3,149
Views
111
CrossRef citations to date
0
Altmetric
Full Critical Review

A progress report on the MAB phases: atomically laminated, ternary transition metal borides

ORCID Icon, ORCID Icon & ORCID Icon
Pages 226-255 | Received 31 Dec 2018, Accepted 24 Jun 2019, Published online: 11 Jul 2019

References

  • Matkovich I, Board E. Boron and refractory borides. Matkovich VI, editor. Berlin: Springer Berlin Heidelberg; 1977.
  • Campos-Silva IE, Rodríguez-Castro GA. Boriding to improve the mechanical properties and corrosion resistance of steels. In: Thermochemical surface engineering of steels: improving materials performance. Cambridge: Woodhead Publishing Limited; 2014. p. 651–702.
  • Martini C, Palombarini G, Poli G, et al. Sliding and abrasive wear behaviour of boride coatings. Wear. 2004;256:608–613.
  • Ahmed A, Bahadur S, Russell AM, et al. Belt abrasion resistance and cutting tool studies on new ultra-hard boride materials. Tribol Int. 2009;42(5):706–713.
  • Medvedovski E, Jiang JR, Robertson M. Tribological properties of boride based thermal diffusion coatings. Adv Appl Ceram. 2014;113(7):427–437.
  • Shappirio J, Finnegan J, Lux R, et al. TiB2 and ZrB2 diffusion barriers in GaAs Ohmic contact technology. J Vac Sci Technol A Vacuum, Surfaces. Film. 1985;3(6):2255–2258.
  • Oder TN, Sutphin E, Kummari R. Ideal SiC Schottky barrier diodes fabricated using refractory metal borides. J Vac Sci Technol B Microelectron Nanom Struct. 2009;27(4):1865.
  • Schlatter JC, Oyama ST, Metcalfe JE, et al. Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline. Ind Eng Chem Res. 1988 Sep;27(9):1648–1653.
  • Ganem B, Osby JO. Synthetically useful reactions with metal boride and aluminide catalysts. Chem Rev. 1986 Oct;86(5):763–780.
  • Grant JT, McDermott WP, Venegas JM, et al. Boron and boron-containing catalysts for the oxidative dehydrogenation of propane. ChemCatChem. 2017 Oct;9(19):3623–3626.
  • Fahrenholtz WG, Hilmas GE. Oxidation of ultra-high temperature transition metal diboride ceramics. Int Mater Rev. 2012;57(1):61–72.
  • Demirskyi D, Solodkyi I, Nishimura T, et al. High-temperature strength and plastic deformation behavior of niobium diboride consolidated by spark plasma sintering. J Am Ceram Soc. 2017 Nov;100(11):5295–5305.
  • Aylett BJ. Borides and silicides – new chemistry and applications. Br Polym J. 1986 Nov;18(6):359–363.
  • Sani E, Mercatelli L, Meucci M, et al. Optical properties of dense zirconium and tantalum diborides for solar thermal absorbers. Renew Energy. 2016; 91:340–346.
  • Ma S, Bao K, Tao Q, et al. Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material. Sci Rep. 2017;7(March):43759.
  • Yang HX, Wang YD, Ai XP, et al. Metal borides: competitive high capacity Anode materials for Aqueous primary Batteries. Electrochem Solid-State Lett. 2004;7(7):A212.
  • Akopov G, Yeung MT, Kaner RB. Rediscovering the crystal chemistry of borides. Adv Mater. 2017 Jun;29(21):1604506.
  • Nowotny H, Rogl P. Ternary metal borides. Boron Refract borides. Berlin: Springer; 1977. p. 413–448.
  • Scheifers JP, Zhang Y, Fokwa BPT. Boron: Enabling Exciting metal-rich structures and magnetic properties. Acc Chem Res. 2017;acs.accounts.7b00268:2317–2325.
  • Jeitschko W. The crystal structure of Fe2AlB2. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem. 1969;25(1):163–165.
  • Kuz’ma YB, Chaban NF. Crystal structure of the compound Fe2AlB2 from Izv Akad Nauk SSSR. Neorg Mater. 1969;5(2):384–385.
