2,211
Views
41
CrossRef citations to date
0
Altmetric
Full Critical Reviews

Polymer-based porous microcarriers as cell delivery systems for applications in bone and cartilage tissue engineering

, , &
Pages 77-113 | Received 19 Jul 2019, Accepted 29 Jan 2020, Published online: 10 Feb 2020

References

  • Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–926. doi: 10.1126/science.8493529
  • Shapira A, Feiner R, Dvir T. Composite biomaterial scaffolds for cardiac tissue engineering. Int Mater Rev. 2016;61:1–19. doi: 10.1179/1743280415Y.0000000012
  • O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88–95. doi: 10.1016/S1369-7021(11)70058-X
  • Melchels FP, Barradas AM, van Blitterswijk CA, et al. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater. 2010;6(11):4208–4217. doi: 10.1016/j.actbio.2010.06.012
  • Huang S, Fu X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release. 2010;142(2):149–159. doi: 10.1016/j.jconrel.2009.10.018
  • Li GF, Wu J, Wang B, et al. Self-Healing supramolecular self-assembled hydrogels based on poly(L-glutamic acid). Biomacromolecules. 2015;16(11):3508–3518. doi: 10.1021/acs.biomac.5b01287
  • Zhang Z, Eyster TW, Ma PX. Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine (Lond). 2016;11(12):1611–1628. doi: 10.2217/nnm-2016-0083
  • Van Wezel AL. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature. 1967;216:64–65. doi: 10.1038/216064a0
  • Wang D, Wang MY, Wang AH, et al. Preparation of collagen/chitosan microspheres for 3D macrophage proliferation in vitro. Colloid Surface A. 2019;572:266–273. doi: 10.1016/j.colsurfa.2019.04.007
  • Costa AR, Withers J, Rodrigues ME, et al. The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody. Springer Plus. 2013;2(1):25. doi: 10.1186/2193-1801-2-25
  • Park Y, Chen Y, Ordovas L, et al. Verfaillie, Hepatic differentiation of human embryonic stem cells on microcarriers. J Biotechnol. 2014;174:39–48. doi: 10.1016/j.jbiotec.2014.01.025
  • Melero-Martin JM, Dowling MA, Smith M, et al. Expansion of chondroprogenitor cells on macroporous microcarriers as an alternative to conventional monolayer systems. Biomaterials. 2006;27:2970–2979. doi: 10.1016/j.biomaterials.2006.01.023
  • Huang Z, Gu H, Yin X, et al. Bone regeneration using injectable poly (γ-benzyl-L-glutamate) microspheres loaded with adipose-derived stem cells in a mouse femoral non-union model. Am J Transl Res. 2019;11(5):2641–2656.
  • Custódio CA, Cerqueira MT, Marques AP, et al. Cell selective chitosan microparticles as injectable cell carriers for tissue regeneration. Biomaterials. 2015;43:23–31. doi: 10.1016/j.biomaterials.2014.11.047
  • Park JS, Hong SJ, Kim HY, et al. Evacuated calcium phosphate spherical microcarriers for bone regeneration. Tissue Eng Part A. 2010;16(5):1681–1691. doi: 10.1089/ten.tea.2009.0624
  • Huang L, Xiao L, Jung Poudel A, et al. Porous chitosan microspheres as microcarriers for 3D cell culture. Carbohydr Polym. 2018;202:611–620. doi: 10.1016/j.carbpol.2018.09.021
  • Li J, Lam AT, Toh JP, et al. Tunable volumetric density and porous structure of spherical poly-ε-caprolactone microcarriers, as applied in human mesenchymal stem cell expansion. Langmuir. 2017;33(12):3068–3079. doi: 10.1021/acs.langmuir.7b00125
  • Overstreet M, Sohrabi A, Polotsky A, et al. Collagen microcarrier spinner culture promotes osteoblast proliferation and synthesis of matrix proteins. In Vitro Cell Dev Biol Anim. 2003;39(5-6):228–234. doi: 10.1290/1543-706X(2003)039<0228:CMSCPO>2.0.CO;2
  • Perez RA, Del Valle S, Altankov G, et al. Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion. J Biomed Mater Res B Appl Biomater. 2011;97(1):156–166. doi: 10.1002/jbm.b.31798
  • Barrias CC, Ribeiro CC, Barbosa MA. Adhesion and proliferation of human osteoblastic cells seeded on injectable hydroxyapatite microspheres. Key Eng Mater. 2004;254:877–880.
  • Feng J, Chong M, Chan J, et al. Apatite-based microcarriers for bone tissue engineering. Key Eng Mater. 2013;529:34–39. doi: 10.1016/j.msea.2013.09.011
  • Chen XG, Liu CS, Liu CG, et al. Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochem Eng J. 2006;27:269–274. doi: 10.1016/j.bej.2005.08.021
  • Kuang R, Zhang ZP, Jin XB, et al. Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells. Adv Healthcare Mater. 2015;4:1993–2000. doi: 10.1002/adhm.201500308
  • Kankala RK, Zhao J, Liu CG, et al. Highly porous microcarriers for minimally invasive in situ skeletal muscle cell delivery. Small. 2019;15(25):e1901397. doi: 10.1002/smll.201901397
  • Nilsson K, Buzsaky F, Mosbach K. Growth of anchorage-dependent cells on macroporous microcarriers. Nat Biotechnol. 1986;4:989–990. doi: 10.1038/nbt1186-989
  • Hoffman T, Khademhosseini A, Langer R. Chasing the paradigm: clinical translation of 25 years of tissue engineering. Tissue Eng Part A. 2019;25(9-10):679–687. doi: 10.1089/ten.tea.2019.0032
  • Nguyen L, Bang S, Noh I. Tissue regeneration of human mesenchymal stem cells on porous gelatin micro-carriers by long-term dynamic in vitro culture. Tissue Eng Regen Med. 2019;16(1):19–28. doi: 10.1007/s13770-018-00174-8
  • Tavassoli H, Alhosseini SN, Tay A, et al. Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products. Biomaterials. 2018;181:333–346. doi: 10.1016/j.biomaterials.2018.07.016
  • Yanagimachi R, Noda YD, Fujimoto M, et al. The distribution of negative surface charges on mammalian spermatozoa. Am J Anat. 1972;135(4):497–519. doi: 10.1002/aja.1001350405
  • Saltzman WM, Kyriakides TR. Cell interactions with polymers. In: Lanza R, Chick W, editors. Principles of tissue engineering. 4th ed. Austin: Academic Press, R.G. Landes Company; 1997. p. 225–246.
