20,034
Views
73
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Cementite

Pages 1-27 | Received 05 Sep 2018, Accepted 17 Dec 2018, Published online: 11 Jan 2019

References

  • Müller FCG. Untersuchungen über den deutschen Besssemerprocess. Zeitschrift des Vereines deutscher Ingenieure. 1978;22:385–404.
  • Abel F. Final report on experiments bearing upon the question of the condition in which carbon exists in steel. Proc Inst Mech Eng. 1885;36:30–57.
  • Osmond F, Werth J. Theorie cellulaire des propriétés de l'acier. Annales des Mines. 1885;8:5–84.
  • Osmond F, Werth J. Structure cellulaire de l'acier foundu. Comptes Rendus. 1885;100:450–452.
  • Jull AJT, Davis PR, Eglinton G, et al. Simulation of lunar processes: II. Redistribution of carbon in the lunar regolith during meteorite impact. In: Sixth Lunar Science Conference. Houston (TX): Lunar and Planetary Institute; 1975. p. 457–459.
  • Zhang J, Schneider A, Inden G. Cementite decomposition and coke gasification in He and H2–He gas mixtures. Corros Sci. 2004;46:667–679.
  • Lei X, Wang W, Ye Z, et al. High saturation magnetization of Fe3C nanoparticles synthesized by a simple route. Dyes Pigments. 2017;139:448–452.
  • Ringwood AE. Cohenite as a pressure indicator in iron meteorites. Geochim Cosmochim Acta. 1960;20:155–158.
  • Lipschutz ME, Anders E. Cohenite as a pressure indicator in iron meteorites? Geochim Cosmochim Acta. 1964;28:699–711.
  • Sharp WE. Pyrrhotite: a common inclusion in South African diamonds. Nature. 1966;211:402–403.
  • NPL. MTDATA. Software. Teddington: National Physical Laboratory; 2006.
  • Lipson H, Petch NJ. The crystal structure of cementite Fe3C. J Iron Steel Inst. 1940;142:95P–103P.
  • Lyashchenko BG, Sorokin LM. Determination of the position of carbon in cementite by the neutron diffraction method. Sov Phys Crystallogr. 1963;8:300–304.
  • Petch NJ. Interpretation of the crystal structure of cementite. J Iron Steel Inst. 1944;149:143–150.
  • Kayser FX, Sumitomo Y. On the composition of cementite in equilibrium with ferrite at room temperature. J Phase Equilib. 1997;18:458–464.
  • Battezzati L, Baricco M, Curiotto S. Non-stoichiometric cementite by rapid solidification of cast iron. Acta Mater. 2005;53:1849–1856.
  • Leineweber A, Shang SL, Liu ZK. C-vacancy concentration in cementite, Fe3C1−z, in equilibrium with α-Fe[C] and γ-Fe[C]. Acta Mater. 2015;86:374–384.
  • Göhring H, Leineweber A, Mittemeijer EJ. A thermodynamic model for non-stoichiometric cementite; the Fe–C phase diagram. CALPHAD. 2016;52:38–46.
  • Okamoto T, Matsumoto H. Precipitation of ferrite from cementite. Metal Sci. 1975;9:8–12.
  • Cottrell AH. A theory of cementite. Mater Sci Technol. 1993;9:277–280.
  • Stuckens W, Michel A. Variations in the stoichiometry of pure cementite. Comptes Rendus Acad Sci Paris. 1961;253:2358–2360.
  • Walker D, Li J, Kalkan B, et al. Thermal, compositional and compressional demagnetization of cementite. Am Mineral. 2015;100:2610–2624.
  • Choe HJ, Terai T, Fukuda T, et al. Easy axis of magnetization of Fe3C prepared by an electrolytic extraction method. J Magn Magn Mater. 2016;417:1–5.
  • Duman E, Acet M, Wassermann EF. Magnetic instabilities in Fe3C cementite particles observed with Fe K-Edge X-ray circular dichroism under pressure. Phys Rev Lett. 2005;94:075502.
  • Khmelevskyi S, Ruban AV, Mohn P. Electronic structure analysis of the pressure induced metamagnetic transition and magnetovolume anomaly in Fe3C – cementite. J Phys Condens Matter. 2005;17:7345–7352.
  • Kitaguchi HS, Lozano-Perez S, Moody MP. Quantitative analysis of carbon in cementite using pulsed laser atom probe. Ultramicroscopy. 2014;147:51–60.
