gr. 1991;114:603–612.
  • Galenko PK, Zhuravlëv VA. Physics of dendrites: computational experiments. Singapore: World Scientific; 1994.
  • Muschol M, Liu D, Cummins HZ. Surface-tension-anisotropy measurements of succinonitrile and pivalic acid: comparison with microscopic solvability theory. Phys Rev A. 1992;46:1038–1050.
  • Glicksman ME, Singh NB. Effects of crystal-melt interfacial energy anisotropy on dendritic morphology and growth kinetics. J Cryst Gr. 1989;98:277–284.
  • Rubinstein ER, Glicksman ME. Dendritic grown kinetics and structure I. Pivalic acid. J Cryst Gr. 1991;112:84–96.
  • Burden MH, Hunt JD. Cellular and dendritic growth. I J Cryst Gr. 1974;22:99–108.
  • Somboonsuk K, Mason JT, Trivedi R. Interdendritic spacing: part I. Experimental studies. Metall Trans A. 1984;15:967–975.
  • Esaka H, Kurz W. Columnar dendrite growth: experiments on tip growth. J Cryst Gr. 1985;72:578–584.
  • Dougherty A, Kaplan PD, Gollub JP. Development of side branching in dendritic crystal growth. Phys Rev Lett. 1987;58:1652–1655.
  • Qian XW, Cummins HZ. Dendritic sidebranching initiation by a localized heat pulse. Phys Rev Lett. 1990;64:3038–3041.
  • Williams LM, Muschol M, Qian X, et al. Dendritic sidebranching with periodic localized perturbations: directional solidification of pivalic acid–coumarin 152 mixtures. Phys Rev E. 1993;48:489–499.
  • Li Q, Beckermann C. Scaling behavior of three-dimensional dendrites. Phys Rev E. 1998;57:3176–3188.
  • Glicksman ME, Koss MB, Winsa EA. Dendritic growth velocities in microgravity. Phys Rev Lett. 1994;73:573–576.
  • Akamatsu S, Ihle T. Similarity law for the tilt angle of dendrites in directional solidification of non-axially-oriented crystals. Phys Rev E. 1997;56:4479–4485.
  • Grugel RN, Zhou Y. Primary dendrite spacing and the effect of off-axis heat flow. Metall Trans A. 1989;20:969–973.
  • Gandin CA, Eshelman M, Trivedi R. Orientation dependence of primary dendrite spacing. Metall Mater Trans A. 1996;27:2727–2739.
  • Glicksman ME, Koss MB, Bushnell LT, et al. Dendritic growth of succinonitrile in terrestrial and microgravity conditions as a test of theory. ISIJ Int. 1995;35:604–610.
  • Sekerka RF, Coriell SR, McFadden GB. The effect of container size on dendritic growth in microgravity. J Cryst Gr. 1997;171:303–306.
  • Tennenhouse LA, Koss MB, LaCombe JC, et al. Use of microgravity to interpret dendritic growth kinetics at small supercoolings. J Cryst Gr. 1997;174:82–89.
  • Roosen AR, Taylor JE. Modeling crystal growth in a diffusion field using fully faceted interfaces. J Comput Phys. 1994;114:113–128.
  • Almgren R. Variational algorithms and pattern formation in dendritic solidification. J Comput Phys. 1993;106:337–354.
  • Ihle T, Müller-Krumbhaar H. Fractal and compact growth morphologies in phase transitions with diffusion transport. Phys Rev E. 1994;49:2972–2991.
  • Provatas N, Elder K. Phase-field methods in materials science and engineering. Weinheim: Wiley-VCH; 2010.
  • Goldenfeld N, Athreya BP, Dantzig JA. Renormalization group approach to multiscale modelling in materials science. J Stat Phys. 2006;125:1015–1023.
  • Langer JS. ‘Phase-field model’, Research notes written for colleagues at Carnegie Mellon University; Pittsburgh; 1978; p. 1–5. See Appendix. Thanks to A. Karma for providing a copy of these notes.
  • Langer JS. Models of pattern formation in first-order phase transitions. In: Grinstein G, Mazenko G, editors. Directions in condensed matter physics. Singapore: World Scientific; 1986; p. 165–186.
  • Langer JS. Lectures in the theory of pattern formation. In: Souletie J, Vannimenus J, Stora R, editors. Chance and matter. Les Houches. Amsterdam: North Holland; 1987; p. 629–711.
  • Langer JS. Private communication. 2012.
  • Cahn JW, Hilliard JE. Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys. 1958;28:258–267.
  • Cahn JW, Hilliard JE. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J Chem Phys. 1959;31:688–699.
  • Langer JS, Sekerka RF. Theory of departure from local equilibrium at the interface of a two-phase diffusion couple. Acta Metall. 1975;23:1225–1237.
  • Halperin BI, Hohenberg PC, Ma S-K. Renormalization-group methods for critical dynamics: I. Recursion relations and effects of energy conservation. Phys Rev B. 1974;10:139–153.
  • Caginalp G, Fife P. Phase-field methods for interfacial boundaries. Phys Rev B. 1986;33:7792–7794.
  • Caginalp G, Chen X. Phase field equations in the singular limit of sharp interface problems. In: Gurtin E, McFadden GB, editors. On the evolution of phase boundaries. New York (NY): Springer; 1992; p. 1–28.
  • Caginalp G. The role of microscopic anisotropy in the macroscopic behavior of a phase boundary. Ann Phys (NY). 1986;172:136–155.
  • Caginalp G. An analysis of a phase field model of a free boundary. Arch Rat Mech Anal. 1986;92:205–245.
  • Fix GJ. Phase field methods for free boundary problems. In: Fasano A, Primicerio M, editors. Free boundary problems: theory and applications, Vol. II. Boston (MA): Pitman Advanced Pub. Program; 1983; p. 580–589.
  • Penrose O, Fife PC. Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D. 1990;43:44–62.
  • Wang S-L, Sekerka RF, Wheeler AA, et al. Thermodynamically-consistent phase-field models for solidification. Physica D. 1993;69:189–200.
  • Kobayashi R. Dynamics of interfaces in systems of reaction diffusion (fractals and related topics). RIMS Kokyuroku. 1987;614:39–54.
