3,105
Views
59
CrossRef citations to date
0
Altmetric
Full Critical Reviews

Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials

ORCID Icon, ORCID Icon & ORCID Icon
Pages 114-139 | Received 14 Aug 2019, Accepted 24 Feb 2020, Published online: 05 Mar 2020

References

  • Miyazaki S. My experience with Ti–Ni-based and Ti-based shape memory alloys. Shap Mem Superelasticity. 2017;3(4):279–314. doi: 10.1007/s40830-017-0122-3
  • Kim HY, Miyazaki S. Martensitic transformation and superelastic properties of Ti-Nb base alloys. Mater Trans. 2015;56(5):625–634. doi: 10.2320/matertrans.M2014454
  • Biesiekierski A, Wang J, Gepreel MA-H, et al. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8(5):1661–1669. doi: 10.1016/j.actbio.2012.01.018
  • Orthopedic implants market. https://www.alliedmarketresearch.com/orthopedic-implants-market.
  • Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention – a review∼!2009-12-22∼!2010-01-20∼!2010-05-25∼!. Recent Pat Corros Sci. 2010;2:40–54. doi: 10.2174/1877610801002010040
  • Ortiz AJ, Fernández E, Vicente A, et al. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage. Am J Orthod Dentofacial Orthop. 2011;140(3):e115–e122. doi: 10.1016/j.ajodo.2011.02.021
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Rep. 2015;87:1–57. doi: 10.1016/j.mser.2014.10.001
  • Hanawa T. Metal ion release from metal implants. Mater Sci Eng C. 2004;24(6):745–752. doi: 10.1016/j.msec.2004.08.018
  • Hallab NJ, Jacobs JJ. Biologic effects of implant debris. Bull NYU Hosp Jt Dis. 2009;67(2):182.
  • Jiang Y, Jia T, Wooley PH, et al. Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris. Acta. 2013;79(1):1–9.
  • Huber M, Reinisch G, Trettenhahn G, et al. Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total hip replacements with metal bearing surfaces. Acta Biomater. 2009;5(1):172–180. doi: 10.1016/j.actbio.2008.07.032
  • Goodman SB. Wear particles, periprosthetic osteolysis and the immune system. Biomaterials. 2007;28(34):5044–5048. doi: 10.1016/j.biomaterials.2007.06.035
  • Pandit H, Glyn-Jones S, McLardy-Smith P, et al. Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br. 2008;90-B(7):847–851. doi: 10.1302/0301-620X.90B7.20213
  • Mao X, Tay GH, Godbolt DB, et al. Pseudotumor in a well-fixed metal-on-polyethylene uncemented hip arthroplasty. J Arthroplasty. 2012;27(3):493.e13–493.e17. doi: 10.1016/j.arth.2011.07.015
  • Mahendra G, Pandit H, Kliskey K, et al. Necrotic and inflammatory changes in metal-on-metal resurfacing hip arthroplasties. Acta Orthop. 2009;80(6):653–659. doi: 10.3109/17453670903473016
  • Khouzani MK, Bahrami A, Eslami A. Metallurgical aspects of failure in a broken femoral HIP prosthesis. Eng Failure Anal. 2018;90:168–178. doi: 10.1016/j.engfailanal.2018.03.018
  • Della Valle AG, Becksaç B, Anderson J, et al. Late fatigue fracture of a modern cemented forged cobalt chrome stem for total hip arthroplasty. J Arthroplasty. 2005;20(8):1084–1088. doi: 10.1016/j.arth.2005.03.038
  • Hernandez-Rodriguez M, Ortega-Saenz J, Contreras-Hernandez GR. Failure analysis of a total hip prosthesis implanted in active patient. J Mech Behav Biomed Mater. 2010;3(8):619–622. doi: 10.1016/j.jmbbm.2010.06.004
  • Grupp TM, Weik T, Bloemer W, et al. Modular titanium alloy neck adapter failures in hip replacement – failure mode analysis and influence of implant material. BMC Musculoskel Disord. 2010;11(1):3. doi: 10.1186/1471-2474-11-3
  • Ellman MB, Levine BR. Fracture of the modular femoral neck component in total hip arthroplasty. J Arthroplasty. 2013;28(1):e191–196.e5. doi: 10.1016/j.arth.2011.05.024
  • Long M, Rack H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621–1639. doi: 10.1016/S0142-9612(97)00146-4
  • Rho JY, Ashman RB, Turner CH. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993;26(2):111–119. doi: 10.1016/0021-9290(93)90042-D
  • Chanlalit C, Shukla DR, Fitzsimmons JS, et al. Stress shielding around radial head Prostheses. J Hand Surg Am. 2012;37(10):2118–2125. doi: 10.1016/j.jhsa.2012.06.020
  • Engh Jr CA, Young AM, Engh Sr CA, et al. Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clin Orthop Relat Res. 2003;417:157–163.
  • Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomaterials. 2012;2(4):176–194.
  • Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27(11):2331–2339. doi: 10.1016/j.biomaterials.2005.11.044
  • Goodman SB, Yao Z, Keeney M, et al. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34(13):3174–3183. doi: 10.1016/j.biomaterials.2013.01.074
  • Darouiche RO. Treatment of Infections associated with Surgical implants. New Engl J Med. 2004;350(14):1422–1429. doi: 10.1056/NEJMra035415
  • Goriainov V, Cook R, Latham JM, et al. Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater. 2014;10(10):4043–4057. doi: 10.1016/j.actbio.2014.06.004
  • Ramazanoglu M, Oshida Y. Osseointegration and bioscience of implant surfaces-current concepts at bone-implant interface. INTECH Open Access Publisher; 2011.
  • Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Del Rev. 2015;94(, ):53–62. doi: 10.1016/j.addr.2015.03.013
  • Esposito M, Hirsch JM, Lekholm U, et al. Biological factors contributing to failures of osseointegrated oral implants, (II). Etiopathogenesis. Eur J Oral Sci. 1998;106(3):721–764. doi: 10.1046/j.0909-8836..t01-6-.x
  • Geetha M, Singh A, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog Mater Sci. 2009;54(3):397–425. doi: 10.1016/j.pmatsci.2008.06.004
  • Kunčická L, Kocich R, Lowe TC. Advances in metals and alloys for joint replacement. Prog Mater Sci. 2017;88:232–280. doi: 10.1016/j.pmatsci.2017.04.002
  • Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888–3903. doi: 10.1016/j.actbio.2012.06.037
  • Banerjee D, Williams J. Perspectives on Titanium science and technology. Acta Mater. 2013;61(3):844–879. doi: 10.1016/j.actamat.2012.10.043
  • Lee C, Ju C-P, Chern Lin J. Structure-property relationship of cast Ti-Nb alloys. J Oral Rehabil. 2002;29(4):314–322. doi: 10.1046/j.1365-2842.2002.00825.x
  • Morinaga M, Yukawa N, Maya T, et al. Theoretical design of titanium alloys. Sixth World Conference on Titanium III; Cannes, France; 1988. p. 1601–1606.
  • Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater. 2006;55(5):477–480. doi: 10.1016/j.scriptamat.2006.04.022
  • You L, Song X. A study of low Young’s modulus Ti–Nb–Zr alloys using d electrons alloy theory. Scr Mater. 2012;67(1):57–60. doi: 10.1016/j.scriptamat.2012.03.020
  • Morinaga M, Yukawa N, Adachi H. Alloying effect on the electronic structure of BCC Fe. J Phys F Met Phys. 1985;15(5):1071. doi: 10.1088/0305-4608/15/5/012
  • Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A. 1998;243(1):244–249. doi: 10.1016/S0921-5093(97)00808-3
  • Abd-elrhman Y, Gepreel MA-H, Abdel-Moniem A, et al. Compatibility assessment of new V-free low-cost Ti–4.7Mo–4.5Fe alloy for some biomedical applications. Mater Des. 2016;97(, ):445–453. doi: 10.1016/j.matdes.2016.02.110
  • Kent D, Wang G, Dargusch M. Effects of phase stability and processing on the mechanical properties of Ti–Nb based β Ti alloys. J Mech Behav Biomed Mater. 2013;28:15–25. doi: 10.1016/j.jmbbm.2013.07.007
  • Liang S, Feng X, Yin L, et al. Development of a new β Ti alloy with low modulus and favorable plasticity for implant material. Mater Sci Eng C. 2016;61:338–343. doi: 10.1016/j.msec.2015.12.076
  • Liu SJ, Cai FF, Cui CX, et al. Design and research on mechanical properities of new type low modulus biomedical metastable β titanium alloy. Adv Mat Res. 2011;311:1667–1672.
  • Li Y, Yang C, Wang F, et al. Biomedical TiNbZrTaSi alloys designed by d-electron alloy design theory. Mater Des. 2015;85:7–13. doi: 10.1016/j.matdes.2015.06.176
  • Liu H, Niinomi M, Nakai M, et al. Changeable Young’s modulus with large elongation-to-failure in β-type titanium alloys for spinal fixation applications. Scr Mater. 2014;82(, ):29–32. doi: 10.1016/j.scriptamat.2014.03.014
  • Brozek C, Sun F, Vermaut P, et al. A β-titanium alloy with extra high strain-hardening rate: design and mechanical properties. Scr Mater. 2016;114(, ):60–64. doi: 10.1016/j.scriptamat.2015.11.020
  • Marteleur M, Sun F, Gloriant T, et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scr Mater. 2012;66(10):749–752. doi: 10.1016/j.scriptamat.2012.01.049
  • Sadeghpour S, Abbasi S, Morakabati M, et al. On the compressive deformation behavior of new beta titanium alloys designed by d-electron method. J Alloys Compd. 2018;746(, ):206–217. doi: 10.1016/j.jallcom.2018.02.212
  • Sadeghpour S, Abbasi S, Morakabati M, et al. A new multi-element beta titanium alloy with a high yield strength exhibiting transformation and twinning induced plasticity effects. Scr Mater. 2018;145:104–108. doi: 10.1016/j.scriptamat.2017.10.017
  • Ikehata H, Nagasako N, Furuta T, et al. First-principles calculations for development of low elastic modulus Ti alloys. Phys Rev B. 2004;70(17):174113. doi: 10.1103/PhysRevB.70.174113
  • Tane M, Akita S, Nakano T, et al. Peculiar elastic behavior of Ti–Nb–Ta–Zr single crystals. Acta Mater. 2008;56(12):2856–2863. doi: 10.1016/j.actamat.2008.02.017
  • Hao Y, Li S, Sun S, et al. Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater. 2007;3(2):277–286. doi: 10.1016/j.actbio.2006.11.002