  • Hong MH, Reynolds WT Jr., Tarui T, et al. Atom probe and transmission electron microscopy investigations of heavily drawn pearlitic steel wire. Metall Mater Trans A. 1999;30:717–727.
  • Voronin VI, Berger IF, Gornostyrev YuN, et al. Composition of cementite in the dependence on the temperature. In situ neutron diffraction study and ab initio calculations. JETP Lett (English version). 2010;91:143–146.
  • Zhukov AA, Shalashov VA, Tomas VK, et al. Variation of the composition, structure, and hardness of cementite with quenching. Metal Sci Heat Treat. 1970;12:16–18.
  • Zhukov AA, Polovinchuk VP, Osadchuk AYu, et al. Transformations in cementite in the zone of contact with ferrous phases. Metals Sci Heat Treat. 1992;34:723–725.
  • Fasiska EJ, Jeffrey GA. On the cementite structure. Acta Crystallogr. 1965;19:463–471.
  • Maratkanova AN, Surnin DV, Deev AN, et al. EEFLS study of the cementite local structure. J Synchrotron Rad. 2001;8:413–415.
  • Elsukov EP, Dorofeev GA, Ul'yanov AL, et al. On the problem of the cementite structure. Phys Metals Metall. 2006;102:76–82.
  • Jiang C, Maloy SA, Srinivasan SG. A computational method to identify interstitial sites in complex materials. Scripta Mater. 2008;58:739–742.
  • Kawakami K, Matsumiya T. Ab-initio investigation of hydrogen trap state by cementite in bcc-Fe. ISIJ Int. 2013;53:709–713.
  • Jiang C, Srinivasan SG, Caro A, et al. Structural, elastic, and electronic properties of Fe3C from first principles. J Appl Phys. 2008;103:043502.
  • Jiang C, Shrinivasan SG. Unexpected strain-stiffening in crystalline solids. Nature. 2013;496:339–342.
  • Leineweber A. Anisotropic microstrain broadening in cementite, Fe3C, caused by thermal microstress: comparison between prediction and results from diffraction-line profile analysis. J Appl Crystallogr. 2012;45:944–949.
  • Leineweber A. Thermal expansion anisotropy as source for microstrain broadening of polycrystalline cementite, Fe3C. J Appl Crystallogr. 2016;49:1632–1644.
  • Inoue A, Ogura T, Muramatsu T. Burgers vectors of dislocations in cementite crystal. Scripta Metall. 1977;11:1–5.
  • Alkorta J, Sevillano JG. Assessment of elastic anisotropy and incipient plasticity in Fe3C by nanoindentation. J Mater Res. 2012;27:45–52.
  • Mizuno M, Tanaka I, Adachi H. Effect of solute atoms on the chemical bonding of Fe3C (cementite). Philos Mag B. 1997;75:237–248.
  • Inoue A, Ogura M, Masumoto K. Lattice defects and deformation / fracture behavior of cementite in steel. Bull Jpn Inst Metals. 1974;13:653–664.
  • Gil-Sevillano J. Room temperature plastic deformation of pearlitic cementite. Mater Sci Eng. 1975;21:221–225.
  • Karkina LE, Karkin IN, Kabanova IG, et al. Crystallographic analysis of slip transfer mechanisms across the ferrite/cementite interface in carbon steels with fine lamellar structure. J Appl Crystallogr. 2015;48:97–106.
  • Mussi A, Cordier P, Ghosh S, et al. Transmission electron microscopy of dislocations in cementite deformed at high pressure and high temperature. Philos Mag. 2016;96:1773–1789.
  • Ghaffarian H, Taheri AK, Kang K, et al. Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite. Scripta Mater. 2015;95:23–26.
  • Nishiyama A, Kore'eda A, Katagiri S. Study of plane defects in the cementite by transmission electron microscopy. Trans JIM. 1964;5:115–121.
  • Kar'kina LE, Kar'kin IN, Zubkova TA. Atomistic simulation of stacking faults in cementite: planes containing vector [100]. Phys Metals Metallogr. 2014;115:814–829.
  • Nakamura Y, Mikami T, Nagakura S. In situ high temperature electron microscopic study of the formation and growth of cementite particles in the third stage of tempering. Trans Jpn Inst Metals. 1985;26:876–885.
  • Garvik N, Carrez Ph, Cordier P. First-principles study of the ideal strength of Fe3C cementite. Mater Sci Eng A. 2013;572:25–29.