  • Warren JA, Boettinger WJ. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall Mater. 1995;43:689–703.
  • Kobayashi R. Mathematical models of phase transition and interfacial motion. Bull Jpn Soc Ind Appl Math. 1991;1:22–33.
  • Kobayashi R. Modeling and numerical simulations of dendritic crystal growth. Physica D. 1993;63:410–423.
  • Kobayashi R. A numerical approach to three-dimensional dendritic solidification. Exp Math. 1994;3:59–81.
  • Wheeler AA, Boettinger WJ, McFadden GB. Phase-field model for isothermal phase transitions in binary alloys. Phys Rev A. 1992;45:7424–7439.
  • Boettinger WJ, Warren JA. The phase-field method: simulation of alloy dendritic solidification during recalescence. Metall Mater Trans A. 1996;27:657–669.
  • Wheeler AA, Boettinger WJ, McFadden GB. Phase-field model of solute trapping during solidification. Phys Rev E. 1993;47:1893–1909.
  • Caginalp G, Xie W. Phase-field and sharp-interface alloy models. Phys Rev E. 1993;48:1897–1909.
  • Caginalp G, Xie W. An analysis of phase-field alloys and transition layers. Arch Rational Mech Anal. 1998;142:293–329.
  • Kim SG, Kim WT, Suzuki T. Phase-field model for binary alloys. Phys Rev E. 1999;60:7186–7197.
  • McFadden GB, Wheeler AA, Braun RJ, et al. Phase-field models for anisotropic interfaces. Phys Rev E. 1993;48:2016–2024.
  • Grossmann B, Elder KR, Grant M, et al. Directional solidification in two and three dimensions. Phys Rev Lett. 1993;71:3323–3326.
  • Bi Z, Sekerka RF. Phase-field model of solidification of a binary alloy. Physica A. 1998;261:95–106.
  • Boettinger WJ, Warren JA, Beckermann C, et al. Phase-field simulation of solidification. Ann Rev Mater Res. 2002;32:163–194.
  • Karma A, Rappel W-J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys Rev E. 1996;53:R3017–R3020.
  • Koss MB, LaCombe JC, Tennenhouse LA, et al. Dendritic growth tip velocities and radii of curvature in microgravity. Metall Mater Trans A. 1999;30:3177–3190.
  • Steinbach I, Pezzolla F, Nestler B, et al. A phase field concept for multiphase systems. Physica D. 1996;94:135–147.
  • Tiaden J, Nestler B, Diepers HJ, et al. The multiphase-field model with an integrated concept for modelling solute diffusion. Physica D. 1998;115:73–86.
  • Karma A, Lee YH, Plapp M. Three-dimensional dendrite-tip morphology at low undercooling. Phys Rev E. 2000;61:3996–4006.
  • Koo K-K. Evaluation of dendritic growth theories with experimental data. J Phys Soc Jpn. 1996;65:499–504.
  • Bisang U, Bilgram JH. Shape of the tip and the formation of sidebranches of xenon dendrites. Phys Rev E. 1996;54:5309–5326.
  • Murray BT, Wheeler AA, Glicksman ME. Simulations of experimentally observed dendritic growth behavior using a phase-field model. J Cryst Gr. 1995;154:386–400.
  • Lee JS, Suzuki T. Numerical simulation of isothermal dendritic growth by phase-field model. ISIJ Int. 1999;39:246–252.
  • Lipton J, Kurz W, Trivedi R. Rapid dendrite growth in undercooled alloys. Acta Metall. 1987;35:957–964.
  • Trivedi R, Lipton J, Kurz W. Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts. Acta Metall. 1987;35:965–970.
  • Palle N, Dantzig JA. An adaptive mesh refinement scheme for solidification problems. Metall Mater Trans A. 1996;27:707–717.
  • Provatas N, Goldenfeld N, Dantzig J. Efficient computation of dendritic microstructures using adaptive mesh refinement. Phys Rev Lett. 1998;80:3308–3311.
  • Provatas N, Goldenfeld N, Dantzig J. Adaptive mesh refinement computation of solidification microstructures using dynamic data structures. J Comput Phys. 1999;148:265–290.
  • Karma A. Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett. 2001;87:115701.
  • Karma A. Phase field methods. In: Encyclopedia of materials: science and technology. 2nd ed. Oxford: Elsevier; 2001; p. 6873–6886.
  • Ode M, Kim SG, Suzuki T. Recent advances in the phase-field model for solidification. ISIJ Int. 2001;41:1076–1082.
  • Chen L-Q. Phase-field models for microstructure evolution. Annu Rev Mater Res. 2002;32:113–140.
  • Beckermann C, Diepers H-J, Steinbach I, et al. Modeling melt convection in phase-field simulations of solidification. J Comput Phys. 1999;154:468–496.
  • McFadden GB, Coriell SR. The effect of fluid flow due to the crystal-melt density change on the growth of a parabolic isothermal dendrite. J Cryst Gr. 1986;74:507–512.
  • Trivedi R, Miyahara H, Mazumder P, et al. Directional solidification microstructures in diffusive and convective regimes. J Cryst Gr. 2001;222:365–379.
  • Lee Y-W, Smith RN, Glicksman ME, et al. Effects of buoyancy on the growth of dendritic crystals. Ann Rev Heat Transf. 1996;7:59–139.
  • Ananth R, Gill WN. Dendritic growth in microgravity and forced convection. J Cryst Gr. 1997;179:263–276.
  • Davis SH. Theory of solidification. Cambridge: Cambridge University Press; 2001; p. 274–365.
  • Fernandez R, Barduhn AJ. The growth rate of ice crystals. Desalination. 1967;3:330–342.
  • Kallungal JP, Barduhn AJ. Growth rate of an ice crystal in subcooled pure water. AIChE J. 1977;23:294–303.
  • Huang JS, Barduhn AJ. The effect of natural convection on ice crystal growth rates in salt solutions. AIChE J. 1985;31:747–752.
  • Sekerka RF, Coriell SR, McFadden GB. Stagnant film model of the effect of natural convection on the dendrite operating state. J Cryst Gr. 1995;154:370–376.
