1,077
Views
27
CrossRef citations to date
0
Altmetric
Full Critical Review

Surface engineering and applications of nanodiamonds in cancer treatment and imaging

, &
Pages 189-225 | Received 11 Nov 2018, Accepted 13 May 2019, Published online: 26 Jun 2019

References

  • World Health Organization Annual Report. (2018).
  • Sun T, Zhang YS, Pang B, et al. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed. 2014;53(46):12320–12364.
  • Merkel TJ, DeSimone JM. Dodging drug-resistant cancer with diamonds. Sci Transl Med. 2011;3(73):73ps8–73ps8.
  • Erathodiyil N, Ying JY. Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res. 2011;44(10):925–935.
  • Georgakilas V, Perman JA, Tucek J, et al. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015;115(11):4744–4822.
  • Mochalin VN, Shenderova O, Ho D, et al. The properties and applications of nanodiamonds. Nat Nano. 2012;7(1):11–23.
  • Faklaris O, Garrot D, Joshi V, et al. Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small. 2008;4(12):2236–2239.
  • Shenderova OA, McGuire GE. Science and engineering of nanodiamond particle surfaces for biological applications (review). Biointerphases. 2015;10(3):030802.
  • Schirhagl R, Chang K, Loretz M, et al. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem. 2014;65(1):83–105.
  • Vaijayanthimala V, Lee DK, Kim SV, et al. Nanodiamond-mediated drug delivery and imaging: challenges and opportunities. Expert Opin Drug Deliv. 2015;12(5):735–749.
  • Rosenholm JM, Vlasov II, Burikov SA, et al. Nanodiamond-based composite structures for biomedical imaging and drug delivery. J Nanosci Nanotechnol. 2015;15(2):959–971.
  • Nagl A, Hemelaar S, Schirhagl R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes – a review. Anal Bioanal Chem. 2015;407(25):7521–7536.
  • Kanyuk M. Use of nanodiamonds in biomedicine. Biotechnologia Acta. 2015;8(2):9–25.
  • Ho D, Wang CHK, Chow EKH. Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci Adv. 2015;1(7):e1500439.
  • Yakovlev RY, Solomatin AS, Leonidov NB, et al. Detonation diamond – a perspective carrier for drug delivery systems. Russ J Gen Chem. 2014;84(2):379–390.
  • Krueger A. 3.16-Diamond nanoparticles: surface modifications and applications. In: Sarin VK, editor. Comprehensive hard materials. Oxford: Elsevier; 2014. p. 379–406.
  • Hui YY, Chang HC. Recent developments and applications of nanodiamonds as versatile bioimaging agents. J Chin Chem Soc. 2014;61(1):67–76.
  • Perevedentseva E, Lin YC, Jani M, et al. Biomedical applications of nanodiamonds in imaging and therapy. Nanomedicine. 2013;8(12):2041–2060.
  • Neburkova J, Vavra J, Cigler P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr Opin Solid State Mater Sci. 2017;21(1):43–53.
  • Mochalin VN, Turcheniuk K. Biomedical applications of nanodiamond(review). Nanotechnology. 2017;28:27.
  • Khan MB, Khan ZH. Nanodiamonds: synthesis and applications. In: Khan ZH, editor. Nanomaterials and their applications. Singapore: Springer Singapore; 2018. p. 1–26.
  • Mitura KA, odarczyk E. Bieta, fluorescent nanodiamonds in biomedical applications. J AOAC Int. 2018;101(5):1297–1307.
  • Tinwala H, Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater Sci Eng C. 2019;97:913–931.
  • Alkahtani Masfer H, Alghannam F, Jiang L, et al. Fluorescent nanodiamonds: past, present, and future. Nanophotonics. 2018;7:1423–1453.
  • Kaur R, Badea I. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int J Nanomedicine. 2013;8:203–213.
  • Walker J. Optical absorption and luminescence in diamond. Rep Prog Phys. 1979;42(10):1605–1659.
  • Dyer HB, Raal FA, Du Preez L, et al. Optical absorption features associated with paramagnetic nitrogen in diamond. Philos Mag. 1965;11(112):763–774.
  • Shigley JE, Breeding CM. The ‘Type’ classification system of diamonds and its importance in gemology. Gems Gemol. 2009;45(2):96–111.