  • Jeitschko W. Die Kristallstruktur von MoAlB. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften. 1966;97(5):1472–1476.
  • Chaban NF, Kuz’ma IUB. Ternary systems Cr-Al-B and Mn-Al-B. Neorg Mater. 1973;9:1908–1911.
  • Ade M, Hillebrecht H. Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a Unifying Concept for ternary borides as MAB-phases. Inorg Chem. 2015;54(13):6122–6135.
  • Zhang H, Dai F, Xiang H, et al. Crystal structure of Cr4AlB4: A new MAB phase compound discovered in Cr-Al-B system. J Mater Sci Technol. 2019;35(4):530–534.
  • Jung W, Petry K. Ternäre boride des Ruthemums mit Aluminium und Zink. Z Krist. 1988;18:153–154.
  • Zhou Y, Xiang H, Dai F-Z, et al. Y5Si2B8: A theoretically predicted new damage-tolerant MAB phase with layered crystal structure. J Am Ceram Soc. 2018;101(December):2459–2470.
  • Zhou Y, Xiang H, Dai FZ, et al. Cr5Si3B and Hf5Si3B: New MAB phases with anisotropic electrical, mechanical properties and damage tolerance. J Mater Sci Technol. 2018;34:1441–1448.
  • Halla F, Thury W. Über boride von Molybdän und Wolfram. Zeitschrift für Anorg und Allg Chemie. 1942 Apr;249(3):229–237.
  • Rieger W, Nowotny H, Benesovsky F. Uber einige Komlexboride von Ubergangsmetallen. Mh Chem. 1965;96(3):844–851.
  • Zhang Y, Okada S, Atoda T, et al. Synthesis of new compound WAlB using aluminum flux. J Ceram Ind Assoc. 1987;95(1100):374–380.
  • Yu Y, Lundström T. Crystal growth and structural investigation of the new quaternary compound Mo1−xCrxAlB with x = 0.39. J Alloys Compd. 1995;226(1–2):5–9.
  • Okada S, Iizumi K, Kudaka K, et al. Single crystal growth of (MoxCr1−x)AlB and (MoxW1−x)AlB by metal Al solutions and properties of the crystals. J Solid State Chem. 1997;133(1):36–43.
  • Becher HJ, Krogmann K, Peisker E. Über das ternäre Borid Mn2AlB2. Zeitschrift fur Anorg und Allg Chemie. 1966;344(3–4):140–147.
  • Stadelmaier HH, Burgess RE, Davis HH. The ternary system Fe-Al-B. Metall. 1966;20(3):225–226.
  • Barsoum MW. MAX phases properties of machinable ternary carbides and nitrides. 1st ed Weinheim: Wiley-VCH Verlag GmbH & Co.; 2013.
  • Tan X, Chai P, Thompson CM, et al. Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements. J Am Chem Soc. 2013;135(25):9553–9557.
  • Kota S, Zapata-Solvas E, Ly A, et al. Synthesis and characterization of an alumina forming Nanolaminated boride: MoAlB. Sci Rep. 2016;6(April):26475.
  • Mann DK, Xu J, Mordvinova NE, et al. Electrocatalytic water oxidation over AlFe2B2. Chem Sci. 2019;10:2796–2804.
  • Alameda LT, Holder CF, Fenton JL, et al. Partial etching of Al from MoAlB single crystals to expose catalytically active basal planes for the hydrogen evolution reaction. Chem Mater. 2017 Nov;29(21):8953–8957.
  • Alameda LT, Moradifar P, Metzger Z, et al. Topochemical deintercalation of Al from MoAlB: stepwise etching pathway, layered Intergrowth structures, and two-dimensional MBene. J Am Chem Soc. 2018;140:8833–8840. jacs.8b04705.
  • Zhang H, Dai F-Z, Xiang H, et al. Phase pure and well crystalline Cr2AlB2: a key precursor for two-dimensional CrB. J Mater Sci Technol. 2019;35:1593–1600.
  • Rogl P, Nowotny H. Structural chemistry of ternary metal borides. J Less Common Met. 1978;61(1): 39–45.