  • Hao Y, Li S, Sun S, et al. Super-elastic titanium alloy with unstable plastic deformation. Appl Phys Lett. 2005;87(9):091906. doi: 10.1063/1.2037192
  • Bahl S, Krishnamurthy AS, Suwas S, et al. Controlled nanoscale precipitation to enhance the mechanical and biological performances of a metastable β Ti-Nb-Sn alloy for orthopedic applications. Mater Des. 2017;126:226–237. doi: 10.1016/j.matdes.2017.04.014
  • Ozan S, Lin J, Li Y, et al. Development of Ti–Nb–Zr alloys with high elastic admissible strain for temporary orthopedic devices. Acta Biomater. 2015;20:176–187. doi: 10.1016/j.actbio.2015.03.023
  • Ozan S, Lin J, Li Y, et al. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications. J Mech Behav Biomed Mater. 2017;75:119–127. doi: 10.1016/j.jmbbm.2017.07.011
  • Lin J, Ozan S, Li Y, et al. Novel Ti-Ta-Hf-Zr alloys with promising mechanical properties for prospective stent applications. Sci Rep. 2016;6:37901. doi: 10.1038/srep37901
  • Wang Q, Dong C, Liaw PK. Structural stabilities of β-Ti alloys studied using a new Mo equivalent derived from [β/(α + β)] phase-boundary slopes. Metall Mater Trans A. 2015;46(8):3440–3447. doi: 10.1007/s11661-015-2923-3
  • Lee S-H, Todai M, Tane M, et al. Biocompatible low Young’s modulus achieved by strong crystallographic elastic anisotropy in Ti–15Mo–5Zr–3Al alloy single crystal. J Mech Behav Biomed Mater. 2012;14:48–54. doi: 10.1016/j.jmbbm.2012.05.005
  • Tane M, Nakano T, Kuramoto S, et al. Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: cold working and oxygen effects. Acta Mater. 2011;59(18):6975–6988. doi: 10.1016/j.actamat.2011.07.050
  • Stráský J, Harcuba P, Václavová K, et al. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. J Mech Behav Biomed Mater. 2017;71:329–336. doi: 10.1016/j.jmbbm.2017.03.026
  • Chen C, He W, Ding L, et al. First principles studies on the elastic, thermodynamic properties and electronic structure of Ti 15−x Mo x Sn compounds. Curr Appl Phys. 2018;18(3):280–288. doi: 10.1016/j.cap.2017.12.008
  • Hu Q-M, Li S-J, Hao Y-L, et al. Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations. Appl Phys Lett. 2008;93(12):121902. doi: 10.1063/1.2988270
  • Raabe D, Sander B, Friák M, et al. Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: theory and experiments. Acta Mater. 2007;55(13):4475–4487. doi: 10.1016/j.actamat.2007.04.024
  • You L, Song X, Zhang Y, et al. First-principles calculations of the elastic poperties of the Teta-Ti-Nb-Zr ternary alloys. Ti 2011 – Proceedings of the 12th World Conference on Titanium; Beijing, China; 2012. p. 2160–2163.
  • Karre R, Niranjan MK, Dey SR. First principles theoretical investigations of low Young’s modulus beta Ti–Nb and Ti–Nb–Zr alloys compositions for biomedical applications. Mater Sci Eng C. 2015;50:52–58. doi: 10.1016/j.msec.2015.01.061
  • Zhang C, Tian H, Hao C, et al. First-principles calculations of elastic moduli of Ti–Mo–Nb alloys using a cluster-plus-glue-atom model for stable solid solutions. J Mater Sci. 2013;48(8):3138–3146. doi: 10.1007/s10853-012-7091-x
  • Sahara R, Emura S, Ii S, et al. First-principles study of electronic structures and stability of body-centered cubic Ti–Mo alloys by special quasirandom structures. Sci Technol Adv Mater. 2014;15(3):035014. doi: 10.1088/1468-6996/15/3/035014
  • Ojha A, Sehitoglu H. Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys. Shap Mem Superelasticity. 2016;2(2):180–195. doi: 10.1007/s40830-016-0061-4
  • Ojha A, Sehitoglu H. Critical stress for the bcc–hcp martensite nucleation in Ti–6.25at.%Ta and Ti–6.25at.%Nb alloys. Comput Mater Sci. 2016;111:157–162. doi: 10.1016/j.commatsci.2015.08.050
  • Chowdhury P, Sehitoglu H. Deformation physics of shape memory alloys – fundamentals at atomistic frontier. Prog Mater Sci. 2017;88(, ):49–88. doi: 10.1016/j.pmatsci.2017.03.003
  • Chowdhury P, Sehitoglu H. A revisit to atomistic rationale for slip in shape memory alloys. Prog Mater Sci. 2017;85:1–42. doi: 10.1016/j.pmatsci.2016.10.002
  • Yi R, Liu H, Yi D, et al. Precipitation hardening and microstructure evolution of the Ti–7Nb–10Mo alloy during aging. Mater. 2016;63:577–586.