  • Nematollahi GhA, von Pezold J, Neugebauer J, et al. Thermodynamics of carbon solubility in ferrite and vacancy formation in cementite in strained pearlite. Acta Mater. 2013;61:1773–1784.
  • Jiang C, Uberuaga BP, Srinivasan SG. Point defect thermodynamics and diffusion in Fe3C: a first principles study. Acta Mater. 2008;56:3236–3244.
  • Henriksson KOE. Cascades in model steels: the effect of cementite (Fe3C) and Cr23C6 particles on short-term crystal damage. Nucl Instrum Methods Phys Res B. 2015;352:36–38.
  • Henriksson KOE, Nordlund K. Irradiation cascades in cementite: 0.1–10 keV Fe recoils. Nucl Instrum Methods Phys Res B. 2012;277:136–139.
  • Henriksson KO, Nordlund K. Mechanical and elastic changes in cementite Fe3C subjected to cumulative 1 keV Fe recoils. Nucl Instrum Methods Phys Res B. 2014;338:119–125.
  • Nagakura S. Study of metallic carbides by electron diffraction part III. Iron carbides. J Phys Soc Japan. 1959;14:186–195.
  • Jack KH. Results of further X-ray structural investigations of the iron-carbon and iron-nitrogen systems and of related interstitial alloys. Acta Crystallogr. 1950;3:392–394.
  • Jack DH, Jack KH. Carbides and nitrides in steel. Mater Sci Eng. 1973;11:1–27.
  • Liu Z, Li Z, Liu W. Calculation of the valence electron structures of alloying cementite and its biphase interface. Sci China Ser E. 2001;44:542–552.
  • Lv ZQ, Zhang FC, Sun SH, et al. First-principles study on the mechanical, electronic and magnetic properties of Fe3C. Comput Mater Sci. 2008;44:690–694.
  • Christoffersen R, Buseck PR. Epsilon carbide: a low temperature component of interplanetary dust particles. Science. 1983;222:1327–1329.
  • Trepcznśka Łent M. Directional solidification of Fe–Fe3C white eutectic alloy. Crystal Res Technol. 2017;52:1600359.
  • Umemoto M, liu ZG, Masuyama K, et al. Influence of alloy additions on production and properties of bulk cementite. Scripta Mater. 2001;45:391–397.
  • Wologdine M. Note sur les propriétés magnétiques de quelques composés du fer. Comptes Rendus. 1909;148:776–777.
  • Smith SWJ, White W, Barker SG. The magnetic transition temperature of cementite. Proc Phys Soc London. 1911;24:62–69.
  • Honda K, Takagi H. On the magnetic transformation of cementite. Sci Rep Tohoku Imp Univ. 1915;4:161–167.
  • Dick A, Körmann F, Hickel T, et al. Ab initio based determination of thermodynamic properties of cementite including vibronic, magnetic, and electronic excitations. Phys Rev B. 2011;84:125101.
  • Häglund J, Grimvall G, Jarlberg T. Electronic structure, X-ray photoemission spectra, and transport properties of Fe3C (cementite). Phys Rev B. 1991;44:2914–2919.
  • Arzhnikov AK, Dobysheva LV, Demangeat C. Structural peculiarities of cementite and their influence on magnetic characteristics. J Phys Condens Matter. 2007;19:196214.
  • Jang JH, Kim IG, Bhadeshia HKDH. Substitutional solution of silicon in cementite: a first-principles study. Comput Mater Sci. 2009;44:1319–1326.
  • Jang JH. Private communication to H. K. D. H. Bhadeshia. First principles calculations. 2018 Jul.
  • Lin JF, Struzhkin VV, Mao HK, et al. Magentic transition in compressed Fe3C from X-ray emission spectroscopy. Phys Rev B. 2004;70:212405.
  • Reznik B, Kontny A, Uehara M, et al. Magnetic domains and magnetic stability of cohenite from the Morasko iron meteorite. J Magn Magn Mater. 2017;426:594–603.
  • Yamamoto S, Terai T, Fukuda T, et al. Magnetocrystalline anisotropy of cementite pseudo single crystal fabricated under a rotating magnetic field. J Magn Magn Mater. 2018;451:1–4.
  • Keh AS, Johnson CA. Ferromagnetic domain structures in cementite. J Appl Phys. 1963;34:2670–2676.
  • Hillert M. The kinetics of the first stage of tempering. Acta Metall. 1959;7:653–658.
  • Dobysheva LV. First-principles calculations for alloyed cementite (Fe–Ni)3C. Bull Russ Acad Sci. 2017;81:798–802.