  • Lundstrom T. Structure, defects and properties of some refractory borides. Pure Appl Chem. 1985 Jan;57(10):1383–1390.
  • Lu J, Kota S, Barsoum MW, et al. Atomic structure and lattice defects in nanolaminated ternary transition metal borides. Mater Res Lett. 2017 Jul;5(4):235–241.
  • Lamichhane TN, Xiang L, Lin Q, et al. Magnetic properties of single crystalline itinerant ferromagnet AlFe2B2. Phys Rev Mater. 2018;2(8):084408.
  • Kota S, Wang W, Lu J, et al. Magnetic properties of Cr2AlB2, Cr3AlB4, and CrB powders. J Alloys Compd. 2018;767:474–482.
  • Okada S, Atoda T, Higashi I. Structural investigation of Cr2B3, Cr3B4, and CrB by single-crystal diffractometry. J Solid State Chem. 1987;68(1):61–67.
  • Kiessling R, Samuelson O, Lindstedt G, et al. The borides of manganese. Acta Chem Scand. 1950;4:146–159.
  • Wyckoff RWG. Crystal structures. 2nd ed. Vol. 2. New York (NY): Interscience Publishers; 1965; 85–237.
  • Kiessling R. The crystal structures of Molybdenium and Tungsten borides. Acta Chem Scand. 1947;1: 893–916.
  • Chai P, Stoian Sa, Tan X, et al. Investigation of magnetic properties and electronic structure of layered-structure borides AlT2B2 (T = Fe, Mn, Cr) and AlFe2–xMnxB2. J Solid State Chem. 2015;224:52–61.
  • Du Q, Chen G, Yang W, et al. Magnetic frustration and magnetocaloric effect in AlFe2− xMnxB2 (x = 0–0.5) ribbons. J Phys D Appl Phys. 2015;48(33): 335001.
  • Kádas K, Iuşan D, Hellsvik J, et al. AlM2B2 (M = Cr, Mn, Fe, Co, Ni): a group of nanolaminated materials. J Phys Condens Matter. 2017;29(15):155402.
  • Ke L, Harmon BN, Kramer MJ. Electronic structure and magnetic properties in T2AlB2 (T=Fe,Mn, Cr. Co, and Ni) and their alloys. Phys Rev B. 2017;95(10):104427.
  • Tyan YS, Louis ET, Chang YA. Low temperature specific heat study the electron transfer theory in refractory metal borides. J Phys Chem Solids. 1969;30:785–792.
  • Hanson BD, Mahnig M, Toth LE. Low temperature heat capacities of transition metal borides. Zeitschrift für Naturforsch A. 1971 Jan;26(4):987–991.
  • Fries M, Gercsi Z, Ener S, et al. Magnetic, magnetocaloric and structural properties of manganese based monoborides doped with iron and cobalt - a candidate for thermomagnetic generators. Acta Mater. 2016;113:213–220.
  • Sun ZM. Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev. 2011 May;56(3):143–166.
  • Guzei LS. Al-B-Cr. In: ternary alloys (volume 3). Weinheim: VCH Verlagsgesellschaft; 1990; p. 155–157.
  • Al-B-Mn RQ. Ternary alloys (volume 3). Weinheim, Germany: VCH Verlagsgesellschaft. 1990; p. 184–188.
  • Hirt S, Hilfinger F, Hillebrecht H. Synthesis and crystal structures of the new ternary borides Fe3Al2B2 and Ru9Al3B8 and the confirmation of Ru4Al3B2 and Ru9Al5B8−x (x≈2). Zeitschrift für Krist - Cryst Mater. 2018;233:295–307.
  • Kota S, Agne M, Zapata-Solvas E, et al. Elastic properties, thermal stability, and thermodynamic parameters of MoAlB. Phys Rev B. 2017 Apr;95(14):144108.
  • Okada S. Synthesis, crystal structure and characterizations of the ternary borides TMAlB (TM=Mo,W) with UBC type structure. Trans Kokushikan Univ Fac Eng. 1998;31:7–12.
  • Kubaschewski O. Aluminum-Boron-CobaltTernary alloys. Weinheim, Germany: VCH Verlagsgesellschaft; 1990. p. 150–154.