  • Kato D, Takeuchi M, Sakurai T, et al. The design of polymer microcarrier surfaces for enhanced cell growth. Biomaterials. 2003;24:4253–4264. doi: 10.1016/S0142-9612(03)00319-3
  • Kiremitci M, Piskin E. Cell adhesion to the surfaces of polymeric beads. Biomaterials: Art Cells Art Org. 1990;18:599–603.
  • Guo S, Zhu X, Li M, et al. Parallel control over surface charge and wettability using polyelectrolyte architecture: effect on protein adsorption and cell adhesion. ACS Appl Mater Interfaces. 2016;8(44):30552–30563. doi: 10.1021/acsami.6b09481
  • Jin HL, Jin WL, Gilson K, et al. Interaction of cells on chargeable functional group gradient surfaces. Biomaterials. 1997;18:351–358. doi: 10.1016/S0142-9612(96)00128-7
  • Baldwin SP, Saltzman WM. Polymers for tissue engineering. Trends Polym Sci. 1996;4(6):177–182.
  • Hakoda M, Shiragami N. Effects of ion exchange capacities on attachment and growth of anchorage-dependent HeLa cell. Bioprocess Eng. 2000;23:523–527. doi: 10.1007/s004499900189
  • Maroudas NG. Adhesion and spreading of cells on charged surfaces. J Theor Biol. 1975;49:417–424. doi: 10.1016/0022-5193(75)90182-4
  • Haynes CA, Norde W. Structures and stabilities of adsorbed proteins. J Colloid Interface Sci. 1995;169(2):313–328. doi: 10.1006/jcis.1995.1039
  • Hegemann D, Blanchard NE, Heuberger M. Reduced protein adsorption on plasma polymer films comprising hydrophobic/hydrophilic vertical chemical gradients. Plasma Process Polym. 2016;13(5):494–498. doi: 10.1002/ppap.201500228
  • Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH3T3 fibroblast attachment, spreading, and cytoskeletal organization. Biomed Mater Res. 1998;41:422–430. doi: 10.1002/(SICI)1097-4636(19980905)41:3<422::AID-JBM12>3.0.CO;2-K
  • Uludag H, De VP, Tresco PA. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev. 2000;42:29–64. doi: 10.1016/S0169-409X(00)00053-3
  • Hutmacher DW. Scaffold in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–2543. doi: 10.1016/S0142-9612(00)00121-6
  • Asghari F, Samiei M, Adibkia K, et al. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol. 2017;45(2):185–192. doi: 10.3109/21691401.2016.1146731
  • Fang JJ, Yong Q, Zhang KX, et al. Novel injectable porous poly(γ-benzyl-L-glutamate) microcarriers for cartilage tissue engineering: preparation and evaluation. J Mater Chem B. 2015;3(6):1020–1031. doi: 10.1039/C4TB01333F
  • Wu JH, Li PF, Dong CL, et al. Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nat Commun. 2018;9:620. doi: 10.1038/s41467-018-02917-6
  • Sheikh Z, Najeeb S, Khurshid Z, et al. Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel). 2015;8(9):5744–5794. doi: 10.3390/ma8095273
  • Bliem R, Katinger H. Scale-up engineering in animal cell technology: Part II. Trends Biotechnol. 1988;6:224–230. doi: 10.1016/0167-7799(88)90078-9
  • Markvicheva E, Grandfils CH. Microcarriers for animal cell culture. In: Willaert R, Nedovich V, editors. Fundamentals of cell immobilisation biotechnology. Dordrecht: Springer; 2004. p. 141–161.
  • Mankani MH, Kuznetsov SA, Fowler B, et al. In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotechnol Bioeng. 2001;72:96–107. doi: 10.1002/1097-0290(20010105)72:1<96::AID-BIT13>3.0.CO;2-A
  • Qiu QQ, Ducheyne P, Ayyaswamy PS. Fabrication, characterization and evaluation of bioceramic hollow microspheres used as microcarriers for 3-D bone tissue formation in rotating bioreactors. Biomaterials. 1999;20:989–1001. doi: 10.1016/S0142-9612(98)00183-5
  • Malda J, Frondoza CG. Microcarriers in the engineering of cartilage and bone. Trends Biotechnol. 2006;24:299–304. doi: 10.1016/j.tibtech.2006.04.009
  • Ng YC, Berry JM, Butler M. Optimization of physical parameters for cell attachment and growth on macroporous microcarriers. Biotechnol Bioeng. 1996;50:627–635. doi: 10.1002/(SICI)1097-0290(19960620)50:6<627::AID-BIT3>3.0.CO;2-M
  • Kim TK, Yoon JJ, Lee DS, et al. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials. 2006;27:152–159. doi: 10.1016/j.biomaterials.2005.05.081
  • Kang SW, La WG, Kim BS. Open macroporous poly (lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering. J Biomater Sci Polym Ed. 2009;20:399–409. doi: 10.1163/156856209X412236
  • Choi SW, Zhang Y, Yeh YC, et al. Biodegradable porous beads and their potential applications in regenerative medicine. J Mater Chem. 2012;22:11442–11451. doi: 10.1039/c2jm16019f
  • Messing RA, Oppermann RA. Pore dimensions for accumulating biomass. I. Microbes that reproduce by fission or by budding. Biotechnol Bioeng. 1979;21:49–58. doi: 10.1002/bit.260210105
  • Yang FH, Niu XF, Gu XN, et al. Biodegradable magnesium-incorporated poly(L-lactic acid) microspheres for manipulation of drug release and alleviation of inflammatory response. ACS Appl Mater Interfaces. 2019;11:23546–23557. doi: 10.1021/acsami.9b03766
  • Chen CW, Liu YX, Sun LY, et al. Antibacterial porous microcarriers with a pathological state responsive switch for wound healing. ACS Applied Bio Materials. 2019;2(5):2155–2161. doi: 10.1021/acsabm.9b00134
  • Slepicka P, Kasalkova NS, Siegel J, et al. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001
  • Lewinski NA, Avrutin V, Izadi T, et al. Influence of ZnO thin film crystallinity on in vitro biocompatibility. Toxicol Res (Camb). 2018;7(5):754–759. doi: 10.1039/C8TX00061A
  • Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–2953. doi: 10.1016/j.biomaterials.2008.04.023
  • Williams DF. Specifications for innovative, enabling biomaterials based on the principles of biocompatibility mechanisms. Front Bioeng Biotechnol. 2019;7:255. doi: 10.3389/fbioe.2019.00255
  • Dwarshuis NJ, Song HW, Patel A, et al. Functionalized microcarriers improve T cell manufacturing by facilitating migratory memory T cell production and increasing CD4/CD8 ratio. bioRxiv. 2019. doi:10.1101/646760.