  • Wan W, Liu H, Jiang Y, et al. Microstructure characterization and property tailoring of a biomedical Ti–19Nb–1.5Mo–4Zr–8Sn alloy. Mater Sci Eng A. 2015;637:130–138. doi: 10.1016/j.msea.2015.04.020
  • Kobayashi S, Takeichi T, Nakai K, et al. Acceleration or suppression of α-phase precipitation using isothermal ω phase in Ti-20 at.pct Nb alloy. Metall Mater Trans A. 2014;45(3):1217–1229. doi: 10.1007/s11661-013-2092-1
  • Bahl S, Das S, Suwas S, et al. Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications. J Mech Behav Biomed Mater. 2018;78:124–133. doi: 10.1016/j.jmbbm.2017.11.014
  • Afonso CR, Ferrandini PL, Ramirez AJ, et al. High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a β-Ti–35Nb–7Zr–5Ta alloy for implant applications. Acta Biomater. 2010;6(4):1625–1629. doi: 10.1016/j.actbio.2009.11.010
  • Ferrandini PL, Cardoso FF, Souza SA, et al. Aging response of the Ti–35Nb–7Zr–5Ta and Ti–35Nb–7Ta alloys. J Alloys Compd. 2007;433(1):207–210. doi: 10.1016/j.jallcom.2006.06.094
  • Homma T, Arafah A, Haley D, et al. Effect of alloying elements on microstructural evolution in oxygen content controlled Ti-29Nb-13Ta-4.6Zr (wt%) alloys for biomedical applications during aging. Mater Sci Eng A. 2018;709:312–321. doi: 10.1016/j.msea.2017.10.018
  • Lin J, Ozan S, Munir K, et al. Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a β type Ti–Ta–Hf–Zr alloy. RSC Adv. 2017;7(20):12309–12317. doi: 10.1039/C6RA28464G
  • Ma X-Q, Niu H-Z, Yu Z-T, et al. Microstructural adjustments and mechanical properties of a cold-rolled biomedical near β−Ti alloy sheet. Rare Met. 2018;37(10):846–851. doi: 10.1007/s12598-016-0801-9
  • Wang L, Lu W, Qin J, et al. Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical β titanium alloy. Mater Sci Eng A. 2008;490(1–2):421–426. doi: 10.1016/j.msea.2008.03.003
  • Li S, Cui T, Hao Y, et al. Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation. Acta Biomater. 2008;4(2):305–317. doi: 10.1016/j.actbio.2007.09.009
  • Lan C, Wu Y, Guo L, et al. Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy. J Mater Sci Technol. 2018;34(5):788–792. doi: 10.1016/j.jmst.2017.04.017
  • González M, Peña J, Gil F, et al. Low modulus Ti–Nb–Hf alloy for biomedical applications. Mater Sci Eng C. 2014;42:691–695. doi: 10.1016/j.msec.2014.06.010
  • Banumathy S, Mandal R, Singh A. Structure of orthorhombic martensitic phase in binary Ti–Nb alloys. J Appl Phys. 2009;106(9):093518. doi: 10.1063/1.3255966
  • Matsumoto H, Watanabe S, Hanada S. Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated. J Alloys Compd. 2007;439(1):146–155. doi: 10.1016/j.jallcom.2006.08.267
  • Nunes ARV, Borborema S, Araújo LS, et al. Production, microstructure and mechanical properties of cold-rolled Ti-Nb-Mo-Zr alloys for orthopedic applications. J Alloys Compd. 2018;743:141–145. doi: 10.1016/j.jallcom.2018.01.305
  • Raducanu D, Cojocaru VD, Nocivin A, et al. Microstructural features and local properties evolution in a heavy plastic deformed Ti-29Nb-9Ta-10Zr (wt%) alloy. Mater Sci Eng A. 2017;689:25–33. doi: 10.1016/j.msea.2017.02.039
  • Hisata Y, Kobayashi E, Sato T. Influence of Nb addition on phase constitution and mechanical properties of biomedical Ti-Zr based alloys. Mater Trans. 2015;56(9):1553–1557. doi: 10.2320/matertrans.M2015118
  • Sun J, Yao Q, Xing H, et al. Elastic properties of β, α″ and ω metastable phases in Ti–Nb alloy from first-principles. J Phys: Condens Matter. 2007;19(48):486215.
  • Cojocaru V, Raducanu D, Gordin D, et al. Texture in ultra-strength Ti–25Ta–25Nb alloy strips. J Alloys Compd. 2013;576:170–176. doi: 10.1016/j.jallcom.2013.04.125
  • Ozan S, Lin J, Li Y, et al. Deformation mechanism and mechanical properties of a thermomechanically processed β Ti–28Nb–35.4Zr alloy. J Mech Behav Biomed Mater. 2018;78:224–234. doi: 10.1016/j.jmbbm.2017.11.025
  • Dai S, Wang Y, Chen F. Effects of annealing on the microstructures and mechanical properties of biomedical cold-rolled Ti–Nb–Zr–Mo–Sn alloy. Mater Charact. 2015;104:16–22. doi: 10.1016/j.matchar.2015.04.004
  • Akahori T, Niinomi M, Fukui H, et al. Fatigue, fretting fatigue and corrosion characteristics of biocompatible beta type titanium alloy conducted with various thermo-mechanical treatments. Mater Trans. 2004;45(5):1540–1548. doi: 10.2320/matertrans.45.1540
  • Nakai M, Niinomi M, Oneda T. Improvement in fatigue strength of biomedical β-type Ti–Nb–Ta–Zr alloy while maintaining low Young’s modulus through optimizing ω-phase precipitation. Metall Mater Trans A. 2012;43(1):294–302. doi: 10.1007/s11661-011-0860-3
  • Zhou Y-L, Luo D-M. Microstructures and mechanical properties of Ti–Mo alloys cold-rolled and heat treated. Mater Charact. 2011;62(10):931–937. doi: 10.1016/j.matchar.2011.07.010
  • Narita K, Niinomi M, Nakai M, et al. Development of thermo-mechanical processing for fabricating highly durable -type Ti–Nb–Ta–Zr rod for use in spinal fixation devices. J Mech Behav Biomed Mater. 2012;9:207–216. doi: 10.1016/j.jmbbm.2012.01.011
  • Panigrahi A, Sulkowski B, Waitz T, et al. Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by severe plastic deformation. J Mech Behav Biomed Mater. 2016;62:93–105. doi: 10.1016/j.jmbbm.2016.04.042
  • Sharman K, Bazarnik P, Brynk T, et al. Enhancement in mechanical properties of a β-titanium alloy by high-pressure torsion. J Mater Res Technol. 2015;4(1):79–83. doi: 10.1016/j.jmrt.2014.10.010
  • Yilmazer H, Niinomi M, Cho K, et al. Nanostructure and fatigue behavior of β-type titanium alloy subjected to high-pressure torsion after aging treatment. Adv Mat Res. 2014;891:9–14.