  • Schmid EE. Aluminum-Boron-NickelTernary alloys. Weinheim, Germany: VCH Verlagsgesellschaft; 1990. p. 201–206.
  • Sokol M, Natu V, Kota S, et al. On the chemical diversity of the MAX phases. Trends Chem. 2019 May;1(2):210–223.
  • Ghosh BG. The Al-B-Fe (Aluminum-boron-Iron) system. Bull Alloy Phase Diagrams. 1989;10(6):667–668.
  • Al-B-Mo RQ. Ternary alloys (volume 3). Weinheim: VCH Verlagsgesellschaft; 1990; p. 189–191.
  • Lu X, Li S, Zhang W, et al. Thermal shock behavior of a nanolaminated ternary boride: MoAlB. Ceram Int. 2018;45:9386–9389.
  • Xu L, Shi O, Liu C, et al. Synthesis, microstructure and properties of MoAlB ceramics. Ceram Int. 2018 Aug;44(11):13396–13401.
  • Li N, Bai Y, Wang S, et al. Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2 bulk from elemental powders. J Am Ceram Soc. 2017;100(10):4407–4411.
  • Liu J, Li S, Yao B, et al. Thermal stability and thermal shock resistance of Fe2AlB2. Ceram Int. 2018;44(13):16035–16039.
  • Levin EM, Jensen BA, Barua R, et al. Effects of Al content and annealing on the phase formation, lattice parameters, and magnetization of AlxFe2B2 (x = 1.0, 1.1, 1.2) alloys. Phys Rev Mater. 2018;2(3):034403.
  • Du Q, Chen G, Yang W, et al. Magnetic properties of AlFe2B2 and CeMn2Si2 synthesized by melt spinning of stoichiometric compositions. Jpn J Appl Phys. 2015;54(5):053003.
  • Kota S, Chen Y, Wang J, et al. Synthesis and characterization of the atomic laminate Mn2AlB2. J Eur Ceram Soc. 2018;38(16):5333–5340.
  • Elmassalami M, Oliveira DDS, Takeya H. On the ferromagnetism of AlFe2B2. J Magn Magn Mater. 2011;323(16):2133–2136.
  • Lewis LH, Barua R, Lejeune B. Developing magnetofunctionality: coupled structural and magnetic phase transition in AlFe2B2. J Alloys Compd. 2015;650:482–488.
  • Cedervall J, Andersson MS, Sarkar T, et al. Magnetic structure of the magnetocaloric compound AlFe2B2. J Alloys Compd. 2016;664:784–791.
  • Barua R, Lejeune BT, Ke L, et al. Anisotropic magnetocaloric response in AlFe2B2. J Alloys Compd. 2018;745:505–512.
  • Lejeune BT, Du X, Barua R, et al. Anisotropic thermal conductivity of magnetocaloric AlFe2B2. Materialia. 2018;1:150–154.
  • Ali T, Khan MN, Ahmed E, et al. Phase analysis of AlFe2B2 by synchrotron X-ray diffraction, magnetic and Mössbauer studies. Prog Nat Sci Mater Int. 2017;27(2):251–256.
  • Potashnikov D, Caspi EN, Pesach A, et al. Magnetic ordering in the nano-laminar ternary Mn2AlB2 using neutron and X-ray diffraction. J Magn Magn Mater. 2019;471:468–474.
  • Liu J, Li S, Yao B, et al. Rapid synthesis and characterization of a nanolaminated Fe2AlB2 compound. J Alloys Compd. 2018;766:488–497.
  • Sinel’nikova VS, Gurin VN, Pilyankevich AN, et al. Technology and properties of single crystals of refractory borides. J Less Common Met. 1976 Jun;47:265–272.
  • Shi O, Xu L, Jiang A, et al. Synthesis and oxidation resistance of MoAlB single crystals. Ceram Int. 2019 Feb;45(2):2446–2450.
  • Cedervall J, Andersson MS, Iuşan D, et al. Magnetic and mechanical effects of Mn substitutions in AlFe2B2. J Magn Magn Mater. 2019;482(March):54–60.