  • Bee SL, Hamid ZAA, Maritti M, et al. Approaches to improve therapeutic efficacy of biodegradable PLA/PLGA microspheres: a review. Polym Rev. 2018;58(42):495–536. doi: 10.1080/15583724.2018.1437547
  • Shi X, Jiang J, Sun L, et al. Hydrolysis and biomineralization of porous PLA microspheres and their influence on cell growth. Colloids Surf B. 2011;85:73–80. doi: 10.1016/j.colsurfb.2010.11.016
  • Chung HJ, Kim IK, Kim TG, et al. Highly open porous biodegradable microcarriers: in vitro cultivation of chondrocytes for injectable delivery. Tissue Eng A. 2008;14:607–615. doi: 10.1089/tea.2007.0263
  • Shi X, Sun L, Jiang J, et al. Biodegradable polymeric microcarriers with controllable porous structure for tissue engineering. Macromol Biosci. 2009;9:1211–1218. doi: 10.1002/mabi.200900224
  • Shi X, Cui L, Sun H, et al. Promoting cell growth on porous PLA microspheres through simple degradation methods. Polym Degrad Stabil. 2019;161:319–325. doi: 10.1016/j.polymdegradstab.2019.01.003
  • Yang J, Wan YQ, Tu CF, et al. Enhancing the cell affinity of macroporous poly(L-lactide) cell scaffold by a convenient surface modification method. Polym Int. 2003;52:1892–1899. doi: 10.1002/pi.1272
  • Qu X, Wan Y, Zhang H, et al. Porcine-derived xenogeneic bone/poly(glycolide-co-lactide-co-caprolactone) composite and its affinity with rat OCT-1 osteoblast-like cells. Biomaterials. 2006;27:216–225. doi: 10.1016/j.biomaterials.2005.05.101
  • Arima Y, Iwata H. Preferential adsorption of cell adhesive proteins from complex media on self-assembled monolayers and its effect on subsequent cell adhesion. Acta Biomater. 2015;26:72–81. doi: 10.1016/j.actbio.2015.08.033
  • Dunehoo AL, Anderson M, Majumdar S, et al. Cell adhesion molecules for targeted drug delivery. J Pharm Sci. 2006;95:1856–1872. doi: 10.1002/jps.20676
  • Wilson CJ, Clegg RE, Leavesley DI, et al. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11(1-2):1–18. doi: 10.1089/ten.2005.11.1
  • Timin AS, Litvak MM, Gorin DA, et al. Cell-based drug delivery and use of nano-and microcarriers for cell functionalization. Adv Healthc Mater. 2018;7(3):201700818.
  • Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest. 2017;127(5):1600–1612. doi: 10.1172/JCI87491
  • Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44(3):318–331. doi: 10.1002/mus.22094
  • Davidenko N, Hamaia S, Bax DV, et al. Selecting the correct cellular model for assessing of the biological response of collagen-based biomaterials. Acta Biomater. 2018;65:88–101. doi: 10.1016/j.actbio.2017.10.035
  • Hong Y, Gao C, Xie Y, et al. Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials. 2005;26(32):6305–6313. doi: 10.1016/j.biomaterials.2005.03.038
  • Lu G, Sheng B, Wei Y, et al. Collagen nanofiber-covered porous biodegradable carboxymethyl chitosan microcarriers for tissue engineering cartilage. Eur Polym J. 2008;44:2820–2829. doi: 10.1016/j.eurpolymj.2008.06.021
  • Choi Y, Yagati AK, Cho S. Electrochemical characterization of polyl-lysine coating on indium tin oxide electrode for enhancing celladhesion. J Nanosci Nanotechnol. 2015;15:7881–7885. doi: 10.1166/jnn.2015.11229
  • Zhang HY, Jiao JH, Jin H. Degradable poly-L-lysinemodified PLGA cell microcarriers with excellent antibacterial and osteogenic activity. Artif Cells Nanomed Biotechnol. 2019;47:2391–2404. doi: 10.1080/21691401.2019.1623230
  • Chun KW, Yoo HS, Yoon JJ, et al. Biodegradable PLGA microcarriers forinjectable delivery of chondrocytes: effect of surface modification on cellattachment and function. Biotechnol Progress. 2004;20:1797–1801. doi: 10.1021/bp0496981
  • Yuan Y, Shi X, Gan Z, et al. Modification of porous PLGA microspheres by poly-L-lysine for use as tissue engineering scaffolds. Colloid Surface B. 2018;161:162–168. doi: 10.1016/j.colsurfb.2017.10.044
  • Verma S, Kumar N. Effect of biomimetic 3D environment of an injectable polymeric scaffold on MG-63 osteoblastic-cell response. Mater Sci Eng C. 2010;30(8):1118–1128. doi: 10.1016/j.msec.2010.06.005
  • Curran SJ, Chen R, Curran JM, et al. Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres. Tissue Eng. 2005;11(9):1312–1322. doi: 10.1089/ten.2005.11.1312
  • Abstiens K, Gregoritza M, Goepferich AM. Ligand density and linker length are critical factors for multivalent nanoparticle-receptor interactions. ACS Appl Mater Interfaces. 2019;11(1):1311–1320. doi: 10.1021/acsami.8b18843
  • Guo Y, Xu K, Wu C, et al. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem Soc Rev. 2015;44(3):637–646. doi: 10.1039/C4CS00302K
  • Roy A, Valderrama MAM, Daujat V, et al. Stability of a biodegradable microcarrier surface: physically adsorbed versus chemically linked shells. J Mater Chem B. 2018;6:5130–5143. doi: 10.1039/C8TB01255E
  • Luginbuehl V, Meinel L, Merkle HP, et al. Localized delivery of growth factors for bone repair. Eur J Pharm Biopharm. 2004;58(2):197–208. doi: 10.1016/j.ejpb.2004.03.004
  • Burg KJL, Austin CE, Culberson CR, et al. 2000. A novel approach to tissue engineering: injectable composites. Transactions of the 2000 World Biomaterials Congress; Kamuela (HI).