  • Kumar Das S, Gill WN. Forced convection heat and momentum transfer to dendritic structures (parabolic cylinders and paraboloids of revolution). Int J Heat Mass Transf. 1984;27:1345–1356.
  • Kind M, Gill WN, Ananth R. The growth of ice dendrites under mixed convection conditions. Chem Eng Comm. 1987;55:295–312.
  • Tirmizi SH, Gill WN. Effect of natural convection on growth velocity and morphology of dendritic ice crystals. J Cryst Gr. 1987;85:488–502.
  • Ananth R, Gill WN. Dendritic growth with thermal convection. J Cryst Gr. 1988;91:587–598.
  • Lee Y-W, Ananth R, Gill WN. Selection of a length scale in unconstrained dendritic growth with convection in the melt. J Cryst Gr. 1993;132:226–230.
  • Amar M B, Bouissou P, Pelcé P. An exact solution for the shape of a crystal growing in a forced flow. J Cryst Gr. 1988;92:97–100.
  • Canright D, Davis SH. Buoyancy effects of a growing, isolated dendrite. J Cryst Gr. 1991;114:153–185.
  • Glicksman ME, Winsa E, Hahn RC, et al. Isothermal dendritic growth—a proposed microgravity experiment. Metall Trans A. 1988;19:1945–1953.
  • Bouissou P, Perrin B, Tabeling P. Influence of an external flow on dendritic crystal growth. Phys Rev A. 1989;40:509–510.
  • Bouissou P, Chiffaudel A, Perrin B, et al. Dendritic side-branching forced by an external flow. Europhys Lett. 1990;13:89–94.
  • Tong X, Beckermann C, Karma A, et al. Phase-field simulations of dendritic crystal growth in a forced flow. Phys Rev E. 2001;63:061601.
  • Tönhardt R, Amberg G. Simulation of natural convection effects on succinonitrile crystals. Phys Rev E. 2000;62:828–836.
  • Tönhardt R, Amberg G. Dendritic growth of randomly oriented nuclei in a shear flow. J Cryst Gr. 2000;213:161–187.
  • Henry S, Rappaz M, Jarry P. <110> dendrite growth in aluminum feathery grains. Metall Mater Trans A. 1998;29:2807–2817.
  • Hellawell A, Liu S, Lu SZ. Dendrite fragmentation and the effects of fluid flow in castings. JOM. 1997;49:18–20.
  • Jones H. A perspective on the development of rapid solidification and nonequilibrium processing and its future. Mater Sci Eng A. 2001;304-306:11–19.
  • Jacobson LA, McKittrick J. Rapid solidification processing. Mater Sci Eng R. 1994;11:355–408.
  • Jones H. Formation of phases and microstructures by rapid solidification processing: an update. Mater Sci Eng A. 1994;179–180(Part 1):1–7.
  • Jones H. Chapter 3, Rapid solidification. In: Suryanarayana C, editor. Non-equilibrium processing of materials. 1st ed. Amsterdam: Pergamon; 1999; p. 23–45.
  • Feuerbacher B. Phase formation in metastable solidification of metals. Mater Sci Eng R. 1989;4:1–40.
  • Herlach DM. Non-equilibrium solidification of undercooled metallic metls. Mater Sci Eng R. 1994;12:177–272.
  • Kurz W, Trivedi R. Rapid solidification processing and microstructure formation. Mater Sci Eng A. 1994;179–180:46–51.
  • Boettinger WJ, Bendersky L, Early JG. An analysis of the microstructure of rapidly solidified Al-8 wt pct Fe powder. Metall Trans A. 1986;17:781–790.
  • Flemings MC, Shiohara Y. Solidification of undercooled metals. Mater Sci Eng. 1984;65:157–170.
  • Huang SC, Laforce RP, Ritter AM, et al. Rapid solidification characteristics in melt spinning a Ni-base superalloy. Metall Trans A. 1985;16:1773–1779.
  • Ludwig A, Frommeyer G, Gránásy L. Modelling of dendritic growth during ribbon formation in planar flow casting. Mater Sci Eng A. 1991;133:722–725.
  • Clyne TW. Numerical treatment of rapid solidification. Metall Trans B. 1984;15:369–381.
  • Wang GX, Matthys EF. Modelling of rapid solidification by melt spinning: effect of heat transfer in the cooling substrate. Mater Sci Eng A. 1991;136:85–97.
  • Zhang X, Atrens A. Rapid solidification characteristics in melt spinning. Mater Sci Eng A. 1992;159:243–251.
  • Mehrabian R. Rapid solidification. Int Mater Rev. 1982;27:185–208.
  • Gremaud M, Carrard M, Kurz W. The microstructure of rapidly solidified Al-Fe alloys subjected to laser surface treatment. Acta Metall Mater. 1990;38:2587–2599.
  • Boettinger WJ, Shechtman D, Schaefer RJ, et al. The effect of rapid solidification velocity on the microstructure of Ag-Cu alloys. Metall Trans A. 1984;15:55–66.
  • Boettinger WJ. Microstructural variations in rapidly solidified alloys. Mater Sci Eng. 1988;98:123–130.
  • Rosenberg A, Winegard WC. The rate of growth of dendrites in supercooled tin. Acta Metall. 1954;2:342–343.
  • Orrok GT. Dendritic solidification of metals [PhD thesis]. Harvard University; 1959.
  • Chalmers B. Principles of solidification. New York (NY): Wiley; 1964; p. 110–116.
  • Walker JL. The influence of large amounts of undercooling on the grain size of nickel. In: Pierre GRS, editor. The physical chemistry of process metallurgy. New York (NY): AIME; 1961; p. 845–853.
  • Colligan GA, Bayles BJ. Dendrite growth velocity in undercooled nickel melts. Acta Metall. 1962;10:895–897.
  • Hallett J. Experimental studies of the crystallization of supercooled water. J Atmosph Sci. 1964;21:671–682.
  • Trivedi R, Kurz W. Solidification microstructures: a conceptual approach. Acta Metall Mater. 1994;42:15–23.