  • Hirt S, Yuan F, Mozharivskyj Y, et al. AlFe2-xCoxB2 (x = 0–0.30): Tc tuning through Co substitution for a promising magnetocaloric material realized by spark plasma sintering. Inorg Chem. 2016;55(19):9677–9684.
  • Barua R, Lejeune BT, Jensen BA, et al. Enhanced room-temperature magnetocaloric effect and tunable magnetic response in Ga-and Ge-substituted AlFe2B2. J Alloys Compd. 2019;777:1030–1038.
  • Kota S, Zapata-Solvas E, Chen Y, et al. Isothermal and cyclic oxidation of MoAlB in air from 1100°C to 1400°C. J Electrochem Soc. 2017;164(13):C930–C938.
  • Verger L, Kota S, Roussel H, et al. Anisotropic thermal expansions of select layered ternary transition metal borides: MoAlB, Cr2AlB2, Mn2AlB2, and Fe2AlB2. J Appl Phys. 2018;124(20):205108.
  • Lee JW, Song MS, Cho KK, et al. Magnetocaloric properties of AlFe2B2 including paramagnetic impurities of Al13Fe4. J Korean Phys Soc. 2018;73(10):1555–1560.
  • Cedervall J, Häggström L, Ericsson T, et al. Mössbauer study of the magnetocaloric compound AlFe2B2. Hyperfine Interact. 2016;237(1):47.
  • Boukili A E, Tahiri N, Salmani E, et al. Magnetocaloric and cooling properties of the intermetallic compound AlFe2B2 in an AMR cycle system. Intermetallics. 2019;104(October 2018):84–89.
  • DeYoung DB. A Mössbauer effect study of 57Fe in transition metal monoborides. J Chem Phys. 1975;62(5):1726–1738.
  • Arrott A. Criterion for ferromagnetism from observations of magnetic isotherms. Phys Rev. 1957;108(6):1394–1396.
  • Banarjee SK. On a generalised approach to first and second order magnetic transitions. Phys Lett. 1964;12(1):16–17.
  • Franco V, Blázquez J, Ingale B, et al. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu Rev Mater Res. 2012;42(1):305–342.
  • Scheibel F, Gottschall T, Taubel A, et al. Hysteresis design of magnetocaloric materials—from basic mechanisms to applications. Energy Technol. 2018;6(8):1397–1428.
  • Franco V, Blázquez JS, Ipus JJ, et al. Progress in materials Science magnetocaloric effect: from materials research to refrigeration devices. Prog Mater Sci. 2018;93:112–232.
  • Okada S, Kudou K, Iizumi K, et al. Single-crystal growth and properties of CrB, Cr3B4, Cr2B3 and CrB2 from high-temperature aluminum solutions. J Cryst Growth. 1996;166(1–4):429–435.
  • Guy CN. The electronic properties of chromium borides. J Phys Chem Solids. 1976;37(11):1005–1009.
  • L’vov SN, Nemchenko VF, Kislyi PS, et al. The electrical properties of chromium borides, carbides, and nitrides. Sov Powder Metall Met Ceram. 1964;1(4): 243–247.
  • Okada S, Shishido T, Yubuta K, et al. Synthesis and some properties of a new chromium boride Cr2B3. Pacific Sci Rev. 2012;14(1):97–102.
  • Desai PD, James HM, Ho CY. Electrical resistivity of aluminum and manganese. J Phys Chem Ref Data. 1984 Oct;13(4):1131–1172.
  • Kunitskii YA, Marek EV. Some physical properties of iron borides. Sov Powder Metall Met Ceram. 1971;10(3):216–218.
  • Fulkerson W, Moore JP, Mcelroy DL. Comparison of the thermal conductivity, electrical resistivity, and Seebeck coefficient of a high-purity Iron and an Armco Iron to 1000°C. J Appl Phys. 1966;37(7): 2639–2653.
  • Steinitz R, Binder I, Moskowitz D. System Molybdenum-boron and some properties of The Molybdenum-borides. JOM. 1952 Sep;4(9):983–987.
  • Desai PD, Chu TK, James HM, et al. Electrical resistivity of Selected elements. J Phys Chem Ref Data. 1984;13:1069–1096.