  • Burg KJ, Boland T. Minimally invasive tissue engineering composites and cell printing. IEEE Eng Med Biol Mag. 2003;22(5):84–91. doi: 10.1109/MEMB.2003.1256277
  • Spector M, Lim TC. Injectable biomaterials: a perspective on the next wave of injectable therapeutics. Biomed Mater. 2016;11(1):014110. doi: 10.1088/1748-6041/11/1/014110
  • Mahoney MJ, Saltzman WM. Transplantation of brain cells assembled around a programmable synthetic microenvironment. Nat Biotechnol. 2001;19(10):934–939. doi: 10.1038/nbt1001-934
  • Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014. doi: 10.1038/boneres.2017.14
  • Naqvi SM, Vedicherla S, Gansau J, et al. Living cell factories-electrosprayed microcapsules and microcarriers for minimally invasive delivery. Adv Mater. 2016;28(27):5662–5671. doi: 10.1002/adma.201503598
  • Bertolo A, Häfner S, Taddei AR, et al. Injectable microcarriers as human mesenchymal stem cell support and their application for cartilage and degenerated intervertebral disc repair. Eur Cell Mater. 2015;29:70–80. doi: 10.22203/eCM.v029a06
  • Delcroix GJ, Schiller PC, Benoit JP, et al. Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials. 2010;31(8):2105–2120. doi: 10.1016/j.biomaterials.2009.11.084
  • Kang SW, Jeon O, Kim BS. Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold, for cartilage tissue engineering. Tissue Eng. 2005;11(3):438–447. doi: 10.1089/ten.2005.11.438
  • Eccles SA, Court W, Patterson L. In vitro assays for endothelial cell functions required for angiogenesis: proliferation, motility, tubular differentiation, and matrix proteolysis. Methods Mol Biol. 2016;1430:121–147. doi: 10.1007/978-1-4939-3628-1_8
  • Smits AM, van Vliet P, Metz CH, et al. Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc. 2009;4(2):232–243. doi: 10.1038/nprot.2008.229
  • Yang JZ, Zhang YS, Yue K, et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017;57:1–25. doi: 10.1016/j.actbio.2017.01.036
  • Hao Z, Song Z, Huang J, et al. The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci. 2017;5(8):1382–1392. doi: 10.1039/C7BM00146K
  • Lu Z, Roohani-Esfahani SI, Wang G, et al. Bone biomimetic microenvironment induces osteogenic differentiation of adipose tissue-derived mesenchymal stem cells. Nanomedicine. 2012;8(4):507–515. doi: 10.1016/j.nano.2011.07.012
  • Jin GZ, Park JH, Seo SJ, et al. Dynamic cell culture on porous biopolymer microcarriers in a spinner flask for bone tissue engineering: a feasibility study. Biotechnol Lett. 2014;36(7):1539–1548. doi: 10.1007/s10529-014-1513-6
  • Mercier NR, Costantino HR, Tracy MA, et al. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Biomaterials. 2005;26(14):1945–1952. doi: 10.1016/j.biomaterials.2004.06.030
  • Malda J, Kreijveld E, Temenoff JS, et al. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials. 2003;24(28):5153–5161. doi: 10.1016/S0142-9612(03)00428-9
  • Naidook RH, Easton K, et al. An emulsion preparation for novel microporous polymeric hemi-shells. Mater Lett. 2008;62:252–264. doi: 10.1016/j.matlet.2007.05.012
  • Lee J, Oh YJ, Lee SK, et al. Facile control of porous structures of polymer microspheres using an osmotic agent for pulmonary delivery. J Control Release. 2010;146(1):61–67. doi: 10.1016/j.jconrel.2010.05.026
  • Huang CC, Wei HJ, Yeh YC, et al. Injectable PLGA porous beads cellularized by hAFSCs for cellular cardiomyoplasty. Biomaterials. 2012;33:4069–4077. doi: 10.1016/j.biomaterials.2012.02.024
  • Choi SW, Yeh YC, Zhang Y, et al. Uniform beads with controllable pore sizes for biomedical applications. Small. 2010;6:1492–1498. doi: 10.1002/smll.201000544
  • Lu GY, Zhu L, Kong LJ, et al. Porous chitosan MCs for large scale cultivation of cells for tissue engineering: fabrication and evaluation. Tsinghua Sci Tech. 2006;11:427–432. doi: 10.1016/S1007-0214(06)70212-7
  • Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–1142. doi: 10.1016/S0142-9612(99)00011-3
  • Ribeiro CC, Barrias CC, Barbosa MA. Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications. Mater Sci Mater Med. 2006;17(5):455–463. doi: 10.1007/s10856-006-8473-x
  • Randle WL, Cha JM, Hwang YS, et al. Integrated 3-dimensional expansion and osteogenic differentiation of murine embryonic stem cells. Tissue Eng. 2007;13:2957–2970. doi: 10.1089/ten.2007.0072
  • Costantini M, Guzowski J, Paweł JZ, et al. Electric field assisted microfluidic platform for generation of tailorable porous microbeads as cell carriers for tissue engineering. Adv Funct Mater. 2018;28:1800874. doi: 10.1002/adfm.201800874
  • Wang J, Cheng Y, Yu Y, et al. Microfluidic generation of porous microcarriers for three-dimensional cell culture. ACS Appl Mater Interfaces. 2015;7(49):27035–9. doi: 10.1021/acsami.5b10442
  • Hao NJ, Nie Y, Zhang JXJ. Microfluidic synthesis of functional inorganic micro-/nanoparticles and applications in biomedical engineering. Int Mater Rev. 2018;63:461–487. doi: 10.1080/09506608.2018.1434452
  • Straub JA, Chickering DE, Church CC, et al. Porous PLGA micropaticles: AI-700, an intravenously administered ultrasound contrast agent for use in echocardiography. J Control Release. 2005;108:21–32. doi: 10.1016/j.jconrel.2005.07.020
  • Cai HL, Sharma S, Liu WY, et al. Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules. 2014;15:2540–2547. doi: 10.1021/bm5003976
  • Witschi C, Doelker E. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly (lactic-co-glycolide acid) degradation during in vitro testing. J Control Release. 1998;51:327–341. doi: 10.1016/S0168-3659(97)00188-0
  • Ding L, Lee T, Wang CH. Fabrication of monodispersed Taxol-loaded particles using electrohydrodynamic atomization. J Control Release. 2005;102:395–413. doi: 10.1016/j.jconrel.2004.10.011
  • Reyderman L, Stavchansky S. Electrostatic spraying and its use in drug delivery-cholesterol microspheres. Int J Pharm. 1995;124:75–85. doi: 10.1016/0378-5173(95)00078-W
  • Maeng YJ, Choi SW, Kim HO, et al. Culture of human mesenchymal stem cells using electrosprayed porous chitosan microbeads. Biomed Mater Res A. 2010;92(3):869–876.