  • Shiryaev AA, Hinks JA, Marks NA, et al. Ion implantation in nanodiamonds: size effect and energy dependence. Sci Rep. 2018;8(1):5099.
  • Happel P, Waag T, Schimke M, et al. Intrinsically 32P-labeled diamond nanoparticles for in vivo imaging and quantification of their biodistribution in chicken embryos. Adv Funct Mater. 2018;28(36):1802873.
  • Chen C, Cho IC, Jian HS, et al. Fe doped magnetic nanodiamonds made by ion implantation. Sci Rep. 2017;7:41938.
  • Kim H, Kim H, Lee J, et al. Fabrication of silicon-vacancy color centers in nanodiamonds by using Si-Ion implantation. J Korean Phys Soc. 2018;73(5):661–666.
  • Danilenko VV. On the history of the discovery of nanodiamond synthesis. Phys Solid State. 2004;46(4):595–599.
  • Ngoc Diep L, Dingwei Z, François T, et al. Optical determination and magnetic manipulation of a single nitrogen-vacancy color center in diamond nanocrystal. Adv Nat Sci: Nanosci Nanotech. 2010;1(1):015014.
  • Shenderova OA, Vlasov II, Turner S, et al. Nitrogen control in nanodiamond produced by detonation shock-wave-assisted synthesis. J Phys Chem C. 2011;115(29):14014–14024.
  • Balasubramanian G, Lazariev A, Arumugam SR, et al. Nitrogen-vacancy color center in diamond – emerging nanoscale applications in bioimaging and biosensing. Curr Opin Chem Biol. 2014;20:69–77.
  • Karaveli S, Gaathon O, Wolcott A, et al. Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential. Proc Natl Acad Sci. 2016;113(15):3938–3943.
  • Boudou JP, Curmi P, Jelezko F, et al. High yield fabrication of fluorescent nanodiamonds. Nanotechnology. 2009;20(23):235602–235602.
  • Chang YR, Lee HY, Chen K, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nano. 2008;3(5):284–288.
  • Vaijayanthimala V, Chang HC. Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine. 2009;4(1):47–55.
  • Tisler J, Balasubramanian G, Naydenov B, et al. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano. 2009;3(7):1959–1965.
  • Chang BM, Lin HH, Su LJ, et al. Highly fluorescent nanodiamonds protein-functionalized for cell labeling and targeting. Adv Funct Mater. 2013;23(46):5737–5745.
  • Vlasov II, Shenderova O, Turner S, et al. Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small. 2010;6(5):687–694.
  • Liu W, Yu F, Yang J, et al. 3D single-molecule imaging of transmembrane signaling by targeting nanodiamonds. Adv Funct Mater. 2016;26(3):365–375.
  • Krueger A. Diamond nanoparticles: jewels for chemistry and physics. Adv Mater. 2008;20:2445–2449.
  • Xing Y, Dai L. Nanodiamonds for nanomedicine. Nanomedicine. 2009;4(2):207–218.
  • Schrand AM, Hens SAC, Shenderova OA. Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci. 2009;34(1-2):18–74.
  • Liang Y, Ozawa M, Krueger A. A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano. 2009;3(8):2288–2296.
  • Turcheniuk K, Trecazzi C, Deeleepojananan C, et al. Salt-assisted ultrasonic deaggregation of nanodiamond. ACS Appl Mater Interfaces. 2016;8(38):25461–25468.
  • Bradac C, Gaebel T, Pakes CI, et al. Effect of the nanodiamond host on a nitrogen-vacancy color-centre emission state. Small. 2013;9(1):132–139.
  • Reineck P, Capelli M, Lau DWM, et al. Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond. Nanoscale. 2017;9(2):497–502.
  • Reineck P, Lau DWM, Wilson ER, et al. Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano. 2017;11(11):10924–10934.
  • Reineck P, Lau DWM, Wilson ER, et al. Visible to near-IR fluorescence from single-digit detonation nanodiamonds: excitation wavelength and pH dependence. Sci Rep. 2018;8(1):2478.
  • Zhang T, Neumann A, Lindlau J, et al. DNA-based self-assembly of fluorescent nanodiamonds. J Am Chem Soc. 2015;137(31):9776–9779.
  • Wu Y, Ermakova A, Liu W, et al. Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds. Adv Funct Mater. 2015;25:6576–6585.