  • Okada S, Kudou K, Lundstrom T. Preparations and some properties of W2B, δ-WB and WB2 crystals from high-temperature metal solutions. Jpn J Appl Phys. 1995;34(1):226–231.
  • Nishiyama S, Nakamura H, Hattori T. Thermoelectric properties and electronic density of states of transition metal monoborides, FeB, CoB, NiB and their solid solutions. J Ceram Soc Japan. 2004;112(5):676–680.
  • Lofland SE, Hettinger JD, Meehan T, et al. Electron-phonon coupling in Mn+1AXn-phase carbides. Phys Rev B. 2006;74(17):174501.
  • Heid R, Renker B, Schober H, et al. Lattice dynamics and electron-phonon coupling in transition-metal diborides. Phys Rev B - Condens Matter Mater Phys. 2003;67(18):6–9.
  • McMillan WL. Transition temperature of strong-coupled superconductors. Phys Rev. 1968 Mar;167(2):331–344.
  • Rajpoot P, Rastogi A, Verma UP. Physical properties of molybdenum monoboride: Ab-initio study. Philos Mag. 2017;6435(December):1–15.
  • Bai Y, Qi X, Duff A, et al. Density functional theory insights into ternary layered boride MoAlB. Acta Mater. 2017;132:69–81.
  • Ali MA, Hadi MA, Hossain MM, et al. Theoretical investigation of structural, elastic, and electronic properties of ternary boride MoAlB. Phys Status Solidi. 2017;254(March):1700010.
  • Li X, Cui H, Zhang R. First-principles study of the electronic and optical properties of a new metallic MoAlB. Sci Rep. 2016;6:39790.
  • Xiang H, Feng Z, Li Z, et al. Theoretical investigations on mechanical and dynamical properties of MAlB (M = Mo, W) nanolaminated borides at ground-states and elevated temperatures. J Alloys Compd. 2018 Mar;738(13):461–472.
  • Dai FZ, Feng Z, Zhou Y. First-principles investigation on the chemical bonding, elastic properties and ideal strengths of MoAlB and WAlB nanolaminated MAB phases. Comput Mater Sci. 2018;147:331–337.
  • Han L, Wang S, Zhu J, et al. Hardness, elastic, and electronic properties of chromium monoboride. Appl Phys Lett. 2015;106(22):9–13.
  • Wang B, Wang DY, Cheng Z, et al. Phase stability and elastic properties of chromium borides with various stoichiometries. ChemPhysChem. 2013;14(6):1245–1255.
  • Zhou Y, Xiang H, Dai F-Z, et al. Electrical conductive and damage-tolerant nanolaminated MAB phases Cr2AlB2, Cr3AlB4 and Cr4AlB6. Mater Res Lett. 2017;5(6):440–448.
  • Kuentzler R. Chaleurs spécifiques électroniques des borures de manganèse Mn2B, MnB et MnB2. Comptes Rendus L’Académie des Sci. 1970;270:197–199.
  • Kuentzler R. Specific heat of nearly ferromagnetic borides (Co–Ni)2B and (Fe–Co)B. J Appl Phys. 1970;41(3):908–909.
  • Bourourou Y, Beldi L, Bentria B, et al. Structure and magnetic properties of the 3d transition-metal mono-borides TM-B (TM=Mn, Fe. Co) under pressures. J Magn Magn Mater. 2014;365:23–30.
  • Cheng Y, Lv ZL, Chen XR, et al. Structural, electronic and elastic properties of AlFe2B2: first-principles study. Comput Mater Sci. 2014;92:253–257.
  • Miao N, Sa B, Zhou J, et al. Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials. Comput Mater Sci. 2011;50(4):1559–1566.
  • Li X-H, Cui H-L, Zhang R-Z. Electronic, optical and thermal properties of Cr3AlB4 by first-principles calculations. Vacuum. 2017;145:234–240.
  • Li X, Xing C, Cui H, et al. Elastic and acoustical properties of Cr3AlB4 under pressure. J Phys Chem Solids. 2019;126:65–71.