  • Tan WH, Takeuchi S. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater. 2007;19:2696–2701. doi: 10.1002/adma.200700433
  • Nisisako T, Torii T, Takahashi T, et al. Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater. 2006;18:1152–1156. doi: 10.1002/adma.200502431
  • Nie Z, Park JI, Li W, et al. An ‘inside-out’ microfluidic approach to monodisperse emulsions stabilized by solid particles. J Am Chem Soc. 2008;130:16508–16509. doi: 10.1021/ja807764m
  • Yobas L, Martens S, Ong WL, et al. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip. 2006;6:1073–1079. doi: 10.1039/b602240e
  • Xu S, Nie Z, Seo M, et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed. 2005;44:724–728. doi: 10.1002/anie.200462226
  • Nykamp G, Carstensen U, Müller BW. Jet milling–a new technique for microparticle preparation. Int J Pharm. 2002;242:79–86. doi: 10.1016/S0378-5173(02)00150-3
  • Baimark Y. Porous microspheres of methoxy poly(ethylene glycol)-b-poly (ε-caprolactoneco–D, L-lactide) prepared by a melt dispersion method. Polymer. 2009;50:4761–4767. doi: 10.1016/j.polymer.2009.07.032
  • Chen AK, Reuveny S, Oh SK. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv. 2013;31(7):1032–1046. doi: 10.1016/j.biotechadv.2013.03.006
  • Sautier JM, Nefussi JR, Forest N. Mineralization and bone formation on microcarrier beads with isolated rat calvaria cell population. Calcif Tissue Int. 1992;50:527–532. doi: 10.1007/BF00582168
  • Malda J, van Blitterswijk CA, Grojec M, et al. Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng. 2003;9:939–948. doi: 10.1089/107632703322495583
  • Baker T, Goodwin T. Three-dimensional culture of bovine chondrocytes in rotating-wall vessels: In vitro cell. Dev Biol Anim. 1997;33:358–365. doi: 10.1007/s11626-997-0006-5
  • Freed LE, Vunjak-Novakovic G, Langer R. Cultivation of cell-polymer cartilage implants in bioreactors. J Cell Biochem. 1993;51:257–264. doi: 10.1002/jcb.240510304
  • Bayram Y, Deveci M, Imirzalioglu N, et al. The cell based dressing with living allogenic keratinocytes in the treatment of foot ulcers: a case study. Br J Plast Surg. 2005;58:988–996. doi: 10.1016/j.bjps.2005.04.031
  • Bücheler M, Wirz C, Schütz A, et al. Tissue engineering of human salivary gland organoids. Acta Otolaryngol. 2002;122:541–545. doi: 10.1080/00016480260092372
  • Kunio I, Tsuru K, Pham TK, et al. Fully-interconnected pore forming calcium phosphate cement. Key Eng Mater. 2012;493-494:832–835. doi: 10.4028/www.scientific.net/KEM.493-494.832
  • Miao GH, Chen XF, Dong H, et al. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery. Mater Sci Engineer C: Mater. 2013;33:4236–4243. doi: 10.1016/j.msec.2013.06.022
  • Hong SJ, Yu HS, Kim HW. Tissue engineering polymeric microcarriers with macroporous morphology and bone-bioactive surface. Macromol Biosci. 2009;9:639–645. doi: 10.1002/mabi.200800304
  • Qiao H, Guo TF, Zheng YD, et al. A novel microporous oxidized bacterial cellulose/arginine composite and its effect on behavior of fibroblast/endothelial cell. Carbohyd Polym. 2018;184:323–332. doi: 10.1016/j.carbpol.2017.12.026
  • Kumbhar JV, Jadhav SH, Bodas DS, et al. In vitro and in vivo studies of a novel bacterial cellul ose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects. Int J Nanomedicine. 2017;12:6437–6459. doi: 10.2147/IJN.S137361
  • Czaja WK, Young DJ, Kawecki M, et al. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007;8:1–12. doi: 10.1021/bm060620d
  • Lau RK, Kwok AC, Chan WK, et al. Mechanical characterization of cellulosic thecal plates in dinoflagellates by nanoindentation. J Nanosci Nanotechnol. 2007;7:452–457. doi: 10.1166/jnn.2007.18041
  • Märtson M, Viljanto J, Hurme T, et al. Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials. 1999;20(21):1989–1995. doi: 10.1016/S0142-9612(99)00094-0
  • Wang Y, Yuan X, Yu K, et al. Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials. 2018;171:118–132. doi: 10.1016/j.biomaterials.2018.04.033
  • Francis SJK, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–2598. doi: 10.1016/S0142-9612(00)00126-5
  • Chandy T, Sharma C. Chitosan-as a biomaterial. Biomater Artif Cell Artif Organs. 1990;18:1–24. doi: 10.3109/10731199009117286
  • Fang JJ, Zhang Y, Yan SF, et al. Poly(l-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration. Acta Biomater. 2014;10:276–288. doi: 10.1016/j.actbio.2013.09.002
  • Zhao H, Xu J, Lan W, et al. Microfluidic production of porous chitosan/silica hybrid microspheres and its Cu(II) adsorption performance. Chem Eng J. 2013;229:82–89. doi: 10.1016/j.cej.2013.05.093
  • Wu XB, Peng CH, Huang F, et al. Preparation and characterization of chitosan porous microcarriers for hepatocyte culture. Hepatob Pancreat Dis Int. 2011;10:509–515. doi: 10.1016/S1499-3872(11)60086-6
  • Chen R, Curran SJ, Curran JM. The use of poly(L-lactide) and RGD modified microspheres as cell carriers in a low intermittency bioreactor for tissue engineering cartilage. Biomaterials. 2006;27:4453–4460. doi: 10.1016/j.biomaterials.2006.04.011
  • Yan SF, Xia PF, Xu SH, et al. Nanocomposite porous microcarriers based on strontium substituted HA-g-Poly(gamma-benzyl-L-glutamate) for bone tissue engineering. ACS Appl Mater Interfaces. 2018;10(19):16270–16281. doi: 10.1021/acsami.8b02448
  • Xia PF, Zhang KX, Gong Y, et al. Injectable stem cell-laden open porous microgels that favour adipogenesis: in vitro and in vivo evaluation. ACS Appl Mater Interfaces. 2017;9(40):34751–34761. doi: 10.1021/acsami.7b13065
  • Gao L, Huang ZY, Yan SF, et al. Sr-HA-graft-poly(γ-benzyl-L-glutamate) nanocomposite microcarriers: controllable Sr2+ release for accelerating osteogenenisis and bony nonunion repair. Biomacromolecules. 2017;18(11):3742–3752. doi: 10.1021/acs.biomac.7b01101
  • Xia PF, Zhang KX, Fang JJ, et al. A novel fabrication of open porous poly-(γ-benzyl-L-glutamate) microcarriers with large pore size to promote cellular infiltration and proliferation. Mater Lett. 2017;206:136–139. doi: 10.1016/j.matlet.2017.07.013
  • Li J, Wan YZ, Li LF, et al. Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C: Mater. 2009;29:1635–1642. doi: 10.1016/j.msec.2009.01.006
  • Saferstein L, Serafica G. Cellulose oxidation by nitrogen dioxide in a perfluorinated tertiar amine solvent. US Patent. 2010;7:645–874.