  • Powell GLF, Colligan GA, Surprenant VA, et al. The growth rate of dendrites in undercooled tin. Metall Trans A. 1977;8:971–973.
  • Suzuki T, Toyoda S, Umeda T, et al. Dendrite growth from the supercooled melt. J Cryst Gr. 1977;38:123–128.
  • Glicksman ME, Schaefer RJ. Investigation of solid/liquid interface temperatures via isenthalpic solidification. J Cryst Gr. 1967;1:297–310.
  • Mehrabian R, Kear BH, Cohen M, editors. Rapid solidification processing, principles and technologies. Baton Rouge: Claitor’s; 1978.
  • Mehrabian R, Kear BH, Cohen M, editors. Rapid solidification processing, principles and technologies II. Baton Rouge: Claitor’s; 1980.
  • Hsu SC, Chakravorty S, Mehrabian R. Rapid melting and solidification of a surface layer. Metall Trans B. 1978;9:221–229.
  • Hsu SC, Kou S, Mehrabian R. Rapid melting and solidification of a surface due to stationary heat flux. Metall Trans B. 1980;11:29–38.
  • Kou S, Hsu SC, Mehrabian R. Rapid melting and solidification of a surface due to a moving heat flux. Metall Trans B. 1981;12:33–45.
  • Levi CG, Mehrabian R. Microstructures of rapidly solidified aluminum alloy submicron powders. Metall Trans A. 1982;13:13–23.
  • Boettinger WJ, Coriell SR, Sekerka RF. Mechanisms of microsegregation-free solidification. Mater Sci Eng. 1984;65:27–36.
  • Munitz A, Abbaschian GJ. Solidification of supercooled Fe-Ni alloys. Adv Mater Manufact Process. 1988;3:419–446.
  • Wu Y, Piccone TJ, Shiohara Y, et al. Dendritic growth of undercooled nickel-tin: part I. Metall Trans A. 1987;18:915–924.
  • Wu Y, Piccone TJ, Shiohara Y, et al. Dendritic growth of undercooled nickel-tin: part II. Metall Trans A. 1987;18:925–932.
  • Wu Y, Piccone TJ, Shiohara Y, et al. Dendritic growth of undercooled nickel-tin: part III. Metall Trans A. 1988;19:1109–1119.
  • Suzuki M, Piccone TJ, Flemings MC, et al. Solidification of highly undercooled Fe-P alloys. Metall Trans A. 1991;22:2761–2768.
  • Piccone TJ, Flemings MC. Authors’ reply. Metall Trans A. 1992;23:2674–2675.
  • Koseki T, Flemings MC. Effect of external heat extraction on dendritic growth into undercooled melts. ISIJ Int. 1995;35:611–617.
  • Schleip E, Willnecker R, Herlach DM, et al. Measurements of ultrarapid solidification rates in greatly undercooled bulk melts with a high speed photosensing device. Mater Sci Eng. 1988;98:39–42.
  • Eckler K, Herlach DM. Discussion of ‘solidification of highly undercooled Fe-P alloys’. Metall Trans A. 1992;23:2672–2674.
  • Eckler K, Cochrane RF, Herlach DM, et al. Evidence for a transition from diffusion-controlled to thermally controlled solidification in metallic alloys. Phys Rev B. 1992;45:5019–5022.
  • Herlach DM, Cochrane RF, Egry I, et al. Containerless processing in the study of metallic melts and their solidification. Intern Mater Rev. 1993;38:273–347.
  • Löser W, Herlach DM. Theoretical treatment of the solidification of undercooled Fe-Cr-Ni melts. Metall Trans A. 1992;23:1585–1591.
  • Willnecker R, Görler GP, Wilde G. Appearance of a hypercooled liquid region for completely miscible alloys. Mater Sci Eng A. 1997;226-228:439–442.
  • Powell GLF. The undercooling of silver. J Aust Inst Met. 1965;10:223–230.
  • Kattamis TZ, Flemings MC. Solidification of highly undercooled castings. Trans Amer Foundrymen’s Soc. 1967;75:191–198.
  • Tarshis LA, Walker JL, Rutter JW. Experiments on the solidification structure of alloy castings. Metall Trans. 1971;2:2589–2597.
  • Willnecker R, Herlach DM, Feuerbacher B. Evidence of nonequilibrium processes in rapid solidification of undercooled metals. Phys Rev Lett. 1989;62:2707–2710.
  • Schwarz M, Karma A, Eckler K, et al. Physical mechanism of grain refinement in solidification of undercooled melts. Phys Rev Lett. 1994;73:1380–1383.
  • Mullis AM, Cochrane RF. Grain refinement and the stability of dendrites growing into undercooled pure metals and alloys. J Appl Phys. 1997;82:3783–3790.
  • Olsen WTJ, Hultgren R. Effect of rate of freezing on degree of segregation in alloys. Trans AIME. 1950;188:1323–1323.
  • Duwez P, Willens RH, Klement W, Jr. Continuous series of metastable solid solutions in silver-copper alloys. J Appl Phys. 1960;31:1136–1137.
  • Miroshnichenko IS. In: Ovsienko DE, editor. Growth and imperfections of metallic crystals. New York (NY): Consultants Bureau; 1972; p. 255–259.
  • Miroshnichenko IS. Quenching from the liquid state. Moscow: Metallurgia; 1982.
  • Aptekar IL, Kamenetskaya DS. The thermodynamics of phase transformations in binary alloys. Dokl Akad Nauk SSSR. 1962;143:636–639.
  • Borisov VT. Kinetic phase diagrams of the cristallization of alloys. Dokl Akad Nauk SSSR. 1962;142:69–71.
  • Chernov AA. Excess impurity trapping during crystal growth. In: Shubnikov AV, Sheftal NN, editors. Growth of crystals Vol. 3. New York (NY): Consultants Bureau; 1962; p. 35–39.
  • Baker JC, Cahn JW. Solute trapping by rapid solidification. Acta Metall. 1969;17:575–578.
  • Baker JC, Cahn JW. Thermodynamics of solidification. In: Solidification. Metals Park (OH): ASM; 1971; p. 23–58.
  • Aziz MJ. Model for solute redistribution during rapid solidification. J Appl Phys. 1982;53:1158–1168.