  • Ul'yanov AI, Chulkina AA, Volkov VA, et al. Structural state and magnetic properties of cementite alloyed with manganese. Phys Metals Metallogr. 2012;113:1134–1145.
  • Medvedeva NI, Shein IR, Konyaeva MA, et al. Effect of chromium on the electronic structure and magnetic properties of cementite. Phys Metals Metallogr. 2008;105:568–573.
  • von Appen J, Eck B, Dronskowski R. A density-functional stude of the phase diagram of cementite-type (Fe,Mn)3C at absolute zero temperature. J Comput Chem. 2010;31:2620–2627.
  • Kaeswurm B, Friemert K, G'ursoy M, et al. Direct measurement of the magnetocaloric effect in cementite. J Magn Magn Mater. 2016;410:105–108.
  • Ron M, Shechter H, Hirsch AA, et al. On the Mössbauer study of cementite. Phys Lett. 1966;20:481–483.
  • Reed RC, Root JH. Determination of the temperature dependence of the lattice parameters of cementite by neutron diffraction. Scripta Mater. 1997;38:95–99.
  • Wood IG, Vočadlo L, Knight KS Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction. J Appl Crystallogr. 2004;37:82–90.
  • Litasov KD, Rashchenko SV, Shmakov AN, et al. Thermal expansion of iron carbides, Fe7C3 and Fe3C, at 297–911 K determined by in situ X-ray diffraction. J Alloys Comp. 2015;628:102–106.
  • Gorai S, Ghosh PS, Bhattacharya C, et al. Ab-initio study of pressure evolution of structural, mechanical and magnetic properties of cementite (Fe3C) phase. In: AIP Conference Proceedings. vol. 1942. New York (NY): AIP Publishing; 2018. p. 030015.
  • Inoue A, Ogura T, Masumoto T. Deformation and fracture behaviours of cementite. Trans JIM. 1976;17:663–672.
  • Liyange LSI, Kim SG, Houze J, et al. Structural, elastic, and thermal properties of cementite (Fe3C) calculated using a modified embedded atom method. Phys Rev B. 2014;2014:094102.
  • Ruda M, Farkas D, Garcia G. Atomistic simulations in the Fe–C system. Comput Mater Sci. 2009;45:550–560.
  • Chiou WC Jr., Carter EA. Structure and stability of Fe3C cementite surfaces from first principles. Surf Sci. 2003;530:88–100.
  • Born M. On the stability of crystal lattices. I. Math Proc Cambridge Philos Soc. 1940;36:160–172.
  • Patil SKR, Khare SV, Tuttle BR, et al. Mechanical stability of possible structures of PtN investigated using first-principles calculations. Phys Rev B. 2006;73:104118.
  • Wang CX, Lv ZQ, Fu WT, et al. Electronic properties, magnetic properties and phase stability of alloyed cementite (Fe,M)3C (M=Co,Ni) from density-functional theory calculations. Solid State Sci. 2011;13:1658–1663.
  • Nikolussi M, Shang SL, Gressmann T, et al. Extreme elastic anisotropy of cementite, Fe3C: First-principles calculations and experimental evidence. Scripta Mater. 2008;59:814–817.
  • Ghosh G. A first-principles study of cementite (Fe3C) and its alloyed counterparts: elastic constants, elastic anisotropies, and isotropic elastic moduli. AIP Adv. 2015;5:087102.
  • Huang L, Tu Y, Wang X, et al. Site preference of manganese in mn-alloyed cementite. Phys Status Solidi B. 2016;253:1623–1628.
  • Mauger L, Herriman JE, Hellman O, et al. Phonons and elasticity of cementite through the Curie temperature. Phys Rev B. 2017;95:024308.
  • Lv ZQ, Fu WT, Sun SH, et al. First-principles study on the electronic structure, magnetic properties and phase stability of alloyed cementite with Cr or Mn. J Magn Magn Mater. 2011;323:915–919.
  • Dierkes H, Dronskowski R. High-resolution powder neutron diffraction on Mn3C. Zeitschrift für anorganische und allgemeine Chemie. 2014;640:3148–3152.
  • Fiquet G, Badro J, Gregoryanz E, et al. Sound velocity in iron carbide (Fe3C) at high pressure: implications for the carbon content of the earth's inner core. Phys Earth Planet Inter. 2009;172:125–129.