  • Kumar V, Dang Y. Biodegradable oxidized cellulose esters. US Patent. 2010;7:662–801.
  • Dash M, Chiellini F, Ottenbrite RM, et al. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36:981–1014. doi: 10.1016/j.progpolymsci.2011.02.001
  • Lahiji A, Sohrabi A, Hungerford DS, et al. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. Biomed Mater Res. 2000;51(4):586–595. doi: 10.1002/1097-4636(20000915)51:4<586::AID-JBM6>3.0.CO;2-S
  • Shakibaei M, De Souza P, Merker HJ. Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study. Cell Biol Int. 1997;21(2):115–125. doi: 10.1006/cbir.1996.0118
  • Ginjupalli K, Shavi GV, Averineni RK, et al. Poly(α-hydroxy acid) based polymers: a review on material and degradation aspects. Polym Degrad Stabil. 2017;144:520–535. doi: 10.1016/j.polymdegradstab.2017.08.024
  • Zhou ZH, Liu LH, Liu QQ, et al. Biological assessment of composite materials based on poly-L-lactide and bovine bone. Int J Polym Mater. 2013;62(2):81–84. doi: 10.1080/00914037.2012.664213
  • Gentile P, Chiono V, Carmagnola I, et al. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–3659. doi: 10.3390/ijms15033640
  • Saito E, Liu Y, Migneco F, et al. Strut size and surface area effects on long-term in vivo degradation in computer designed poly (l-lactic acid) three-dimensional porous scaffolds. Acta Biomater. 2012;8:2568–2577. doi: 10.1016/j.actbio.2012.03.028
  • Liu X, Baldursdottir SG, Aho J, et al. Electrospinnability of poly Lactic-co-glycolic acid (PLGA): the role of solvent type and solvent composition. Pharm Res. 2017;34(4):738–749. doi: 10.1007/s11095-017-2100-z
  • Castillo-Dalí G, Velázquez-Cayón R, Serrera-Figallo MA, et al. Importance of poly(lactic-co-glycolic acid) in scaffolds for guided bone regeneration: a focused review. J Oral Implantol. 2015;41(4):e152–e157. doi: 10.1563/AAID-JOI-D-13-00225
  • Washington MA, Swiner DJ, Bell KR, et al. The impact of monomer sequence and stereochemistry on the swelling and erosion of biodegradable poly (lactic-co-glycolic acid) matrices. Biomaterials. 2017;117:66–76. doi: 10.1016/j.biomaterials.2016.11.037
  • Park TG. Degradation of poly (lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials. 1995;16:1123–1130. doi: 10.1016/0142-9612(95)93575-X
  • Li J, Rothstein SN, Little SR, et al. The effect of monomer order on the hydrolysis of biodegradable poly(lactic-co-glycolic acid) repeating sequence copolymers. J Am Chem Soc. 2012;134(39):16352–16359. doi: 10.1021/ja306866w
  • Washington MA, Balmert SC, Fedorchak MV, et al. Monomer sequence in PLGA microparticles: effects on acidic microclimates and in vivo inflammatory response. Acta Biomater. 2018;65:259–227. doi: 10.1016/j.actbio.2017.10.043
  • Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1:161–176. doi: 10.1016/j.bsbt.2015.08.002
  • Zhou H, Touny AH, Bhaduri SB. Fabrication of novel PLA/CDHA bionanocomposite fibers for tissue engineering applications via electrospinning. J Mater Sci Mater Med. 2011;22:1183–1193. doi: 10.1007/s10856-011-4295-6
  • Kempen DH, Lu L, Kim C, et al. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate). J Biomed Mater Res A. 2006;77A:103–111. doi: 10.1002/jbm.a.30336
  • Tajbakhsh S, Hajiali F. A comprehensive study on the fabrication and properties of biocomposites of poly (lactic acid)/ceramics for bone tissue engineering. Mater Sci Eng C: Mater. 2017;70:897–912. doi: 10.1016/j.msec.2016.09.008
  • Ren J, Zhao P, Ren T, et al. Poly (D, L-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. J Mater Sci Mater Med. 2008;19:1075–1082. doi: 10.1007/s10856-007-3181-8
  • Ignatius AA, Betz O, Augat P, et al. In vivo investigations on composites made of resorbable ceramics and poly (lactide) used as bone graft substitutes. J Biomed Mater Res. 2001;58:701–709. doi: 10.1002/jbm.10024
  • Ginjupalli K, Averineni RK, Shavi GV, et al. Biodegradable composite scaffolds of poly(lactic-co-glycolic acid) 85:15 and nano-hydroxyapatite with acidic microclimate controlling additive. Polym Compos. 2017;38:1175–1182. doi: 10.1002/pc.23681
  • Han JD, Ding JX, Wang ZC, et al. The synthesis, deprotection and properties of poly(γ-benzyl-L-glutamate). Sci China Chem. 2013;56:729–738. doi: 10.1007/s11426-013-4839-3
  • Richard A, Margaritis A. Poly(glutamic acid) for biomedical applications. Crit Rev Biotechnol. 2001;21(4):219–232. doi: 10.1080/07388550108984171
  • Ren K, He C, Cheng Y, et al. Injectable enzymatically crosslinked hydrogels based on a poly (l-glutamic acid) graft copolymer.  Polym Chem. 2014;5(17):5069–5076. doi: 10.1039/C4PY00420E
  • Cao B, Yan SF, Cui L, et al. A poly(acrylic acid)-block-poly(l-glutamic acid) diblock copolymer with improved cell adhesion for surface modification. Macromol Biosci. 2011;11:970–977. doi: 10.1002/mabi.201100010
  • Zhang WJ, Zhang KX, Yan SF, et al. A tough and self-healing poly(L-glutamic acid)-based composite hydrogel for tissue engineering. J Mater Chem B. 2018;6:6865–6876. doi: 10.1039/C8TB01981A
  • Zhang KX, Fang HW, Qin YC, et al. Functionalized scaffold for in-situ efficient gene transfection of MSCs spheroids towards chondrogenesis. ACS Appl Mater Interfaces. 2018;10:6930–6941. doi: 10.1021/acsami.7b18859
  • Zhang KX, Song L, Wang J, et al. Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids. Acta Biomater. 2017;51:246–257. doi: 10.1016/j.actbio.2017.01.043
  • Yan SF, Zhang X, Zhang KX, et al. Injectable in situ forming poly(L-Glutamic Acid) hydrogels for cartilage tissue engineering. J Mater Chem B. 2016;4:947–961. doi: 10.1039/C5TB01488C