  • Aziz MJ, Kaplan T. Continuous growth model for interface motion during alloy solidification. Acta Metall. 1988;36:2335–2347.
  • Boettinger WJ, Aziz MJ. Theory for the trapping of disorder and solute in intermetallic phases by rapid solidification. Acta Metall. 1989;37:3379–3391.
  • Galenko P, Sobolev S. Local nonequilibrium effect on undercooling in rapid solidification of alloys. Phys Rev E. 1997;55:343–352.
  • Galenko PK, Danilov DA. Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt. Phys Lett A. 1997;235:271–280.
  • Galenko PK, Danilov DA. Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions. J Cryst Gr. 1999;197:992–1002.
  • Walker JL. Private communication to B. Chalmers. In [253]; p. 114–115.
  • Coriell SR, Turnbull D. Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts. Acta Metall. 1982;30:2135–2139.
  • Boettinger WJ, Coriell SR, Trivedi R. Application of dendritic growth theory to the interpretation of rapid solidification microstructures. In: Mehrabian R, Parrish PA, editors. Rapid solidification processing: principles and technologies. Baton Rouge (FL): Claitor’s; 1988; p. 13–25.
  • Boettinger WJ, Coriell SR. Microstructure formation in rapidly solidified alloys. In: Sahm PR, Jones H, Adam CM, editors. Science and technology of the undercooled melt. Dordrecht: Martinus Nijhoff; 1986; p. 81–108.
  • Trivedi R, Kurz W. Morphological stability of a planar interface under rapid solidification conditions. Acta Metall. 1986;34:1663–1670.
  • Arnold CB, Aziz MJ, Schwarz M, et al. Parameter-free test of alloy dendrite-growth theory. Phys Rev B. 1999;59:334–343.
  • Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification. Acta Metall. 1986;34:823–830.
  • Kurz W, Giovanola B, Trivedi R. Microsegregation in rapidly solidified Ag-15wt%Cu. J Cryst Gr. 1988;91:123–125.
  • Gill SC, Zimmermann M, Kurz W. Laser resolidification of the Al-Al2Cu eutectic: the coupled zone. Acta Metall Mater. 1992;40:2895–2906.
  • Gill SC, Kurz W. Rapidly solidified Al-Cu alloys—II. Calculation of the microstructure selection map. Acta Metall Mater. 1995;43:139–151.
  • Lu S-Z, Hunt JD, Gilgien P, et al. Cellular and dendritic growth in rapidly solidified Al-Fe and Al-Cu alloys. Acta Metall Mater. 1994;42:1653–1660.
  • Coriell SR, Sekerka RF. Oscillatory morphological instabilities due to non-equilibrium segregation. J Cryst Gr. 1983;61:499–508.
  • Carrard M, Gremaud M, Zimmermann M, et al. About the banded structure in rapidly solidified dendritic and eutectic alloys. Acta Metall Mater. 1992;40:983–996.
  • Gremaud M, Carrard M, Kurz W. Banding phenomena in Al-Fe alloys subjected to laser surface treatment. Acta Metall Mater. 1991;39:1431–1443.
  • Karma A, Sarkissian A. Interface dynamics and banding in rapid solidification. Phys Rev E. 1993;47:513–533.
  • Kurz W, Trivedi R. Banded solidification microstructures. Metall Mater Trans A. 1996;27:625–634.
  • Kurz W. Solidification microstructure-processing maps: theory and application. Adv Eng Mater. 2001;3:443–452.
  • Bower TF, Brody HD, Flemings MC. Measurement of solute redistribution in dendritic solidification. Trans Metall Soc AIME. 1966;236:624–634.
  • Tiller WA, Jackson KA, Rutter JW, et al. The redistribution of solute atoms during the solidification of metals. Acta Metall. 1953;1:428–437.
  • Fukumoto S, Kurz W. Prediction of the δ to γ transition in austenitic stainless steels during laser treatment. ISIJ Int. 1998;38:71–77.
  • Fukumoto S, Kurz W. Solidification phase and microstructure selection maps for Fe-Cr-Ni alloys. ISIJ Int. 1999;39:1270–1279.
  • Scheil E. Die Entstehung des Gussgefüges homogener Metalle. Z Metallkde. 1937;29:404–409.
  • Fehling J, Scheil E. Untersuchung der Unterkühlbarkeit von Metallschmelzen. Z Metallkde. 1962;53:593–600.
  • Kattamis TZ, Flemings MC. Dendrite structure and grain size of undercooled melts. Trans Met Soc AIME. 1966;236:1523–1532.
  • Munitz A, Abbaschian GJ. Effects of supercooling on solute distribution and microstructures. In: Collings EW, Koch CC, editors. Undercooled alloy phases. Warrendale (PA): AIME; 1986; p. 23–48.
  • Willnecker R, Herlach DM, Feuerbacher B. Grain refinement induced by a critical crystal growth velocity in undercooled melts. Appl Phys Lett. 1990;56:324–326.
  • Karma A. Model of grain refinement in solidification of undercooled melts. Int J Non-Equilibrium Process. 1998;11:201–233.
  • Norman AF, Eckler K, Gärtner F, et al. The application of micro structure-selection maps to droplet solidification. Mater Sci Eng A. 1997;226-228:48–52.
  • Paradies CJ, Smith RN, Glicksman ME. The influence of convection during solidification on fragmentation of the mushy zone of a model alloy. Metall Mater Trans A. 1997;28:875–883.
  • Gu JP, Beckermann C, Giamei AF. Motion and remelting of dendrite fragments during directional solidification of a nickel-base superalloy. Metall and Mat Trans A. 1997;28:1533–1542.
  • Sato T, Kurz W, Ikawa K. Experiments on dendrite branch detachment in the succinonitrile-camphor alloy. Trans Jap Inst Metal. 1987;28:1012–1021.
  • Rappaz M, Thevoz P. Solute diffusion model for equiaxed dendritic growth: analytical solution. Acta Metallurgica. 1987;35:2929–2933.
  • Rappaz M, Thevoz P. Solute diffusion model for equiaxed dendritic growth. Acta Metallurgica. 1987;35:1487–1497.