  • Rehor I, Lee KL, Chen K, et al. Plasmonic nanodiamonds: targeted core-shell type nanoparticles for cancer cell thermoablation. Adv Healthc Mater. 2015;4(3):460–468.
  • Chu Z, Miu K, Lung P, et al. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. Sci Rep. 2015;5:11661.
  • Lai L, Barnard AS. Functionalized nanodiamonds for biological and medical applications. J Nanosci Nanotechnol. 2015;15(2):989–999.
  • Zhu Y, Li J, Li W, et al. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics. 2012;2(3):302–312.
  • Woodhams B, Ansel-Bollepalli L, Surmacki J, et al. Graphitic and oxidised high pressure high temperature (HPHT) nanodiamonds induce differential biological responses in breast cancer cell lines. Nanoscale. 2018;10(25):12169–12179.
  • Moore L, Grobarova V, Shen H, et al. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds. Nanoscale. 2014;6(20):11712–11721.
  • Liu KK, Cheng CL, Chang CC, et al. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology. 2007;18(32):325102.
  • Schrand AM, Huang H, Carlson C, et al. Are diamond nanoparticles cytotoxic? J Phys Chem B. 2007;111(1):2–7.
  • Paget V, Sergent JA, Grall R, et al. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology. 2014;8(S1):46–56.
  • Liu KK, Wang CC, Cheng CL, et al. Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials. 2009;30(26):4249–4259.
  • Hsu TC, Liu KK, Chang HC, et al. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds. Sci Rep. 2014;4:5004.
  • Mohan N, Chen CS, Hsieh HH, et al. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett. 2010;10(9):3692–3699.
  • Purtov K, Petunin A, Inzhevatkin E, et al. Biodistribution of different sized nanodiamonds in mice. J Nanosci Nanotechnol. 2015;15(2):1070–1075.
  • van der Laan K, Hasani M, Zheng T, et al. Nanodiamonds for in vivo applications. Small. 2018;14(19):1703838.
  • Xing Y, Xiong W, Zhu L, et al. DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano. 2011;5(3):2376–2384.
  • Mytych J, Lewinska A, Bielak-Zmijewska A, et al. Nanodiamond-mediated impairment of nucleolar activity is accompanied by oxidative stress and DNMT2 upregulation in human cervical carcinoma cells. Chem Biol Interact. 2014;220:51–63.
  • Vaitkuviene A, Ratautaite V, Ramanaviciene A, et al. Impact of diamond nanoparticles on neural cells. Mol Cell Probes. 2015;29(1):25–30.
  • Huang YA, Kao CW, Liu KK, et al. The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. Sci Rep. 2015;4:6919.
  • Turcheniuk K, Mochalin VN. Biomedical applications of nanodiamond (review). Nanotechnology. 2017;28(25):252001.
  • Krueger A, Lang D. Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater. 2012;22(5):890–906.
  • Setyawati MI, Mochalin VN, Leong DT. Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano. 2016;10(1):1170–1181.
  • Ginés L, Mandal S, Ashek IA, et al. Positive zeta potential of nanodiamonds. Nanoscale. 2017;9(34):12549–12555.
  • Wang D, Tong Y, Li Y, et al. PEGylated nanodiamond for chemotherapeutic drug delivery. Diamond Relat Mater. 2013;36:26–34.
  • Kaur R, Chitanda JM, Michel D, et al. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies. Int J Nanomedicine. 2012;7:3851–3866.
  • Zhang P, Yang J, Li W, et al. Cationic polymer brush grafted-nanodiamond via atom transfer radical polymerization for enhanced gene delivery and bioimaging. J Mater Chem. 2011;21(21):7755–7764.
  • Li X, Shao J, Qin Y, et al. TAT-conjugated nanodiamond for the enhanced delivery of doxorubicin. J Mater Chem. 2011;21(22):7966–7973.
  • Park CL, Jee AY, Lee M, et al. Gelation, functionalization, and solution behaviors of nanodiamonds with ionic liquids. Chem Commun. 2009;37:5576–5578.
  • Wang H-D, Yang Q, Niu CH. Functionalization of nanodiamond particles with N,O-carboxymethyl chitosan. Diamond Relat Mater. 2010;19(5–6):441–444.
  • Cheng J, He J, Li C, et al. Facile approach to functionalize nanodiamond particles with V-shaped polymer brushes. Chem Mater. 2008;20(13):4224–4230.