  • Zhang KX, Yan SF, Li GF, et al. In-situ birth of MSCs multicellular spheroids in poly(L-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration. Biomaterials. 2015;71:24–34. doi: 10.1016/j.biomaterials.2015.08.037
  • Yan SF, Wang TT, Feng L, et al. Injectable in situ self-crosslinking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules. 2014;15:4495–4508. doi: 10.1021/bm501313t
  • Yan SF, Zhang KX, Liu ZW, et al. Fabrication of poly(L-glutamic acid)/chitosan polyelectrolyte complex porous scaffolds for tissue engineering. J Mater Chem B. 2013;1:1541–1551. doi: 10.1039/c2tb00440b
  • Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001;31:81–110. doi: 10.1146/annurev.matsci.31.1.81
  • Bergsma EJ, Rozema FR, Bos RR, et al. Foreign body reactions to resorbable poly (L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg. 1993;51(6):666–670. doi: 10.1016/S0278-2391(10)80267-8
  • Hernández RM, Orive G, Murua A, et al. Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev. 2010;62(7-8):711–730. doi: 10.1016/j.addr.2010.02.004
  • Martin Y, Eldardiri M, Lawrence-Watt DJ, et al. Microcarriers and their potential in tissue regeneration. Tissue Eng Part B Rev. 2011;17(1):71–80. doi: 10.1089/ten.teb.2010.0559
  • Sun LY, Lin SZ, Li YS, et al. Functional cells cultured on microcarriers for use in regenerative medicine research. Cell Transplant. 2011;20(1):49–62. doi: 10.3727/096368910X532792
  • Oliveira MB, Mano JF. Polymer-based microparticles in tissue engineering and regenerative medicine. Biotechnol Prog. 2011;27(4):897–912. doi: 10.1002/btpr.618
  • Sart S, Agathos SN, Li Y. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Biotechnol Prog. 2013;29(6):1354–1366. doi: 10.1002/btpr.1825
  • Park JH, Pérez RA, Jin GZ, et al. Microcarriers designed for cell culture and tissue engineering of bone. Tissue Eng Part B Rev. 2013;19(2):172–190. doi: 10.1089/ten.teb.2012.0432
  • Li BY, Wang X, Wang Y, et al. Past, present, and future of microcarrier-based tissue engineering. J Orthop Trans. 2015;3:51–57.
  • Saltz A, Kandalam U. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: a review. J Biomed Mater Res A. 2016;104(5):1276–1284. doi: 10.1002/jbm.a.35647
  • Li J, Li X, Luo T, et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci Robot. 2018;3:eaat8829. doi: 10.1126/scirobotics.aat8829
  • Surrao DC, Khan AA, McGregor AJ, et al. Can microcarrier-expanded chondrocytes synthesize cartilaginous tissue in vitro? Tissue Eng Part A. 2011;17(15-16):1959–1967. doi: 10.1089/ten.tea.2010.0434
  • Sivandzade F, Mashayekhan S. Design and fabrication of injectable microcarriers composed of acellular cartilage matrix and chitosan. J Biomater Sci Polym Ed. 2018;296:683–700. doi: 10.1080/09205063.2018.1433422
  • Liu X, Jin X, Ma PX. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat Mater. 2011;10(5):398–406. doi: 10.1038/nmat2999
  • Kuang R, Zhang ZP, Jin XB, et al. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater. 2016;33:225–234. doi: 10.1016/j.actbio.2016.01.032
  • Zhang Z, Gupte MJ, Jin X, et al. Injectable peptide decorated functional nanofibrous hollow microspheres to direct stem cell differentiation and tissue regeneration. Adv Funct Mater. 2015;25(3):350–360. doi: 10.1002/adfm.201402618
  • Park JH, Kim MK, El-Fiqi A, et al. Bioactive and porous-structured nanocomposite microspheres effective for cell delivery: A feasibility study for bone tissue engineering. RSC Adv. 2014;4:29062–29071. doi: 10.1039/C4RA02199A
  • Tew S, Redman S, Kwan A, et al. Differences in repair responses between immature and mature cartilage. Clin Orthop Relat Res. 2001;391:S142–S152. doi: 10.1097/00003086-200110001-00014
  • Service RF. Tissue engineering. Coming soon to a knee near you: cartilage like your very own. Science. 2008;322:1460–1461. doi: 10.1126/science.322.5907.1460
  • Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy. 1986;2:54–59. doi: 10.1016/S0749-8063(86)80012-3
  • Rahman RA, Radzi MAA, Sukri NM, et al. Tissue engineering of articular cartilage: from bench to bed-side. Tissue Eng Regen Med. 2014;12:1–11. doi: 10.1007/s13770-014-9044-8
  • Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11:21–34. doi: 10.1038/nrrheum.2014.157
  • Junji I, Lars E, Yosuke S, et al. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc. 2009;17(6):561–577. doi: 10.1007/s00167-008-0663-2
  • El-Ayoubi R, DeGrandpré C, DiRaddo R, et al. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J Biomater Appl. 2011;25(5):429–444. doi: 10.1177/0885328209355332
  • Chiang H, Jiang CC. Repair of articular cartilage defects: review and perspectives. J Formosan Med Assoc. 2009;108:87–101. doi: 10.1016/S0929-6646(09)60039-5
  • Panchalingam KM, Jung S, Rosenberg L, et al. Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review. Stem Cell Res Ther. 2015;6:225. doi: 10.1186/s13287-015-0228-5
  • Morille M, Toupet K, Montero-Menei CN, et al. PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis. Biomaterials. 2016;88:60–69. doi: 10.1016/j.biomaterials.2016.02.022
  • Freed LE, Vunjak-Novakovic G. Cultivation of cell-polymer tissue constructs in simulated microgravity. Biotechnol Bioeng. 1995;46(4):306–313. doi: 10.1002/bit.260460403
  • Zhang L, Ning B, Jia T, et al. Microcarrier bioreactor culture system promotes propagation of human intervertebral disc cells. Ir J Med Sci. 2010;179(4):529–534. doi: 10.1007/s11845-010-0537-8
  • Rim NG, Shin CS, Shin H. Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater. 2013;8(1):014102. doi: 10.1088/1748-6041/8/1/014102
  • Bruder SP, Fox BS. Tissue engineering of bone: cell based strategies. Clin Orthop Relat Res. 1999;367:S68–S83. doi: 10.1097/00003086-199910001-00008