  • Ravindran P, Fast L, Korzhavyi PA, et al. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J Appl Phys. 1998;84(9):4891–4904.
  • Mouhat F, Coudert F-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B. 2014 Dec;90(22):224104.
  • Voigt W. Lehrbuch der Kristallphysik. Ann Arbor, MI and Wiesbaden: Vieweg+Teubner Verlag; 1966.
  • Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM - Zeitschrift für Angew Math und Mech. 1929;9(1):49–58.
  • Li X, Chagas da Silva M, Salahub DR. First-principles calculations of the structural, mechanical, electronic and bonding properties of (CrB2)nCrAl with n = 1, 2, 3. J Alloys Compd. 2017;698:357–363.
  • Bai Y, Sun D, Li N, et al. High-temperature mechanical properties and thermal shock behavior of ternary-layered MAB phases Fe2AlB2. Int J Refract Met Hard Mater. 2019;80:151–160.
  • Li X-H, Cui H-L, Yong Y-L, et al. Theoretical investigation of electronic, bonding and optical properties of nanolaminated boride WAlB. Mater Chem Phys. 2018 Jun;212:122–130.
  • McAlister AJ, Murray JL. The (Al-Mn) Aluminum-Manganese system. J Phase Equilibria. 1987;8(5):438–447.
  • Munro RG. Evaluated material properties for a sintered alpha-alumina. J Am Ceram Soc. 1997;80(8):1919–1928.
  • Radovic M, Barsoum M, Ganguly A, et al. On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300–1573K temperature range. Acta Mater. 2006;54(10):2757–2767.
  • Hu C, Lin Z, He L, et al. Physical and mechanical properties of bulk Ta4AlC3 ceramic prepared by an In situ reaction synthesis/hot-pressing method. J Am Ceram Soc. 2007;90(8):2542–2548.
  • Hu C, Li F, He L, et al. In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3. J Am Ceram Soc. 2008;91(7):2258–2263.
  • Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res. 2011 Aug;41(1):195–227.
  • Dumka N. Handbook of hardness data. Kiev, Ukraine: Naukova Dumka; 1968.
  • Barsoum MW. Mechanical properties: ambient temperatures. In: MAX phases: properties of Machinable ternary carbides and nitrides. 1st ed. Weinheim, Germany: Wiley-VCH; 2013. p. 324–333.
  • Ivan’ko AA. The microhardness of transition-metal carbides. 1st ed. In: Samsonov GV, editor. Refractory carbides. New York, NY: Springer US; 1974. p. 367–370.
  • Hiroki Y, Yoshinaka M, Hirota K, et al. Hot Isostatic pressing of CrB Prepared by Self-propagating high-temperature synthesis. J Japan Soc Powder Powder Metall. 2003;50(5):367–371.
  • Cely A, Tergenius LE, Lundstrom T. Microhardness measurements and phase analytical studies in the Mn-B system. J Less-Common Met. 1978;61(2):193–198.
  • Kulka M, Makuch N, Piasecki A. Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron. Surf Coat Technol. 2017;325:515–532.
  • Chen Y, He D, Qin J, et al. Ultrasonic and hardness measurements for ultrahigh pressure prepared WB ceramics. Int J Refract Met Hard Mater. 2011;29(2):329–331.
  • Chen Y, He D, Qin J, et al. Ultrahigh-pressure densification of nanocrystalline WB ceramics. J Mater Res. 2010;25(4):637–640.
  • Chen Y, Kota S, Barsoum MW, et al. Compressive deformation of MoAlB up to 1100°C. J Alloys Compd. 2019 Feb;774:1216–1222.
  • Tzenov N V, Barsoum MW. Synthesis and characterization of Ti3AlC2. J Am Ceram Soc. 2000;83(4):825–832.
  • El-Raghy T, Barsoum MW, Zavaliangos A, et al. Processing and mechanical properties of Ti3SiC2: II, effect of grain size and deformation temperature. J Am Ceram Soc. 2004;82(10):2855–2860.
  • Tian W, Sun Z, Hashimoto H, et al. Compressive deformation behavior of ternary compound Cr2AlC. J Mater Sci. 2009;44(1):102–107.