  • Kruger A, Liang Y, Jarre G, et al. Surface functionalisation of detonation diamond suitable for biological applications. J Mater Chem. 2006;16(24):2322–2328.
  • Romanova EE, Akiel R, Cho FH, et al. Grafting nitroxide radicals on nanodiamond surface using click chemistry. J Phys Chem A. 2013;117(46):11933–11939.
  • Liu K-K, Chi-Ching Wang W-WZ, Chiu Y-C, et al. Covalent linkage of nanodiamond- paclitaxel for drug delivery and cancer therapy. Nanotechnology. 2010;21:14.
  • Krueger A, Boedeker T. Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diamond Relat Mater. 2008;17(7–10):1367–1370.
  • Zhang X, Wang S, Fu C, et al. PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polym Chem. 2012;3(10):2716–2719.
  • Khanal M, Turcheniuk V, Barras A, et al. Toward multifunctional ‘clickable’ diamond nanoparticles. Langmuir. 2015;31(13):3926–3933.
  • Barras A, Lyskawa J, Szunerits S, et al. Direct functionalization of nanodiamond particles using dopamine derivatives. Langmuir. 2011;27(20):12451–12457.
  • Purtov KV, Petunin AI, Burov AE, et al. Nanodiamonds as carriers for address delivery of biologically active substances. Nanoscale Res Lett. 2010;5(3):631–636.
  • Vial S, Mansuy C, Sagan S, et al. Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. ChemBioChem. 2008;9(13):2113–2119.
  • Meziane D, Barras A, Kromka A, et al. Thiol-yne reaction on boron-doped diamond electrodes: application for the electrochemical detection of DNA-DNA hybridization events. Anal Chem. 2012;84(1):194–200.
  • Marcon L, Kherrouche Z, Lyskawa J, et al. Preparation and characterization of zonyl-coated nanodiamonds with antifouling properties. Chem Commun. 2011;47(18):5178–5180.
  • Jarre G, Liang Y, Betz P, et al. Playing the surface game-Diels-Alder reactions on diamond nanoparticles. Chem Commun. 2011;47(1):544–546.
  • Hartmann M, Betz P, Sun Y, et al. Saccharide-modified nanodiamond conjugates for the efficient detection and removal of pathogenic bacteria. Chem Eur J. 2012;18(21):6485–6492.
  • Picollo F, Mino L, Battiato A, et al. Synthesis and characterization of porphyrin functionalized nanodiamonds. Diamond Relat Mater. 2019;91:22–28.
  • Liang Y, Meinhardt T, Jarre G, et al. Deagglomeration and surface modification of thermally annealed nanoscale diamond. J Colloid Interface Sci. 2011;354(1):23–30.
  • Meinhardt T, Lang D, Dill H, et al. Pushing the functionality of diamond nanoparticles to new horizons: orthogonally functionalized nanodiamond using click chemistry. Adv Funct Mater. 2011;21(3):494–500.
  • Dahoumane SA, Nguyen MN, Thorel A, et al. Protein-functionalized hairy diamond nanoparticles. Langmuir. 2009;25(17):9633–9638.
  • Lang D, Krueger A. The Prato reaction on nanodiamond: surface functionalization by formation of pyrrolidine rings. Diamond Relat Mater. 2011;20(2):101–104.
  • Betz P, Krueger A. Surface modification of nanodiamond under Bingel-Hirsch conditions. Chem Phys Chem. 2012;13(10):2578–2584.
  • El Tall O, Hou Y, Abou-Hamad E, et al. Direct functionalization of nanodiamonds with maleimide. Chem Mater. 2014;26(9):2766–2769.
  • Cha I, Hashimoto K, Fujiki K, et al. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping. Mater Chem Phys. 2014;143(3):1131–1138.
  • Martín R, Heydorn PC, Alvaro M, et al. General strategy for high-density covalent functionalization of diamond nanoparticles using fenton chemistry. Chem Mater. 2009;21(19):4505–4514.
  • Zhao L, Takimoto T, Ito M, et al. Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting. Angew Chem Itn Ed. 2011;123(6):1424–1428.
  • Liu R, Zhao F, Yu X, et al. Synthesis of biopolymer-grafted nanodiamond by ring-opening polymerization. Diamond Relat Mater. 2014;50:26–32.