  • Koo BW, Chang YJ, Hong SP, et al. Experimental measurement of Young's modulus from a single crystalline cementite. Scripta Mater. 2014;82:25–28.
  • Sata N, Shen G, Rivers ML, et al. Pressure-volume equation of state of teh high-pressure B2 phase of NaCl. Phys Rev B. 2002;65:104114.
  • Li J, Mao HK, Fei Y, et al. Compression of Fe3C to 30 GPa at room temperature. Phys Chem Miner. 2002;29:166–169.
  • Sata N, Hirose K, Shen G, et al. Compression of FeSi, Fe3C, Fe0.95O, and FeS under core pressures and implication for light element in the earth's core. J Geophys Res. 2010;115:B09204.
  • Birch F. Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain. J Geophys Res. 1986;91:4949–4954.
  • Litasov KD, Sharygin IS, Dorogokupets PI, et al. Thermal equation of state and thermodynamic properties of iron carbide Fe3C to 31 GPa and 1473 K. J Geophys Res. 2013;118:1–11.
  • Scott HP, Williams Q, Knittle. E. Stability and equation of state of cementite to 73 GPa: implications for carbon in the earth's core. Geophys Res Lett. 2001;28:1875–1878.
  • Panda KB, Ravi Chandran KS. First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Mater. 2006;54:1641–1657.
  • Li SJ, Ishihara M, Yumoto H, et al. Characterisation of cementite films prepared by electron-shower-assisted PVD method. Thin Solid Films. 1998;316:100–104.
  • Mizubayashi H, Li SJ, Yumoto H, et al. Young's modulus of single phase cementite. Scripta Mater. 1999;40:773–777.
  • Dodd SP, Saunders GA, Cankurtaran M, et al. Ultrasonic study of the temperature and hydrostatic pressure dependences of the elastic properties of polycrystalline cementite (Fe3C). Phys Status Solidi A. 2003;198:272–281.
  • Umemoto M, Liu ZG, Takaoka H, et al. Production of bulk cementite and its characterization. Metall Mater Trans A. 2001;32:2127–2131.
  • Ishigaki T. Determination of the density of cementite. Sci Rep Tohoku Imp Univ. 1927;16:295–302.
  • Tsuzuki A, Sago S, Hirano S, et al. High temperature and pressure preparation and properties of iron carbides Fe7C3 and Fe3C. J Mater Sci. 1984;19:2513–2518.
  • Chaira D, Mishra BK, Sangal S. Magnetic properties of cementite powder produced by reaction milling. J Alloys Comp. 2009;474:396–400.
  • Al-Joubori AA, Suryanarayana C. Synthesis of Fe–C alloys by mechanical alloying. In: Materials Science & Technology Conference and Exhibition 2014. Vol. 1. New York (NY): Curran Associates Inc; 2014. p. 509–516.
  • Al-Joubori AA, Suryanarayana C. Synthesis and thermal stability of homogeneous nanostructured Fe3C (cementite). J Mater Sci. 2018;53:7877–7890.
  • Kalish D, Cohen M. Structural changes and strengthening in the strain tempering of martensite. Mater Sci Eng. 1970;6:156–166.
  • Matteazzi P, Miani F, Le Caër G. Kinetics of cementite mechanosynthesis. Hyperfine Interact. 1991;68:173–176.
  • Hofer LJE, Cohn EM. Synthesis of cementite. J Chem Phys. 1950;18:766–767.
  • Herbstein FH, Smuts J. Comparison of X-ray and neutron-diffraction refinements of the structure of cementite Fe3C. Acta Crystallogr. 1964;17:1331–1332.
  • Rokhmanov NYa, Sirenko AF, Bakharev SA. Thermal expansion of cementite in hypereutectoid iron-carbon alloy. Metal Sci Heat Treat. 1997;39:7–10.
  • Grabke HJ, Müller-Lorenz EM, Schneider A. Carburization and metal dusting on iron. ISIJ Int. 2001;41:S1–S8.
  • Kim DY, Heo YU, Sasaki Y. Cementite formation from magnetite under high pressure conditions. ISIJ Int. 2013;53:950–957.
  • Ramanujan RV. Magnetic particles for biomedical applications. In: Narayan R, editor. Biomedical materials. Boston (MA): Springer; 2009. Chapter 17. p. 477–491.
  • Shultz MD, Calvin S, Gonzalez-Jiminez F, et al. Gold-coated cementite nanoparticles: an oxidation-resistant alternative to α-iron. Chem Mater. 2009;21:5594–5600.