  • Yilmazer H, Niinomi M, Nakai M, et al. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater Sci Eng C. 2013;33(5):2499–2507. doi: 10.1016/j.msec.2013.01.056
  • Yilmazer H, Niinomi M, Nakai M, et al. Microstructure and mechanical properties of a biomedical β-type titanium alloy subjected to severe plastic deformation after aging treatment. Key Eng Mater. 2012;508:152–160. doi: 10.4028/www.scientific.net/KEM.508.152
  • Kent D, Wang G, Yu Z, et al. Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique. J Mech Behav Biomed Mater. 2011;4(3):405–416. doi: 10.1016/j.jmbbm.2010.11.013
  • Lin Z, Wang L, Xue X, et al. Microstructure evolution and mechanical properties of a Ti–35Nb–3Zr–2Ta biomedical alloy processed by equal channel angular pressing (ECAP). Mater Sci Eng C. 2013;33(8):4551–4561. doi: 10.1016/j.msec.2013.07.010
  • Mohan P, Elshalakany AB, Osman T, et al. Effect of Fe content, sintering temperature and powder processing on the microstructure, fracture and mechanical behaviours of Ti-Mo-Zr-Fe alloys. J Alloys Compd. 2017;729:1215–1225. doi: 10.1016/j.jallcom.2017.09.255
  • Wu J, Li H, Yuan B, et al. High recoverable strain tailoring by Zr adjustment of sintered Ti-13Nb-(0-6)Zr biomedical alloys. J Mech Behav Biomed Mater. 2017;75:574–580. doi: 10.1016/j.jmbbm.2017.05.025
  • Elshalakany AB, Ali S, Mata AA, et al. Microstructure and mechanical properties of Ti-Mo-Zr-Cr biomedical alloys by powder metallurgy. J Mater Eng Perform. 2017;26(3):1262–1271. doi: 10.1007/s11665-017-2531-z
  • Mendes MW, Ágreda CG, Bressiani AH, et al. A new titanium based alloy Ti–27Nb–13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial. Mater Sci Eng C. 2016;63:671–677. doi: 10.1016/j.msec.2016.03.052
  • Hussein M, Suryanarayana C, Al-Aqeeli N. Fabrication of nano-grained Ti–Nb–Zr biomaterials using spark plasma sintering. Mater Des. 2015;87:693–700. doi: 10.1016/j.matdes.2015.08.082
  • Nazari KA, Nouri A, Hilditch T. Mechanical properties and microstructure of powder metallurgy Ti–xNb–yMo alloys for implant materials. Mater Des. 2015;88:1164–1174. doi: 10.1016/j.matdes.2015.09.106
  • Li Y, Zou L, Yang C, et al. Ultrafine-grained Ti-based composites with high strength and low modulus fabricated by spark plasma sintering. Mater Sci Eng A. 2013;560:857–861. doi: 10.1016/j.msea.2012.09.047
  • Zou L, Yang C, Long Y, et al. Fabrication of biomedical Ti–35Nb–7Zr–5Ta alloys by mechanical alloying and spark plasma sintering. Powder Metall. 2012;55(1):65–70. doi: 10.1179/1743290111Y.0000000021
  • Suryanarayana C, Ivanov E. 3 - Mechanochemical synthesis of nanocrystalline metal powders. In: Chang I, Zhao Y, editors. Advances in powder metallurgy. Woodhead Publishing; 2013. p. 42–68.
  • Ivanov E, del Rio E, Kapchemnko I, et al. Development of bio-compatible beta Ti alloy powders for additive manufacturing for application in patient-specific orthopedic implants. Key Eng Mater. 2018;770:9–17. doi: 10.4028/www.scientific.net/KEM.770.9
  • Taddei E, Henriques V, Silva C, et al. Production of new titanium alloy for orthopedic implants. Mater Sci Eng C. 2004;24(5):683–687. doi: 10.1016/j.msec.2004.08.011
  • Yılmaz E, Gökçe A, Findik F, et al. Characterization of biomedical Ti-16Nb-(0–4)Sn alloys produced by powder injection molding. Vacuum. 2017;142:164–174. doi: 10.1016/j.vacuum.2017.05.018
  • Bidaux J-E, Closuit C, Rodriguez-Arbaizar M, et al. Metal injection moulding of low modulus Ti–Nb alloys for biomedical applications. Powder Metall. 2013;56(4):263–266. doi: 10.1179/0032589913Z.000000000118
  • Guo S, Chu A, Wu H, et al. Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti–24Nb–4Zr–7.9Sn alloy for biomedical applications. J Alloys Compd. 2014;597:211–216. doi: 10.1016/j.jallcom.2014.01.087
  • Sabban R, Bahl S, Chatterjee K, et al. Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness. Acta Mater. 2019;162:239–254. doi: 10.1016/j.actamat.2018.09.064
  • Bahl S, Mishra S, Yazar KU, et al. Non-equilibrium microstructure, crystallographic texture and morphological texture synergistically result in unusual mechanical properties of 3D printed 316L stainless steel. Addit. 2019;28:65–77.