  • Ma W, Yu X, Qu X, et al. Functionalization of agglomerating nanodiamonds with biodegradable poly(ε-caprolactone) through surface-initiated polymerization. Diamond Relat Mater. 2016;62:14–21.
  • Sun Y, Olsén P, Waag T, et al. Disaggregation and anionic activation of nanodiamonds mediated by sodium hydride – A new route to functional aliphatic polyester-based nanodiamond materials. Part Part Syst Charact. 2015;32(1):35–42.
  • Mochalin VN, Neitzel I, Etzold BJM, et al. Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano. 2011;5(9):7494–7502.
  • Zeiger M, Jäckel N, Mochalin VN, et al. Review: carbon onions for electrochemical energy storage. J Mater Chem A. 2016;4(9):3172–3196.
  • Chen M, Pierstorff ED, Lam R, et al. Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 2009;3(7):2016–2022.
  • Smith AH, Robinson EM, Zhang XQ, et al. Triggered release of therapeutic antibodies from nanodiamond complexes. Nanoscale. 2011;3(7):2844–2848.
  • Wang X, Low XC, Hou W, et al. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano. 2014;8(12):12151–12166.
  • Wang Z, Tian Z, Dong Y, et al. Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery. Diamond Relat Mater. 2015;58:84–93.
  • Toh TB, Lee DK, Hou W, et al. Nanodiamond–mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol Pharm. 2014;11(8):2683–2691.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mate. 2016;1:16014.
  • Huang H, Pierstorff E, Osawa E, et al. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007;7(11):3305–3314.
  • Amanee DS, Patrick TJH, Aliza P, et al. Nanodiamonds enhance therapeutic efficacy of doxorubicin in treating metastatic hormone-refractory prostate cancer. Nanotechnology. 2014;25(42):425103.
  • Lam R, Chen M, Pierstorff E, et al. Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano. 2008;2(10):2095–2102.
  • Chow EK, Zhang XQ, Chen M, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med. 2011;3(73):73ra21–73ra21.
  • Ma X, Zhao Y, Liang X. Nanodiamond delivery circumvents tumor resistance to doxorubicin. Acta pharmacol Sin. 2011;32(5):543–544.
  • Li Y, Zhou X, Wang D, et al. Nanodiamond mediated delivery of chemotherapeutic drugs. J Mater Chem. 2011;21(41):16406–16412.
  • Yan J, Guo Y, Altawashi A, et al. Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers. New J Chem. 2012;36(7):1479–1484.
  • Xiao J, Duan X, Yin Q, et al. Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials. 2013;34(37):9648–9656.
  • Li Y, Tong Y, Cao R, et al. In vivo enhancement of anticancer therapy using bare or chemotherapeutic drug-bearing nanodiamond particles. Int J Nanomedicine. 2014;9:1065–1082.
  • Xi G, Robinson E, Mania-Farnell B, et al. Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomed Nanotechnol Biol Med. 2014;10(2):381–391.
  • Wang H, Lee DK, Chen KY, et al. Mechanism-independent optimization of combinatorial nanodiamond and unmodified drug delivery using a phenotypically driven platform technology. ACS Nano. 2015;9(3):3332–3344.
  • Man HB, Kim H, Kim HJ, et al. Synthesis of nanodiamond-daunorubicin conjugates to overcome multidrug chemoresistance in leukemia. Nanomed Nanotechnol Biol Med. 2014;10(2):359–369.
  • Giammarco J, Mochalin VN, Haeckel J, et al. The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release. J Colloid Interface Sci. 2016;468:253–261.
  • Lim DG, Jung JH, Ko HW, et al. Paclitaxel–nanodiamond nanocomplexes enhance aqueous dispersibility and drug retention in cells. ACS Appl Mater Interfaces. 2016;8(36):23558–23567.
  • Gismondi A, Reina G, Orlanducci S, et al. Nanodiamonds coupled with plant bioactive metabolites: a nanotech approach for cancer therapy. Biomaterials. 2015;38:22–35.
  • Hemelaar SR, Nagl A, Bigot F, et al. The interaction of fluorescent nanodiamond probes with cellular media. Microchim Acta. 2017;184(4):1001–1009.
  • Aramesh M, Shimoni O, Ostrikov K, et al. Surface charge effects in protein adsorption on nanodiamonds. Nanoscale. 2015;7(13):5726–5736.