  • Galwey AK, Jamieson DM, Wheeler BR, et al. The oxidation of cementite. Corros Sci. 1974;14:527–532.
  • Morjan I, Alexandrescu R, Scarisoreanu M, et al. Controlled manufacturing of nanoparticles by the laser pyrolysis: application to cementite iron carbide. Appl Surf Sci. 2009;255:9638–9642.
  • Kraupner A, Antonietti M, Palkovits R, et al. Mesoporous Fe3C as magnetic supports and as heterogeneous catalyst. J Mater Chem. 2010;20:6019–6022.
  • Shultz JF, Hall WK, Dubs TA, et al. Studies of the Fischer-Torpsch synthesis. XV. Cementite as a catalyst. J Am Chem Soc. 1956;78:282–285.
  • Lee MC, Simkovich G. Electrical conduction behaviour of cementite, Fe3C. Metall Trans A. 1987;18:485–486.
  • Helsing J, Grimvall G. Thermal conductivity of cast iron: models and analysis of experiments. J Appl Phys. 1991;70:1198–1206.
  • Webb WW, Foregeng WJ. Mechanical behavior of microcrystals. Acta Metall. 1958;6:462–469.
  • Lee H, Speyer RF. Hardness and fracture toughness of pressureless-sintered boron carbide (B4C). J Am Ceram Soc. 2002;85:291–293.
  • Kagawa A, Okamoto T. Hot hardness of cementite. J Mater Sci. 1983;18:225–230.
  • Drapkin BM, Kimstach GM, Moldtsova TD. Hardness of cementite. Metal Sci Heat Treat. 1996;38:408–409.
  • Zheng BC, Huang ZF, Xing JD, et al. Effects of chromium addition on preparation and properties of bulk cementite. J Iron Steel Res. 2016;23:842–850.
  • Taran YuN, Novik VI. Microhardness of cementite. Metal Sci Heat Treat. 1971;13:818–820.
  • Fernández-Vicente A, Pellizzari M, Arias JL. Feasibility of laser surface treatment of pearlitic and bainitic ductile irons for hot rolls. J Mater Proc Technol. 2012;212:989–1002.
  • Coronado JJ, Rodriguez SA. Cementite characterization with chromium and vanadium contents using indentation technique. J Iron Steel Res Int. 2015;22:366–370.
  • Zubakova TA, Yakovleva IL, Kar'kina LE, et al. Study of the hardness and elastic modulus of cementite in the structure of granular pearlite by the nano-indentation method. Metal Sci Heat Treat. 2014;56:330–335.
  • Monma K, Maruta R, Yamamoto T, et al. Effect of particle sizes of carbides and amounts of undissolved carbide on the fatigue life of bearing steel. J Jpn Inst Metals. 1968;32:1198–1204.
  • Bhadeshia HKDH. Steels for bearings. Prog Mater Sci. 2012;57:268–435.
  • Bhadeshia. HKDH. Steels for rails. In: Encyclopedia of materials science. Oxford: Pergamon Press, Elsevier Science; 2007. p. 1–7.
  • Sasaki T, Yakou T, Umemoto M, et al. Two-body abrasive wear property of cementite. Wear. 2006;260:1090–1095.
  • Umemoto M, Todaka Y, Takahashi T, et al. High temperature deformation behavior of bulk cementite produced by mechanical alloying and spark plasma sintering. Mater Sci Eng A. 2004;375–377:894–898.
  • Shimura S. A study on the structure of cementite. Proc Imp Acad. 1930;6:269–271.
  • Zheng B, Huang Z, Xing J, et al. Two-body abrasion resistance of cementite containing different chromium concentrations. J Mater Res. 2016;31:655–662.
  • Zheng B, Huang Z, Xing J, et al. Three-body abrasive wear behavior of cementite with different chromium concentrations. Tribology Lett. 2016;61:1–13.
  • Wang X, Chen X, Ding H, et al. Synthesis and magnetic properties of Fe3C doped with Mn or Ni for applications as adsorbents. Dyes Pigments. 2017;144:76–79.
  • Zhang X, Hickel T, Rogal J, et al. Structural transformations among austenite, ferrite and cementite in Fe–C alloys: a unified theory based on ab initio simulations. Acta Mater. 2015;99:281–289.
  • Shigematsu T. Invar properties of cementite (Fe1−xMex)3C, Me=Cr, Mn, Ni. J Phys Soc Jpn. 1975;39:915–920.