  • Zhang L, Klemm D, Eckert J, et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr Mater. 2011;65(1):21–24. doi: 10.1016/j.scriptamat.2011.03.024
  • Schulze C, Weinmann M, Schweigel C, et al. Mechanical properties of a newly additive manufactured implant material based on Ti-42Nb. Materials (Basel). 2018;11(1):124. doi: 10.3390/ma11010124
  • Sing SL, Yeong WY, Wiria FE. Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. J Alloys Compd. 2016;660:461–470. doi: 10.1016/j.jallcom.2015.11.141
  • Yan L, Yuan Y, Ouyang L, et al. Improved mechanical properties of the new Ti-15Ta-xZr alloys fabricated by selective laser melting for biomedical application. J Alloys Compd. 2016;688:156–162. doi: 10.1016/j.jallcom.2016.07.002
  • Kreitcberg A, Brailovski V, Prokoshkin S. New biocompatible near-beta Ti-Zr-Nb alloy processed by laser powder bed fusion: process optimization. J Mater Process Technol. 2018;252:821–829. doi: 10.1016/j.jmatprotec.2017.10.052
  • Chen W, Chen C, Zi X, et al. Controlling the microstructure and mechanical properties of a metastable β titanium alloy by selective laser melting. Mater Sci Eng A. 2018;726:240–250. doi: 10.1016/j.msea.2018.04.087
  • Fischer M, Laheurte P, Acquier P, et al. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications. Mater Sci Eng C. 2017;75:341–348. doi: 10.1016/j.msec.2017.02.060
  • Liu Y, Li S, Hou W, et al. Electron beam melted beta-type Ti–24Nb–4Zr–8Sn porous structures with high strength-to-modulus ratio. J Mater Sci Technol. 2016;32(6):505–508. doi: 10.1016/j.jmst.2016.03.020
  • Schwab H, Prashanth KG, Löber L, et al. Selective laser melting of Ti-45Nb alloy. Metals (Basel). 2015;5(2):686–694. doi: 10.3390/met5020686
  • Hernandez J, Li S, Martinez E, et al. Microstructures and hardness properties for β-phase Ti–24Nb–4Zr–7.9Sn alloy Fabricated by electron beam melting. J Mater Sci Technol. 2013;29(11):1011–1017. doi: 10.1016/j.jmst.2013.08.023
  • Wang Q, Han C, Choma T, et al. Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting. Mater Des. 2017;126:268–277. doi: 10.1016/j.matdes.2017.04.026
  • Fischer M, Joguet D, Robin G, et al. In situ elaboration of a binary Ti–26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Mater Sci Eng C. 2016;62:852–859. doi: 10.1016/j.msec.2016.02.033
  • Lewandowski JJ, Seifi M. Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res. 2016;46:151–186. doi: 10.1146/annurev-matsci-070115-032024
  • Sames WJ, List F, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5):315–360. doi: 10.1080/09506608.2015.1116649
  • Pohler OE. Unalloyed titanium for implants in bone surgery. Injury. 2000;31:D7–D13. doi: 10.1016/S0020-1383(00)80016-9
  • Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30–42. doi: 10.1016/j.jmbbm.2007.07.001
  • Rack H, Qazi J. Titanium alloys for biomedical applications. Mater Sci Eng C. 2006;26(8):1269–1277. doi: 10.1016/j.msec.2005.08.032
  • Liu H, Niinomi M, Nakai M, et al. Improved fatigue properties with maintaining low Young’s modulus achieved in biomedical beta-type titanium alloy by oxygen addition. Mater Sci Eng A. 2017;704:10–17. doi: 10.1016/j.msea.2017.07.078
  • Song X, Wang L, Niinomi M, et al. Fatigue characteristics of a biomedical β-type titanium alloy with titanium boride. Mater Sci Eng A. 2015;640:154–164. doi: 10.1016/j.msea.2015.05.078
  • Narita K, Niinomi M, Nakai M. Effects of micro- and nano-scale wave-like structures on fatigue strength of a beta-type titanium alloy developed as a biomaterial. J Mech Behav Biomed Mater. 2014;29:393–402. doi: 10.1016/j.jmbbm.2013.09.017
  • Niinomi M, Akahori T, Katsura S, et al. Mechanical characteristics and microstructure of drawn wire of Ti–29Nb–13Ta–4.6Zr for biomedical applications. Mater Sci Eng C. 2007;27(1):154–161. doi: 10.1016/j.msec.2006.04.008
  • Akahori T, Niinomi M, Fukui H, et al. Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater Sci Eng C. 2005;25(3):248–254. doi: 10.1016/j.msec.2004.12.007
  • Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr. Biomaterials. 2003;24(16):2673–2683. doi: 10.1016/S0142-9612(03)00069-3
  • Zhang Z, Hao Y, Li S, et al. Fatigue behavior of ultrafine-grained Ti–24Nb–4Zr–8Sn multifunctional biomedical titanium alloy. Mater Sci Eng A. 2013;577:225–233. doi: 10.1016/j.msea.2013.04.051
  • Azevedo TF, de Andrade CEC, dos Santos SV, et al. Fatigue and corrosion-fatigue strength of hot rolled Ti35Nb2.5Sn alloy. Mater Des. 2015;85:607–612. doi: 10.1016/j.matdes.2015.07.045