  • Lin CL, Lin CH, Chang HC, et al. Protein attachment on nanodiamonds. J Phys Chem A. 2015;119(28):7704–7711.
  • Mochalin VN, Pentecost A, Li XM, et al. Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Molecular Pharmaceutics. 2013;10(10):3728–3735.
  • Shimkunas RA, Robinson E, Lam R, et al. Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials. 2009;30(29):5720–5728.
  • Moore L, Gatica M, Kim H, et al. Multi-protein delivery by nanodiamonds promotes bone formation. J Dent Res. 2013;92(11):976–981.
  • Tzeng YK, Faklaris O, Chang BM, et al. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Itn Ed. 2011;123(10):2310–2313.
  • Bertrand JR, Pioche-Durieu C, Ayala J, et al. Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the ewing sarcoma junction oncogene. Biomaterials. 2015;45:93–98.
  • Jiang YY, Tang GT, Zhang LH, et al. PEGylated PAMAM dendrimers as a potential drug delivery carrier: in vitro and in vivo comparative evaluation of covalently conjugated drug and noncovalent drug inclusion complex. J Drug Targeting. 2010;18(5):389–403.
  • Wang X, Gu M, Toh TB, et al. Stimuli-Responsive nanodiamond-based biosensor for enhanced metastatic tumor site detection. SLAS Technol. 2018;23(1):44–56.
  • Chatterjee A. Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli. J Biomed Opt. 2015;20:051014.
  • Wehling J, Dringen R, Zare RN, et al. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano. 2014;8(6):6475–6483.
  • Szunerits S, Barras A, Boukherroub R. Antibacterial applications of nanodiamonds. Int J Env Res Public Health. 2016;13(4):413.
  • Barras A, Martin FA, Bande O, et al. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale. 2013;5(6):2307–2316.
  • Turcheniuk V, Turcheniuk K, Bouckaert J, et al. Affinity of glycan-modified nanodiamonds towards lectins and uropathogenic Escherichia Coli. ChemNanoMat. 2016;2(4):307–314.
  • Knapinska AM, Tokmina-Roszyk D, Amar S, et al. Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates. Biopolymers. 2015;104(3):186–195.
  • Zhang D, Zhao Q, Zang J, et al. Luminescent hybrid materials based on nanodiamonds. Carbon. 2018;127:170–176.
  • Qin SR, Zhao Q, Cheng ZG, et al. Rare earth-functionalized nanodiamonds for dual-modal imaging and drug delivery. Diamond Relat Mater. 2019;91:173–182.
  • Jia F, Liu X, Li L, et al. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release. 2013;172(3):1020–1034.
  • Salaam AD, Hwang P, McIntosh R, et al. Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer. Beilstein J Nanotechnol. 2014;5:937–945.
  • Zhang XQ, Lam R, Xu X, et al. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv Mater. 2011;23(41):4770–4775.
  • Moore L, Chow EKH, Osawa E, et al. Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv Mater. 2013;25(26):3532–3541.
  • Sotoma S, Hsieh FJ, Chen YW, et al. Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications. Chem Commun. 2018;54(8):1000–1003.
  • Gibson N, Shenderova O, Luo TJM, et al. Colloidal stability of modified nanodiamond particles. Diamond Relat Mater. 2009;18(4):620–626.
  • Lee JW, Lee S, Jang S, et al. Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake. MolBioSyst. 2013;9(5):1004–1011.
  • Wuest KNR, Lu H, Thomas DS, et al. Fluorescent glyco single-chain nanoparticle-decorated nanodiamonds. ACS Macro Lett. 2017;6(10):1168–1174.
  • Maziukiewicz D, Grześkowiak BF, Coy E, et al. NDs@PDA@ICG conjugates for photothermal therapy of glioblastoma multiforme. Biominetics. 2019;4(1):3.
  • Jung HS, Cho KJ, Seol Y, et al. Polydopamine encapsulation of fluorescent nanodiamonds for biomedical applications. Adv Funct Mater. 2018;28(33):1801252.
  • Shi Y, Liu M, Wang K, et al. Direct surface PEGylation of nanodiamond via RAFT polymerization. Appl Surf Sci. 2015;357:2147–2153.