  • Wang CY, Beckermann C. Equiaxed dendritic solidification with convection: part I. Multiscale/multiphase modeling. Metall Mater Trans A. 1996;27:2754–2764.
  • Wang CY, Beckermann C. Equiaxed dendritic solidification with convection: part II. Numerical simulations for an Al-4 Wt pct Cu alloy. Metall Mater Trans A. 1996;27:2765–2783.
  • Spittle JA, Brown SGR. Computer simulation of the effects of alloy variables on the grain structures of castings. Acta Metall. 1989;37:1803–1810.
  • Brown SGR, Williams T, Spittle JA. A cellular automaton model of the steady-state ‘free’ growth of a non-isothermal dendrite. Acta Metall Mater. 1994;42:2893–2898.
  • Rappaz M, Gandin C-A. Probabilistic modelling of microstructure formation in solidification processes. Acta Metall Mater. 1993;41:345–360.
  • Gandin C-A, Rappaz M. A 3D cellular automaton algorithm for the prediction of dendritic grain growth. Acta Mater. 1997;45:2187–2195.
  • Steinbach I, Kauerauf B, Beckermann C, et al. Three-dimensional modeling of equiaxed dendritic growth on a mesoscopic scale. In: Thomas BG, Beckermann C, editors. Modeling of casting, welding, and advanced solidification processes VIII. Warrendale: TMS; 1998; p. 573–580.
  • Rappaz M, Gandin CA, Desbiolles JL, et al. Prediction of grain structures in various solidification processes. Metall Trans A. 1996;27:695–705.
  • Kolmogorov A. Geometric selection of crystals. Dokl Akad Nauk SSSR. 1949;65 (5):681–684.
  • Walton D, Chalmers B. The origin of the preferred orientation in the columnar zone of ingots. Trans Metall Soc AIME. 1959;215:447–457.
  • Genders RJ. The interpretation of the macrostructure of cast metals. Inst Met. 1926;35:259–293.
  • Ivantsov GP. Diffusional supercooling during crystallization of a binary alloy. Dokl Akad Nauk SSSR. 1951;81:179–182.
  • Tiller WA. Grain size control during ingot solidification. JOM. 1959;11:512–514.
  • Tiller WA. Grain size control during ingot solidification. In: Pierre GRS, editor. Physical chemistry of process metallurgy, part 2. New York (NY): AIME; 1961; p. 855–863.
  • Tiller WA, O’Hara S. On the mechanism of crystal multiplication during solidification in the presence of fluid flow. Part 2. In: Solidification of metals. London: Iron & Steel Institute, ISI Publ. 110; 1968; p. 27–36.
  • Jackson KA, Hunt JD, Uhlmann DR, et al. On origin of equiaxed zone in casting. Trans Metall Soc AIME. 1966;236:149–155.
  • Witzke S, Riquet J-P, Durand F. Diffusion field ahead of a growing columnar front: discussion of the columnar-equiaxed transition. Acta Metallurgica. 1981;29:365–374.
  • Fredriksson H, Olsson A. Mechanism of transition from columnar to equiaxed zone in ingots. Mater Sci Tech. 1986;2:508–516.
  • Hunt JD. Steady state columnar and equiaxed growth of dendrites and eutectic. Mater Sci Eng. 1984;65:75–83.
  • Gäumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidification. Mater Sci Eng. 1997;226-228:763–769.
  • Gandin C-A, Jalanti T, Rappaz M. Modeling of dendritic grain structures. In: Thomas B, Beckermann C, Ohnaka I, editors. Modeling of casting, welding, and advanced solidification processes VIII. Warrendale (PA): TMS; 1998; p. 363–374.
  • Gandin C-A, Desbiolles J-L, Rappaz M, et al. A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures. Metall Mater Trans A. 1999;30:3153–3165.
  • Takatani H, Gandin C-A, Rappaz M. EBSD characterisation and modelling of columnar dendritic grains growing in the presence of fluid flow. Acta Mater. 2000;48:675–688.
  • Miller EWJ, Beech J. In-situ radiographic observations of alloy solidification. Metallogr. 1972;5:298–300.
  • Grange G, Gastaldi J, Jourdan C, et al. In situ observations by synchrotron white beam X-ray topography of the solidification microstructures of an Al-0.73 wt% Cu alloy. J Cryst Gr. 1992;121:315–321.
  • Cloetens P, Barrett R, Baruchel J, et al. Phase objects in synchrotron radiation hard X-ray imaging. J Phys D: Appl Phys. 1996;29:133–146.
  • Grange G, Jourdan C, Gastaldi J, et al. Stresses and defects in the formation of a cellular pattern in directional solidification. Real-time observation by synchrotron X-ray topography on a Al-0.73 wt% Cu alloy. J Phys III. 1994;4:293–304.
  • Mathiesen RH, Arnberg L, Mo F, et al. Time resolved X-ray imaging of dendritic growth in binary alloys. Phys Rev Lett. 1999;83:5062–5065.
  • Han SH, Trivedi R. Primary spacing selection in directionally solidified alloys. Acta Metall Mater. 1994;42:25–41.
  • Bell JAE, Winegard WC. Dendrite spacing in tin-lead alloys. J Inst Met. 1963;92:357–359.
  • Suzuki A, Nagaoka Y. Dendrite morphology and arm spacing of steels. J Jap Inst Met. 1969;33:658–663.
  • Okamoto T, Kishitake K, Bessho I. Dendritic structure in unidirectionally solidified cyclohexanol. J Cryst Gr. 1975;29:131–136.
  • Somboonsuk K, Trivedi R. Dynamical studies of dendritic growth. Acta Metall. 1985;33:1051–1060.
  • Trivedi R, Somboonsuk K. Pattern formation during the directional solidification of binary systems. Acta Metall. 1985;33:1061–1068.
  • Quested PN, McLean M. Solidification morphologies in directionally solidified superalloys. Mater Sci Eng. 1984;65:171–180.
  • Esaka, Hisao. Dendrite growth and spacing in succinonitrile-acetone alloys [ScD thesis]. Switzerland: Ecole Polytechnique Fédérale de Lausanne; 1986.