  • Ulyanov AI, Chulkina AA, Volkov VA, et al. Structure and magnetic properties of mechanically synthesized (Fe1−xNix)75C25 nanocomposites. Phys Metals Metallogr. 2017;118:691–699.
  • Wang X, Yan M. Effect of cobalt and nickel on the structural stability for Fe3C: first-principles calculations. Int J Mod Phys B. 2009;23:1135–1140.
  • Grabke HJ, Krajak R, Nava Paz JC. On the mechanism of catastrophic carburization: ‘metal dusting’. Corros Sci. 1993;35:1141–1150.
  • Konyaeva MA, Medvedeva NI. Electronic structure, magnetic properties and stability of binary and ternary (Fe,Cr)3C and (Fe,Cr)7C3. Phys Solid State. 2009;51:2084–2089.
  • Zhou CT, Xiao B, Feng J, et al. First principles study on the elastic properties and electronic structures of (Fe, Cr)3C. Comput Mater Sci. 2009;45:986–992.
  • Shein IR, Medvedeva NI, Ivanovskii AL. Electronic structure and magnetic properties of Fe3C with 3d and 4d impurities. Phys Status Solidi B. 2007;244:1971–1981.
  • Bhadeshia HKDH, Honeycombe RWK. Steels: microstructure and properties. 4th ed. London: Elsevier; 2017.
  • Kozeschnik E, Sonderegger B, Holzer I, et al. Computer simulation of the precipitate evolution during industrial heat treatment of complex alloys. Mater Sci Forum. 2007;539–543:2431–2436.
  • Allten AG, Payson P. The effect of silicon on the tempering of martensite. Trans ASM. 1953;45:498–532.
  • Owen WS. The effect of silicon on the kinetics of tempering. Trans ASM. 1954;46:812–829.
  • Keh AS. Imperfections and plastic deformation of cementite in steel. Acta Metall. 1963;11:1101–1103.
  • Gordine J, Codd I. The influence of Si up to 1.5 wt% on the tempering of a spring steel. J Iron Steel Inst. 1969;207:461–467.
  • Pickering FB. The development of ultrahigh strength steels – a historical case study. In Phase transformations. Vol. 2. London: Institution of Metallurgists; 1979. p. VI–7.
  • Matas SJ, Hehemann RF. The structure of bainite in hypoeutectoid steels. TMS-AIME. 1961;221:179–185.
  • Entin R. The elementary reactions in the austenite – pearlite, bainite transformations. In: Zackay VF, Aaronson HI, editors. Decomposition of austenite by diffusional processes. New York (NY): Interscience; 1962. p. 295–211.
  • Deliry J. Noveau carbure de fer transformation bainitique dans les aciers au carbone silicium. Mem Sci Rev Metall. 1965;62:527–550.
  • Pomey J. Revenu de la martensite et reaction bainitique inferieure: Cas des aciers au carbone-silicium et des aciers au carbone. Mem Sci Rev Metall. 1966;63:507–532.
  • Bhadeshia HKDH. Bainite in steels: theory and practice. 3rd ed. Leeds: Maney Publishing; 2015.
  • Hallstedt B, Djurovic D, von Appen J, et al. Thermodynamic properties of cementite (Fe3C). CALPHAD. 2010;34:129–133.
  • Nicholson ME. Solubility of boron in Fe3C and variation of saturation magnetization, Curie temperature, and lattice parameter of fe3(c,b) with composition cementite. J Metals. 1957;9:1–6.
  • Koifman IS, Egorshina TV, Laskova GV. X-ray analysis of borocementite. Metal Sci Heat Treat. 1969;11:141–142.
  • He BL, Ping DH, Geng WT. First-principles study of helium trapping in cementite Fe3C. J Nucl Mater. 2014;444:368–372.
  • Kawakami K, Matsumiya T. Ab initio investigation of hydrogen trap state by cementite in bcc-Fe. ISIJ Int. 2013;53:709–713.
  • Kagawa A, Okamoto T. Lattice parameters of cementite in Fe–C–X (X=Cr, Mn, Mo, and Ni) alloys. Trans JIM. 1979;20:659–666.
  • Zelenty J, Smith GDW, Wilford K, et al. Secondary precipitation within the cementite phase of reactor pressure vessel steels. Scripta Mater. 2016;115:118–122.
  • Wasynczuk JA, Fisher RM, Thomas G. Effects of copper on proeutectoid cementite precipitation. Metall Trans A. 1986;17:2163–2173.