  • Huynh VT, Pearson S, Noy JM, et al. Nanodiamonds with surface grafted polymer chains as vehicles for cell imaging and cisplatin delivery: enhancement of cell toxicity by POEGMEMA coating. ACS Macro Letters. 2013;2(3):246–250.
  • Chen J, Liu M, Huang Q, et al. Facile preparation of fluorescent nanodiamond-based polymer composites through a metal-free photo-initiated RAFT process and their cellular imaging. Chem Eng J. 2018;337:82–90.
  • Liao B, Long P, He B, et al. Surface grafting of fluorescent carbon nanoparticles with polystyrene via atom transfer radical polymerization. Carbon. 2014;73:155–162.
  • Zhang X, Fu C, Feng L, et al. PEGylation and polyPEGylation of nanodiamond. Polymer. 2012;53(15):3178–3184.
  • Theriot JC, Lim CH, Yang H, et al. Organocatalyzed atom transfer radical polymerization driven by visible light. Science. 2016;352(6289):1082–1086.
  • Zeng G, Liu M, Shi K, et al. Surface modification of nanodiamond through metal free atom transfer radical polymerization. Appl Surf Sci. 2016;390:710–717.
  • Zhang Q, Mochalin VN, Neitzel I, et al. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials. 2011;32(1):87–94.
  • Zhang Q, Mochalin VN, Neitzel I, et al. Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials. 2012;33(20):5067–5075.
  • Mochalin VN, Gogotsi Y. Nanodiamond–polymer composites. Diamond and Related Materials. 2015;58:161–171.
  • Zhao L, Xu YH, Akasaka T, et al. Polyglycerol-coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials. 2014;35(20):5393–5406.
  • Boudou JP, David MO, Joshi V, et al. Hyperbranched polyglycerol modified fluorescent nanodiamond for biomedical research. Diamond Relat Mater. 2013;38:131–138.
  • Zhao L, Xu YH, Qin H, et al. Platinum on nanodiamond: A promising prodrug conjugated with stealth polyglycerol, targeting peptide and acid-responsive antitumor drug. Adv Funct Mater. 2014;24(34):5348–5357.
  • Sotoma S, Iimura J, Igarashi R, et al. Selective labeling of proteins on living cell membranes using fluorescent nanodiamond probes. Nanomaterials. 2016;6(4):56.
  • Lukowiak MC, Ziem B, Achazi K, et al. Carbon-based cores with polyglycerol shells-the importance of core flexibility for encapsulation of hydrophobic guests. J Mater Chem B. 2015;3(5):719–722.
  • Zhao L, Nakae Y, Qin H, et al. Polyglycerol-functionalized nanodiamond as a platform for gene delivery: derivatization, characterization, and hybridization with DNA. Beilstein J Org Chem. 2014;10:707–713.
  • Zhao L, Shiino A, Qin H, et al. Synthesis, characterization, and magnetic resonance evaluation of polyglycerol-functionalized detonation nanodiamond conjugated with gadolinium(III) complex. J Nanosci Nanotechnol. 2015;15(2):1076–1082.
  • Terada D, Sotoma S, Harada Y, et al. One-pot synthesis of highly dispersible fluorescent nanodiamonds for bioconjugation. Bioconjugate Chem. 2018;29(8):2786–2792.
  • Sotoma S, Hsieh FJ, Chang HC. Single-step metal-free grafting of cationic polymer brushes on fluorescent nanodiamonds. Materials. 2018;11(8):1479.
  • Dong Y, Cao R, Li Y, et al. Folate-conjugated nanodiamond for tumor-targeted drug delivery. RSC Adv. 2015;5(101):82711–82716.
  • Lai H, Lu M, Lu H, et al. pH-triggered release of gemcitabine from polymer coated nanodiamonds fabricated by RAFT polymerization and copper free click chemistry. Polym Chem. 2016;7:6220–6230.
  • Lai H, Chen F, Lu M, et al. Polypeptide-grafted nanodiamonds for controlled release of melittin to treat breast cancer. ACS Macro Letters. 2017;6:796–801.
  • Lai H, Lu M, Chen F, et al. Amphiphilic polymer coated nanodiamonds: a promising platform to deliver azonafide. Polym Chem. 2019;10:1904–1911.
  • Zhao J, Lu M, Lai H, et al. Delivery of amonafide from fructose-coated nanodiamonds by oxime ligation for the treatment of human breast cancer. Biomacromolecules. 2018;19(2):481–489.