  • Casellas D, Nagl MM, Llanes L, et al. Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects. J Mater Process Technol. 2003;143:148–152.
  • Li Z, Ghosh A, Kobayashi AS, et al. Indentation fracture toughness of sintered silicon carbide in the Palmqvist crack regime. J Am Ceram Soc. 1989;72(6):904–911.
  • Hu C, Sakka Y, Nishimura T, et al. Physical and mechanical properties of highly textured polycrystalline Nb4AlC3 ceramic. Sci Technol Adv Mater. 2011;12:044603.
  • Gilbert C, Bloyer D, Barsoum M. Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2. Scr Mater. 2000;42:761–767.
  • Scabarozi TH, Amini S, Leaffer O, et al. Thermal expansion of select Mn+1AXn (M=early transition metal, A=A group element, X= C or N) phases measured by high temperature x-ray diffraction and dilatometry. J Appl Phys. 2009;105(1):013543.
  • Shigematsu T, Kanaizuka T, Kachi S. Invar characteristics in (Mn1-xCrx)B and (Mn1-xFex)B. J Japan Inst Met. 1976;40(11):1131–1134.
  • Kanaizuka T. Invar like properties of transition metal monoborides Mn1-xCrxB and Mn1-xFexB. Mater Res Bull. 1981;16(12):1601–1608.
  • Zhao HL, Kramer MJ, Akinc M. Thermal expansion behavior of intermetallic compounds in the Mo-Si-B system. Intermetallics. 2004;12(5):493–498.
  • Kirchner HP. Strengthening of ceramics: treatments: Tests, and design applications. Boca Raton: CRC Press; 2014.
  • Hasselman DPH. Alumina Subjected to thermal shock. J Am Ceram Soc. 1970;53(9):490–495.
  • Li S, Li H, Zhou Y, et al. Mechanism for abnormal thermal shock behavior of Cr2AlC. J Eur Ceram Soc. 2014;34(5):1083–1088.
  • Bao YW, Wang XH, Zhang HB, et al. Thermal shock behavior of Ti3AlC2 from between 200°C and 1300°C. J Eur Ceram Soc. 2005;25(14):3367–3374.
  • Li H, Li S, Du X, et al. Thermal shock behavior of Cr2AlC in different quenching media. Mater Lett. 2016;167:131–133.
  • Aronsson B. Borides part a: basic factors. Vol. 2, modern materials. Cambridge (MA): Academic Press inc.; 1960. p. 143–190.
  • Ptačinová J, Drienovský M, Palcut M, et al. Oxidation stability of boride coatings. Kov Mater. 2015;53(3):175–186.
  • Emiliani ML. Characterization and oxidation resistance of hot-pressed chromium diboride. Mater Sci Eng A. 1993;172(1–2):111–124.
  • Voitovich RF, Pugach A. Oxidation of refractory compounds III. borides of the group VI metals. Sov Powder Metall Met Ceram. 1974 Jan;13(1):49–54.
  • Smialek JL. Oxygen diffusivity in alumina scales grown on Al-MAX phases. Corros Sci. 2015;91:281–286.
  • Gulbransen Ea, Andrew KF, Brassart Fa. Oxidation of molybdenum 550° to 1700°C. J Electrochem Soc. 1963;110(9):952–959.
  • Byeon JW, Liu J, Hopkins M, et al. Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air. Oxid Met. 2007;68(1):97–111.
  • Fahrenholtz WG, Binner J, Zou J. Synthesis of ultra-refractory transition metal diboride compounds. J Mater Res. 2016 Sep;31(18):2757–2772.
  • Benamor A, Kota S, Chiker N, et al. Friction and wear properties of MoAlB against Al2O3 and 100Cr6 steel counterparts. J Eur Ceram Soc. 2019;39(4):868–877.
  • Sun H, Meng J, Jiao L, et al. A review of transition-metal boride/phosphide-based materials for catalytic hydrogen generation from hydrolysis of boron-hydrides. Inorg Chem Front. 2018;5(4):760–772.
  • Khurana JM, Gogia A. Synthetically useful reactions with Nickel boride. A review. Org Prep Proced Int. 1997 Feb;29(1):1–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.