  • Cremasco A, Lopes E, Cardoso F, et al. Effects of the microstructural characteristics of a metastable β Ti alloy on its corrosion fatigue properties. Int J Fatigue. 2013;54:32–37. doi: 10.1016/j.ijfatigue.2013.04.010
  • Liu H, Niinomi M, Nakai M, et al. Abnormal deformation behavior of oxygen-modified β-type Ti-29Nb-13Ta-4.6Zr alloys for biomedical applications. Metall Mater Trans A. 2017;48(1):139–149. doi: 10.1007/s11661-016-3836-5
  • Akita M, Nakajima M, Uematsu Y, et al. High-cycle fatigue properties of beta Ti alloy 55Ti-30Nb-10Ta-5Zr, gum metal. Fatigue Fract Eng Mater Struct. 2014;37(11):1223–1231. doi: 10.1111/ffe.12201
  • Jacobs JJ, Gilbert JL, Urban RM. Corrosion of metal orthopaedic implants. J Bone Jt Surg. 1998;80(2):268–282. doi: 10.2106/00004623-199802000-00015
  • Martins Junior J, Matos A, Oliveira R, et al. Preparation and characterization of alloys of the Ti-15Mo-Nb system for biomedical applications. J Biomed Mater Res Part B. 2018;106(2):639–648. doi: 10.1002/jbm.b.33868
  • Bai Y, Deng Y, Zheng Y, et al. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young’s modulus. Mater Sci Eng C. 2016;59(, ):565–576. doi: 10.1016/j.msec.2015.10.062
  • Biesiekierski A, Lin J, Li Y, et al. Investigations into Ti–(Nb,Ta)–Fe alloys for biomedical applications. Acta Biomater. 2016;32:336–347. doi: 10.1016/j.actbio.2015.12.010
  • Hussein AH, Gepreel MA-H, Gouda MK, et al. Biocompatibility of new Ti–Nb–Ta base alloys. Mater Sci Eng. 2016;61(, ):574–578. doi: 10.1016/j.msec.2015.12.071
  • Seixas MR, Bortolini Jr C, Pereira Jr A, et al. Development of a new quaternary alloy Ti–25Ta–25Nb–3Sn for biomedical applications. Mater Res Express. 2018;5(2):025402. doi: 10.1088/2053-1591/aa87c8
  • Santos PF, Niinomi M, Liu H, et al. Improvement of microstructure, mechanical and corrosion properties of biomedical Ti-Mn alloys by Mo addition. Mater Des. 2016;110:414–424. doi: 10.1016/j.matdes.2016.07.115
  • Guo Y, Chen D, Lu W, et al. Corrosion resistance and in vitro response of a novel Ti35Nb2Ta3Zr alloy with a low Young’s modulus. Biomed Mater. 2013;8(5):055004. doi: 10.1088/1748-6041/8/5/055004
  • Metikos-Huković M, Kwokal A, Piljac J. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials. 2003;24(21):3765–3775. doi: 10.1016/S0142-9612(03)00252-7
  • Atapour M, Pilchak A, Frankel G, et al. Corrosion behavior of β titanium alloys for biomedical applications. Mater Sci Eng C. 2011;31(5):885–891. doi: 10.1016/j.msec.2011.02.005
  • Zhou Y-L, Luo D-M. Corrosion behavior of Ti–Mo alloys cold rolled and heat treated. J Alloys Compd. 2011;509(21):6267–6272. doi: 10.1016/j.jallcom.2011.03.045
  • Dalmau A, Pina VG, Devesa F, et al. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution. Mater Sci Eng C. 2015;48:55–62. doi: 10.1016/j.msec.2014.11.036
  • Bahl S, Meka SRK, Suwas S, et al. Surface severe plastic deformation of an orthopedic Ti–Nb–Sn alloy induces unusual precipitate remodeling and Supports stem cell osteogenesis through Akt signaling. ACS Biomater Sci Eng. 2018;4(9):3132–3142. doi: 10.1021/acsbiomaterials.8b00406
  • Madl AK, Liong M, Kovochich M, et al. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants part I: physicochemical properties in patient and simulator studies. Nanomed Nanotechnol Biol Med. 2015;11(5):1201–1215. doi: 10.1016/j.nano.2014.12.005
  • Grammatopoulos G, Pandit H, Kamali A, et al. The correlation of wear with histological features after failed hip resurfacing arthroplasty. J Bone Jt Surg. 2013;95(12):e81. doi: 10.2106/JBJS.L.00775
  • Yang X, Hutchinson CR. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid. Acta Biomater. 2016;42:429–439. doi: 10.1016/j.actbio.2016.07.008
  • Chapala P, Acharyya SG, Shariff S, et al. Studying the effect of composition on the in vitro wear behavior and elastic modulus of titanium-niobium-based alloys for biomedical implants. Biomed Phys Eng Express. 2018;4(2):027003. doi: 10.1088/2057-1976/aa9f78
  • Correa D, Kuroda P, Grandini C, et al. Tribocorrosion behavior of β-type Ti-15Zr-based alloys. Mater Lett. 2016;179:118–121. doi: 10.1016/j.matlet.2016.05.045
  • Guo S, Zheng Q, Hou X-L, et al. Wear response of metastable β-type Ti–25Nb–2Mo–4Sn alloy for biomedical applications. Rare Met. 2015;34(8):564–568. doi: 10.1007/s12598-015-0493-6
  • Qu W-T, Sun X-G, Yuan B-F, et al. Tribological behaviour of biomedical Ti–Zr-based shape memory alloys. Rare Met. 2017;36(6):478–484. doi: 10.1007/s12598-017-0882-0