  • Esaka H, Kurz W, Trivedi R. Evolution of primary dendrite spacing in SCN-ACE alloys. In: Solidification processing 1987. London: Institute of Metals; 1988; p. 198–201.
  • Esaka H, Stramke J, Kurz W. Film: Columnar dendritic growth in succinonitrile–acetone alloys. Ecole Polytechnique Fédérale de Lausanne; Switzerland; 1985. A copy of the film can be obtained from the corresponding author.
  • Curreri PA, Lee JE, Stefanescu DM. Dendritic solidification of alloys in low gravity. Metall Trans A. 1988;19:2671–2676.
  • Dupouy MD, Camel D, Favier JJ. Natural convective effects in directional dendritic solidification of binary metallic alloys: dendritic array primary spacing. Acta Metall Mater. 1992;40:1791–1801.
  • Alberny R, Serra J, Turpin M. Use of covariograms for dendrite arm spacing measurements. Trans TMS-AIME. 1969;245:55–59.
  • Atkinson C. Diffusion-controlled growth of an array of plates. J Appl Phys. 1971;42:1994–1997.
  • Hunt JD. Cellular and primary dendrite spacings. In: Solidification and casting of metals. London: Metals Society; 1979; p. 3–9.
  • Trivedi R. Interdendritic spacing: part II. A comparison of theory and experiment. Metall Trans A. 1984;15:977–982.
  • Warren JA, Langer JS. Stability of dendritic arrays. Phys Rev A. 1990;42:3518–3525.
  • Warren JA, Langer JS. Prediction of dendritic spacings in a directional-solidification experiment. Phys Rev E. 1993;47:2702–2712.
  • Losert W, Mesquita ON, Figueiredo JMA, et al. Direct measurement of dendritic array stability. Phys Rev Lett. 1998;81:409–412.
  • Hunt JD. A numerical analysis of dendritic and cellular growth of a pure material investigating the transition from ‘array’ to ‘isolated’ growth. Acta Metall Mater. 1991;39:2117–2133.
  • Lu S-Z, Hunt JD. A numerical analysis of dendritic and cellular array growth: the spacing adjustment mechanisms. J Cryst Gr. 1992;123:17–34.
  • Hunt JD, Lu SZ. Numerical modeling of cellular/dendritic array growth: spacing and structure predictions. Metall Mater Trans A. 1996;27:611–623.
  • Huang W, Geng X, Zhou Y. Primary spacing selection of constrained dendritic growth. J Cryst Gr. 1993;134:105–115.
  • Pan QY, Huang WD, Lin X, et al. Primary spacing selection of Cu-Mn alloy under laser rapid solidification condition. J Cryst Gr. 1997;181:109–116.
  • Bouchard D, Kirkaldy JS. Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys. Metall Mater Trans B. 1997;28:651–663.
  • Lin X, Huang W, Feng J, et al. History-dependent selection of primary cellular/dendritic spacing during unidirectional solidification in aluminum alloys. Acta Mater. 1999;47:3271–3280.
  • An G, Liu L. Dendrite spacing in unidirectionally solidified Al-Cu alloy. J Cryst Gr. 1987;80:383–392.
  • Klia MO. On the mechanism of dendrite crystal transformation. Kristallografiya. 1956;1:577–582.
  • Chernov AA. Estimation of transformation times for inclusions and dendritic crystals. Kristallografiya. 1956;1:583–588.
  • Bardes BP, Flemings MC. Dendrite arm spacing and solidification time in a cast Al-Cu alloy. Trans Amer Foundrymen’s Soc. 1966;74:406–412.
  • Kattamis TZ, Coughlin JM, Flemings MC. Influence of coarsening on dendrite arm spacing of Al-Cu alloys. Trans TMS-AIME. 1967;239:1504–1511.
  • Marsh SP, Glicksman ME. Overview of geometric effects on coarsening of mushy zones. Metall Mater Trans A. 1996;27:557–567.
  • Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Sol. 1961;19:35–50.
  • Wagner C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z Elektrochem. 1961;65:581–591.
  • Kahlweit M. On the ageing of dendrites. Scripta Metall. 1968;2:251–254.
  • Kirkwood DH. A simple model for dendrite arm coarsening during solidification. Mater Sci Eng. 1985;73:L1–L4.
  • Mullis AM. A free boundary model of coarsening within a dendritic array. Acta Mater. 1998;46:4609–4615.
  • Chen M, Kattamis TZ. Dendrite coarsening during directional solidification of Al–Cu–Mn alloys. Mater Sci Eng. 1998;247:239–247.
  • Glicksman ME, Voorhees PW. Ostwald ripening and relaxation in dendritic structures. Metall Trans A. 1984;15:995–1001.
  • Voorhees PW, Glicksman ME. Solution to the multi-particle diffusion problem with applications to Ostwald ripening—I. theory. Acta Metallurgica. 1984;32:2001–2011.
  • Voorhees PW, Glicksman ME. Solution to the multi-particle diffusion problem with applications to ostwald ripening—II. Computer simulations. Acta Metallurgica. 1984;32:2013–2030.
  • Marsh SP, Glicksman ME. Kinetics of phase coarsening in dense systems. Acta Mater. 1996;44:3761–3771.
  • Halder E, Exner HE. Coarsening of secondary dendrite arms in a temperature gradient. Acta Metall. 1988;36:1665–1668.
  • Buerger MJ. The lineage structure of crystals. Z Krist – Cryst Mater. 1934;89:195–220.
  • Rutter JW, Chalmers B. A prismatic substructure formed during solidification of metals. Can J Phys. 1953;31:15–39.
  • Tiller WA, Rutter JW. The effect of growth conditions upon the solidification of a binary alloy. Can J Phys. 1956;34:96–121.
  • Morris LR, Winegard WC. The development of cells during the solidification of a dilute Pb-Sb alloy. J Cryst Gr. 1969;5:361–375.
  • de Cheveigné S, Guthmann C, Lebrun MM. Cellular instabilities in directional solidification. J Physique. 1986;47:2095–2103.