  • Stoop R. Smart biomaterials for tissue engineering of cartilage. Injury. 2008;39:77–87. doi: 10.1016/j.injury.2008.01.036
  • Girão AF, Semitela Â, Ramalho G, et al. Mimicking nature: fabrication of 3D anisotropic electrospun polycaprolactone scaffolds for cartilage tissue engineering applications. Compos Part B-Eng. 2018;154:99–107. doi: 10.1016/j.compositesb.2018.08.001
  • Aigner T, Stöve J. Collagens-major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev. 2003;55(12):1569–1593. doi: 10.1016/j.addr.2003.08.009
  • Popa EG, Reis RL, Gomes ME. Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit Rev Biotechnol. 2015;35(3):410–424. doi: 10.3109/07388551.2014.889079
  • Radhakrishnan J, Subramanian A, Sethuraman S. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration. Carbohydr Polym. 2017;175:63–74. doi: 10.1016/j.carbpol.2017.07.063
  • Zhou Y, Gao HL, Shen LL, et al. Chitosan microspheres with an extracellular matrix-mimicking nanofibrous structure as cell-carrier building blocks for bottom-up cartilage tissue engineering. Nanoscale. 2016;8(1):309–317. doi: 10.1039/C5NR06876B
  • Thomas RG, Unnithan AR, Moon MJ, et al. Electromagnetic manipulation enabled calcium alginate Janus microsphere for targeted delivery of mesenchymal stem cells. Int J Biol Macromol. 2018;110:465–471. doi: 10.1016/j.ijbiomac.2018.01.003
  • Xu FY, Xu L, Wang Q, et al. 3D dynamic culture of rabbit articular chondrocytes encapsulated in alginate gel beads using spinner flasks for cartilage tissue regeneration. Biomed Res Int. 2014;2014:539789.
  • Grassel S, Ahmed N. Influence of cellular microenvironment and paracrine signals on chondrogenic differentiation. Front Biosci. 2007;12:4946–4956. doi: 10.2741/2440
  • Liao J, Guo X, Grande-Allen KJ, et al. Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials. 2010;31(34):8911–8920. doi: 10.1016/j.biomaterials.2010.07.110
  • Li J, Pei M. Optimization of an in vitro three-dimensional microenvironment to reprogram synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A. 2011;17(5-6):703–712. doi: 10.1089/ten.tea.2010.0339
  • Wei G, Ma PX. Nanostructured biomaterials for regeneration. Adv Funct Mater. 2008;18(22):3568–3582. doi: 10.1002/adfm.200800662
  • Smith LA, Liu X, Hu J, et al. The enhancement of human embryonic stem cell osteogenic differentiation with nanofibrous scaffolding. Biomaterials. 2010;31(21):5526–5535. doi: 10.1016/j.biomaterials.2010.03.065
  • Zhang Z, Marson RL, Ge Z, et al. Simultaneous nano- and microscale control of nanofibrous microspheres self-assembled from star-shaped polymers. Adv Mater. 2015;27(26):3947–3952. doi: 10.1002/adma.201501329
  • Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells. 2004;22(7):1152–1167. doi: 10.1634/stemcells.2004-0062
  • Thorogood PV, Hinchliffe JR. An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. Embryol Exp Morphol. 1975;33(3):581–606.
  • Hsu SH, Huang GS. Substrate-dependent Wnt signaling in MSC differentiation within biomaterial-derived 3D spheroids. Biomaterials. 2013;34:4725–4738. doi: 10.1016/j.biomaterials.2013.03.031
  • Feng ZQ, Chu X, Huang NP, et al. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials. 2009;30:2753–2763. doi: 10.1016/j.biomaterials.2009.01.053
  • Lin SJ, Jee SH, Hsaio WC, et al. Formation of melanocyte spheroids on the chitosan-coated surface. Biomaterials. 2005;26:1413–1422. doi: 10.1016/j.biomaterials.2004.05.002
  • Cheng NC, Wang S, Young TH. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials. 2012;33:1748–1758. doi: 10.1016/j.biomaterials.2011.11.049
  • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55. doi: 10.1038/nbt1055
  • Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86-A(7):1541–1558. doi: 10.2106/00004623-200407000-00029
  • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–524. doi: 10.1038/nmat1421
  • Yu XH, Tang XY, Gohil SV, et al. Biomaterials for bone regenerative engineering. Adv Healthcare Mater. 2015;4:1268–1285. doi: 10.1002/adhm.201400760
  • Pina S, Ribeiro VP, Marques CF, et al. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. 2019;12(11):E1824. doi: 10.3390/ma12111824
  • Shekaran A, Sim E, Tan KY, et al. Enhanced in vitro osteogenic differentiation of human fetal MSCs attached to 3D microcarriers versus harvested from 2D monolayers. BMC Biotechnol. 2015;15:102. doi: 10.1186/s12896-015-0219-8
  • Perez RA, Riccardi K, Altankov G, et al. Dynamic cell culture on calcium phosphate microcarriers for bone tissue engineering applications. J Tissue Eng. 2014;5:2041731414543965. doi: 10.1177/2041731414543965
  • Perez RA, Altankov G, Jorge-Herrero E, et al. Micro- and nanostructured hydroxyapatite-collagen microcarriers for bone tissue-engineering applications. J Tissue Eng Regen Med. 2013;7(5):353–361. doi: 10.1002/term.530
  • Ferreira AM, Gentile P, Chiono V, et al. Collagen for bone tissue regeneration. Acta Biomater. 2012;8(9):3191–3200. doi: 10.1016/j.actbio.2012.06.014
  • Guarino V, Gloria A, Raucci MG, et al. Bioinspired composite and cell instructive platforms for bone regeneration. Int Mater Rev. 2012;57:256–275. doi: 10.1179/0950660812Z.00000000021
  • Shen B, Wei A, Tao H, et al. BMP-2 enhances TGF-β3-mediated chondrogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in alginate bead culture. Tissue Eng A. 2009;15(6):1311–1320. doi: 10.1089/ten.tea.2008.0132
  • Willimas DF. The Williams Dictionary of Biomaterials. Liverpool: Liverpool University Press; 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.