  • Wuest KNR, Trouillet V, Goldmann AS, et al. Polymer functional nanodiamonds by light-induced ligation. Macromolecules. 2016;49(5):1712–1721.
  • Zhao J, Lai H, Lu H, et al. Fructose-coated nanodiamonds: promising platforms for treatment of human breast cancer. Biomacromolecules. 2016;17(9):2946–2955.
  • Gordon CG, Mackey JL, Jewett JC, et al. Reactivity of biarylazacyclooctynones in copper-free click chemistry. J Am Chem Soc. 2012;134(22):9199–9208.
  • Akiel RD, Zhang X, Abeywardana C, et al. Investigating functional DNA grafted on nanodiamond surface using site-directed spin labeling and electron paramagnetic resonance spectroscopy. J Phys Chem B. 2016;120(17):4003–4008.
  • von Haartman E, Jiang H, Khomich AA, et al. Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. J Mater Chem B. 2013;1(18):2358–2366.
  • Rehor I, Slegerova J, Kucka J, et al. Fluorescent nanodiamonds embedded in biocompatible translucent shells. Small. 2014;10(6):1106–1115.
  • Liu S, Han MY. Silica-coated metal nanoparticles. Chem Asian J. 2010;5(1):36–45.
  • Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM. Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater. 2010;22(11):1182–1195.
  • Slegerova J, Hajek M, Rehor I, et al. Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells. Nanoscale. 2015;7(2):415–420.
  • Bumb A, Sarkar SK, Billington N, et al. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. J Am Chem Soc. 2013;135(21):7815–7818.
  • Moore LK, Gatica M, Chow EK, et al. Diamond-Based nanomedicine: enhanced drug delivery and imaging. Disrupt Sci Technol. 2012;1:54–61.
  • Prabhakar N, Nareoja T, von Haartman E, et al. Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. Nanoscale. 2013;5(9):3713–3722.
  • Rehor I, Mackova H, Filippov SK, et al. Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. ChemPlusChem. 2014;79(1):21–24.
  • Chu Z, Zhang S, Zhang B, et al. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Rep. 2015;4:4495.
  • Orlanducci S, Cianchetta I, Tamburri E, et al. Gold nanoparticles on nanodiamond for nanophotonic applications. Mater Res Soc Symp Proc. 2012;1452:13–19.
  • Orlanducci S. Gold-decorated nanodiamonds: powerful multifunctional materials for sensing, imaging. diagnostics, and therapy. Eur J Inorg. 2018;2018(48):5138–5145.
  • Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine. 2015;10(2):299–320.
  • Zhang B, Fang CY, Chang CC, et al. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles. Biomed Opt Express. 2012;3(7):1662–1629.
  • Alkilany AM, Thompson LB, Boulos SP, et al. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Del Rev. 2012;64(2):190–199.
  • Tsai PC, Chen O, Tzeng YK, et al. Gold/diamond nanohybrids for quantum sensing applications. EPJ Quant Technol. 2015;2(1):19.
  • Liu W, Naydenov B, Chakrabortty S, et al. Fluorescent nanodiamond–gold hybrid particles for multimodal optical and electron microscopy cellular imaging. Nano Lett. 2016;16(10):6236–6244.
  • Minati L, Cheng CL, Lin YC, et al. Synthesis of novel nanodiamonds-gold core shell nanoparticles. Diamond Relat Mater. 2015;53:23–28.
  • Singhana B, Slattery P, Chen A, et al. Light-activatable gold nanoshells for drug delivery applications. AAPS PharmSciTech. 2014;15(3):741–752.
  • Zhao J, Wallace M, Melancon MP. Cancer theranostics with gold nanoshells. Nanomedicine. 2014;9(13):2041–2057.
  • Wuest KNR, Trouillet V, Koppe R, et al. Direct light-induced (co-)grafting of photoactive polymers to graphitic nanodiamonds. Polym Chem. 2017;8(5):838–842.
  • Shenderova O, Hens S, Vlasov I, et al. Carbon-Dot-Decorated nanodiamonds. Part Part Syst Charact. 2014;31(5):580–590.
  • Zhao F, Liu R, Yu X, et al. Carbon fiber grafted with nanodiamond: preparation and characterization. J Nanosci Nanotechnol. 2015;15(8):5807–5815.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.