  • de Cheveigné S, Guthmann C, Kurowski P, et al. Directional solidification of metallic alloys: The nature of the bifurcation from planar to cellular interface. J Cryst Gr. 1988;92:616–628.
  • Burden MH, Hunt JD. Cellular and dendritic growth. II. J Cryst Gr. 1974;22:109–116.
  • Miyata Y, Suzuki T, Uno J-I. Cellular and dendritic growth: part I. Experiment. Metall Trans A. 1985;16:1799–1805.
  • Miyata Y, Suzuki T. Cellular and dendritic growth: part II. Theory. Metall Trans A. 1985;16:1807–1814.
  • Eshelman MA, Seetharaman V, Trivedi R. Cellular spacings—I. Steady-state growth. Acta Metall. 1988;36:1165–1174.
  • Seetharaman V, Eshelman MA, Trivedi R. Cellular spacings—II. Dynamical studies. Acta Metall. 1988;36:1175–1185.
  • Billia B, Jamgotchian H, Trivedi R. Cellular and dendritic regimes in directional solidification: microstructural stability diagram. J Cryst Gr. 1990;106:410–420.
  • Billia B, Jamgotchian H, Thi HN. Influence of sample thickness on cellular branches and cell-dendrite transition in directional solidification of binary alloys. J Cryst Gr. 1996;167:265–276.
  • Noel N, Jamgotchian H, Billia B. In situ and real-time observation of the formation and dynamics of a cellular interface in a succinonitrile-0.5 wt% acetone alloy directionally solidified in a cylinder. J Cryst Gr. 1997;181:117–132.
  • Liu LX, Kirkaldy JS. Thin film forced velocity cells and cellular dendrites—I. Experiments. Acta Metall Mater. 1995;43:2891–2904.
  • Kirkaldy JS, Liu LX, Kroupa A. Thin film forced velocity cells and cellular dendrites—II. Analysis of data. Acta Metall Mater. 1995;43:2905–2915.
  • Akamatsu S, Faivre G. Anisotropy-driven dynamics of cellular fronts in directional solidification in thin samples. Phys Rev E. 1998;58:3302–3315.
  • Trivedi R, Sekhar JA, Seetharaman V. Solidification microstructures near the limit of absolute stability. Metall Trans A. 1989;20:769–777.
  • Ludwig A, Kurz W. Cellular growth of a dilute binary alloy at high solidification velocities. Scripta Mater. 1996;35:1217–1222.
  • Sriranganathan R, Wollkind DJ, Oulton DB. A theoretical investigation of the development of interfacial cells during the solidification of a dilute binary alloy: comparison with the experiments of Morris and Winegard. J Cryst Gr. 1983;62:265–283.
  • McFadden GB, Coriell SR. Nonplanar interface morphologies during unidirectional solidification of a binary alloy. Physica D. 1984;12:253–261.
  • McFadden GB, Boisvert RF, Coriell SR. Nonplanar interface morphologies during unidirectional solidification of a binary alloy: II. three-dimensional computations. J Cryst Gr. 1987;84:371–388.
  • Ungar LH, Brown RA. Cellular interface morphologies in directional solidification. The one-sided model. Phys Rev B. 1984;29:1367–1380.
  • Ungar LH, Brown RA. Cellular interface morphologies in directional solidification. II. The effect of grain boundaries. Phys Rev B. 1984;30:3993–3999.
  • Ungar LH, Brown RA. Cellular interface morphologies in directional solidification. IV. The formation of deep cells. Phys Rev B. 1985;31:5931–5940.
  • Ungar LH, Bennett MJ, Brown RA. Cellular interface morphologies in directional solidification. III. The effects of heat transfer and solid diffusivity. Phys Rev B. 1985;31:5923–5930.
  • Pelcé P, Pumir A. Cell shape in directional solidification in the small Peclet number limit. J Cryst Gr. 1985;73:337–342.
  • Saito Y, Misbah C, Müller-Krumbhaar H. Directional solidification: transition from cells to dendrites. Phys Rev Lett. 1989;63:2377–2380.
  • Dombre T, Hakim V. Saffman-Taylor fingers and directional solidification at low velocity. Phys Rev A. 1987;36:2811–2817.
  • Karma A, Pelcé P. Stability of an array of deep cells in directional solidification. Phys Rev A. 1990;41:6741–6748.
  • Weeks JD, van Saarloos W, Grant M. Stability and shapes of cellular profiles in directional solidification: expansion and matching methods. J Cryst Gr. 1991;112:244–282.
  • Pocheau A, Georgelin M. Cell tip undercooling in directional solidification. J Cryst Gr. 1999;206:215–229.
  • Braun RJ, Davis SH. Cellular instability in rapid directional solidification: bifurcation theory. Acta Metall Mater. 1992;40:2617–2628.
  • Braun RJ, Merchant GJ, Davis SH. Pulsatile- and cellular-mode interaction in rapid directional solidification. Phys Rev B. 1992;45:7002–7016.
  • Brattkus K, Davis SH. Cellular growth near absolute stability. Phys Rev B. 1988;38:11452–11460.
  • Kopczyński P, Rappel W-J, Karma A. Critical role of crystalline anisotropy in the stability of cellular array structures in directional solidification. Phys Rev Lett. 1996;77:3387–3390.
  • Jamgotchian H, Trivedi R, Billia B. Array of doublets: a branch of cellular solutions in directional solidification. Phys Rev E. 1993;47:4313–4322.
  • Boettinger WJ, Warren JA. Simulation of the cell to plane front transition during directional solidification at high velocity. J Cryst Gr. 1999;200:583–591.
  • Coriell SR, McFadden GB, Sekerka RF. Cellular growth during directional solidification. Ann Rev Mater Sci. 1985;15:119–145.
  • Billia B, Trivedi R. Pattern formation in crystal growth. In: Hurle DTJ, editor. Handbook of crystal growth. Amsterdam: Elsevier; 1993; p. 899–1073.
  • Ludwig A. Strukturbildung bei der Erstarrung nicht-facettierender Systeme. Aachen: Shaker; 2000.
  • Boettinger WJ, Coriell SR, Greer AL, et al. Solidification microstructures: recent developments, future directions. Acta Mater. 2000;48:43–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.