  • Acharya S, Bahl S, Dabas SS, et al. Role of aging induced α precipitation on the mechanical and tribocorrosive performance of a β Ti-Nb-Ta-O orthopedic alloy. Mater Sci Eng C. 2019;103:109755. doi: 10.1016/j.msec.2019.109755
  • Acharya S, Gupta P, Chatterjee K, et al. Microstructure, texture and mechanical properties after cold working and annealing in a biomedical Ti-Nb-Ta alloy. Mater Sci Forum. 2018;941:2465–2470. doi: 10.4028/www.scientific.net/MSF.941.2465
  • Lee Y-S, Niinomi M, Nakai M, et al. Differences in wear Behaviors at sliding contacts for β-type and (α; + β)-type titanium alloys in Ringer’s solution and air. Mater Trans. 2015;56(3):317–326. doi: 10.2320/matertrans.M2014365
  • Pina VG, Dalmau A, Devesa F, et al. Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution. J Mech Behav Biomed Mater. 2015;46:59–68. doi: 10.1016/j.jmbbm.2015.02.016
  • Diomidis N, Mischler S, More N, et al. Fretting-corrosion behavior of β titanium alloys in simulated synovial fluid. Wear. 2011;271(7-8):1093–1102. doi: 10.1016/j.wear.2011.05.010
  • Diomidis N, Mischler S, More N, et al. Tribo-electrochemical characterization of metallic biomaterials for total joint replacement. Acta Biomater. 2012;8(2):852–859. doi: 10.1016/j.actbio.2011.09.034
  • More N, Diomidis N, Paul S, et al. Tribocorrosion behavior of β titanium alloys in physiological solutions containing synovial components. Mater Sci Eng C. 2011;31(2):400–408. doi: 10.1016/j.msec.2010.10.021
  • Hacisalihoglu I, Samancioglu A, Yildiz F, et al. Tribocorrosion properties of different type titanium alloys in simulated body fluid. Wear. 2015;332-333:679–686. doi: 10.1016/j.wear.2014.12.017
  • Niinomi M, Kuroda D, Fukunaga K-I, et al. Corrosion wear fracture of new β type biomedical titanium alloys. Mater Sci Eng A. 1999;263(2):193–199. doi: 10.1016/S0921-5093(98)01167-8
  • Acharya S, Panicker AG, Laxmi DV, et al. Study of the influence of Zr on the mechanical properties and functional response of Ti-Nb-Ta-Zr-O alloy for orthopedic applications. Mater Design. 2019;164:107555. doi: 10.1016/j.matdes.2018.107555
  • Xu W, Lu X, Wang L, et al. Mechanical properties, in vitro corrosion resistance and biocompatibility of metal injection molded Ti-12Mo alloy for dental applications. J Mech Behav Biomed Mater. 2018;88:534–547. doi: 10.1016/j.jmbbm.2018.08.038
  • Sun Y, Song Y, Zuo J, et al. Biocompatibility evaluation of novel β-type titanium alloy (Ti–35Nb–7Zr–5Ta)98Si2 in vitro. RSC Adv. 2015;5(123):101794–101801. doi: 10.1039/C5RA19767H
  • Neacsu P, Gordin D-M, Mitran V, et al. In vitro performance assessment of new beta Ti–Mo–Nb alloy compositions. Mater Sci Eng C. 2015;47(, ):105–113. doi: 10.1016/j.msec.2014.11.023
  • Ion R, Gordin D-M, Mitran V, et al. In vitro bio-functional performances of the novel superelastic beta-type Ti–23Nb–0.7Ta–2Zr–0.5N alloy. Mater Sci Eng C. 2014;35(, ):411–419. doi: 10.1016/j.msec.2013.11.018
  • Pilz S, Gebert A, Voss A, et al. Metal release and cell biological compatibility of beta-type Ti-40Nb containing indium. J Biomed Mater Res Part B. 2018;106(5):1686–1697. doi: 10.1002/jbm.b.33976
  • Xie KY, Wang Y, Zhao Y, et al. Nanocrystalline β-Ti alloy with high hardness, low Young’s modulus and excellent in vitro biocompatibility for biomedical applications. Mater Sci Eng C. 2013;33(6):3530–3536. doi: 10.1016/j.msec.2013.04.044
  • Lin D-J, Chuang C-C, Lin J-HC, et al. Bone formation at the surface of low modulus Ti–7.5Mo implants in rabbit femur. Biomaterials. 2007;28(16):2582–2589. doi: 10.1016/j.biomaterials.2007.02.005
  • Lee JW, Lin DJ, Ju CP, et al. In-vitro and in-vivo evaluation of a new Ti-15Mo-1Bi alloy. J Biomed Mater Res Part B. 2009;91B(2):643–650. doi: 10.1002/jbm.b.31440
  • Miura K, Yamada N, Hanada S, et al. The bone tissue compatibility of a new Ti–Nb–Sn alloy with a low Young’s modulus. Acta Biomater. 2011;7(5):2320–2326. doi: 10.1016/j.actbio.2011.02.008
  • Guo Y, Chen D, Cheng M, et al. The bone tissue compatibility of a new Ti35Nb2Ta3Zr alloy with a low Young’s modulus. Int J Mol Med. 2013;31(3):689–697. doi: 10.3892/ijmm.2013.1249
  • do Prado RF, Esteves GC, Santos ELDS, et al. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PLoS One. 2018;13(5):e0196169. doi: 10.1371/journal.pone.0196169
  • Steinbach I. Phase-field models in materials science. Modell Simul Mater Sci Eng. 2009;17(7):073001. doi: 10.1088/0965-0393/17/7/073001
  • Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution. Calphad. 2008;32(2):268–294. doi: 10.1016/j.calphad.2007.11.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.