  • Fourlaris G, Baker AJ, Papadimitriou GD. Microscopic characterisation of ε-Cu interphase precipitation in hypereutectoid Fe–C–Cu alloys. Acta Metall Mater. 1995;43:2589–2604.
  • Khalid FA, Edmonds DV. A transmission electron microscopy study of copper precipitation in the cementite phase of hypereutectoid alloy steels. Metall Trans A. 1993;24:781–793.
  • Yap CP, Liu CL. The free energy, entropy and heat of formation of iron carbide (Fe3C). Trans Faraday Soc. 1934;28:788–797.
  • Darken LS, Gurry RW. Free energy of formation of cementite and the solubility of cementite in austenite. Trans AIME (J Metals). 1951;3:1015–1018.
  • Chipman J. Thermodynamics and phase diagram of the Fe–C system. Metall Trans. 1972;3:55–64.
  • Grabke HJ, Müller-Lorenz EM. Effect of sulfur on the stability of cementite. Steel Res Int. 1995;66:254–258.
  • Okamoto A. Graphite formation in high-purity cold-rolled carbon steels. Metall Trans A. 1989;20:1917–1925.
  • Miki T, Ishii K. Decomposition behaviour of Fe3C under Ar atmosphere. ISIJ Int. 2014;54:29–31.
  • Pellegrino L, Daghetta M, Pelosato R, et al. Searching for rate determining step in CNT formation:the role of cementite. Chem Eng Trans. 2013;32:739–744.
  • Longbottom RJ, Ostrovski O, Zhang J, et al. Stability of cementite formed from hematite and titanomagnetite ore. Metall Mater Trans B. 2007;38:175–184.
  • Bhadeshia HKDH. 2018. Equilibrium calculations for the Fe–Ti–C system allowing ferrite and cementite to co-exist. http://www.phase-trans.msm.cam.ac.uk/mtdataarchive/FeTiC.txt.
  • Fang CM, Sluiter MHF, van Huis MA, et al. Origin of predominance of cementite among iron carbides in steel at elevated temperatures. Phys Rev Lett. 2010;105:055503.
  • Fillon A, Sauvage X, Lawrence B, et al. On the direct nucleation and growth of ferrite and cementite without austenite. Scripta Mater. 2015;95:35–38.
  • Horvath J, Ott J, Pfahler K, et al. Tracer diffusion in amorphous alloys. Mater Sci Eng. 1988;97:409–413.
  • Buffington FS, Hirano K, Cohen M. Self diffusion in iron. Acta Metall. 1961;9:434–439.
  • Borg RJ, Birchenall CE. Self diffusion in alpha-iron. Trans AIME. 1960;218:980–984.
  • Ermakova MA, Ermakov DYu, Chuvilin AL, et al. Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J Catal. 2001;201:183–197.
  • Jourdain V, Bichara C. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon. 2013;58:2–39.
  • Dupuis AC. The catalyst in the CCVD of carbon nanotubes – a review. Prog Mater Sci. 2005;50:929–961.
  • Schaper AK, Hou H, Greiner A, et al. The role of iron carbide in multiwalled carbon nanotube growth. J Catal. 2004;222:250–254.
  • Yoshida H, Takeda S, Uchiyama T, et al. Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008;8:2082–2086.
  • Tessonnier JP, Su DS. Recent progress on the growth mechanism of carbon nanotubes: a review. ChemSusChem. 2011;4:824–847.
  • Pérez-Cabero M, Taboada JB, Guerrero-Ruiz A, et al. The role of alpha-iron and cementite phases in the growing mechanism of carbon nanotubes: a57Fe Mössbauer spectroscopy study. Phys Chem Chem Phys. 2006;8:1230–1235.
  • Basaev AS, Bokhonov BB, Demidenko OF, et al. Synthesis and properties of magnetically functionalized carbon nanotubes. Nanotechnol Russ. 2008;3:184–190.
  • Umemoto M, Todaka Y, Tsuchiya K. Mechanical properties of cementite and fabrication of artificial pearlite. Mater Sci Forum. 2003;426–432:859–864.
  • Tanaka K, Saito T. Phase equilibria in TiB2-reinforced high modulus steel. J Phase Equilib. 1999;20:207–214.
  • Ohmori Y. Precipitation of iron carbides in lower bainite and tempered martensite in Fe–C alloys. In: International Conference on Martensitic Transformations ICOMAT '86. Tokyo: Japan Institute of Metals; 1986. p. 5878–594.