2,044
Views
8
CrossRef citations to date
0
Altmetric
Full Critical Review

Mechanical behaviour of polymer derived ceramics – a review

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 426-449 | Received 26 Dec 2019, Accepted 14 Jun 2020, Published online: 28 Jun 2020

References

  • Mera G, Riedel R, Soraru GD, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc. 2010;93:1805–1837.
  • Riedel R, Mera G, Hauser R, et al. Silicon-based polymer-derived ceramics: synthesis properties and applications – a review. J Ceram Soc Japan. 2006;114:425–444.
  • Birot M, Pillot J-P, Dunogues J. Comprehensive chemistry of polycarbosilanes, polysilazanes, and polycarbosilazanes as precursors of ceramics. Chem Rev. 1995;95:1443–1477.
  • Zaheer M, Schmalz T, Motz G, et al. Polymer derived non-oxide ceramics modified with late transition metals. Chem Soc Rev. 2012;41:5102.
  • Miele P, Bernard S, Cornu D, et al. Recent developments in polymer-derived ceramic fibers (PDCFs): preparation, properties and applications – a review. Soft Mater. 2007;4:249–286.
  • Schulz M. Polymer derived ceramics in MEMS/NEMS – a review on production processes and application. Adv Appl Ceram. 2009;108:454–460.
  • Manoj Kumar BV, Kim Y-W. Processing of polysiloxane-derived porous ceramics: a review. Sci Technol Adv Mater. 2010;11:069801.
  • Vakifahmetoglu C. Fabrication and properties of ceramic 1D nanostructures from preceramic polymers: a review. Adv Appl Ceram. 2011;110:188–204.
  • Bernardo E, Fiocco L, Parcianello G, et al. Advanced ceramics from preceramic polymers modified at the nano-scale: a review. Materials. 2014;7:1927–1956.
  • Vakifahmetoglu C, Zeydanli D, Colombo P. Porous polymer derived ceramics. Mater Sci Eng R Rep. 2016;106:1–30.
  • Duan W, Yin X, Li Q, et al. A review of absorption properties in silicon-based polymer derived ceramics. J Eur Ceram Soc. 2016;36:3681–3689.
  • Bhandavat R, Pei Z, Singh G. Polymer-derived ceramics as anode material for rechargeable Li-ion batteries: a review. Nanomater Energy. 2012;1:324–337.
  • Greil P. Polymer derived engineering ceramics. Adv Eng Mater. 2000;2:339–348.
  • Lee S-H, Weinmann M. Cfiber/SiCfiller/Si–B–C–N matrix composites with extremely high thermal stability. Acta Mater. 2009;57:4374–4381.
  • Tavakolia H, Gerstel P, Golczewski JA, et al. Effect of boron on the crystallization of amorphous Si–(B–)C–N polymer-derived ceramics. J Non Cryst Solids. 2009;355:2381–2389.
  • Luo L, Ge M, Zhang W. Pyrolysis synthesis of Si-B-C-N ceramics and their thermal stability. Ceram Int. 2013;39:7903–7909.
  • Houska J. Ageing resistance of SiBCN ceramics. Ceram Int. 2015;41:7921–7928.
  • Riedel R, Kienzle A, Dressler W, et al. A silicoboron carbonitride ceramic stable to 2,000 C. Nature. 1996;382:796–798.
  • Schmidt H. Si-(B-)C-N ceramics derived from preceramic polymers: stability and nano-composite formation. Soft Mater. 2007;4:143–164.
  • Yajima S, Okamura K, Hayashi J, et al. Synthesis of continuous SiC Fibers with high tensile strength. J Am Ceram Soc. 1976;59:324–327.
  • Ishikawa T, Kohtoku Y, Kumagawa K, et al. High-strength alkali-resistant sintered SiC fibre stable to 2,200 degrees C. Nature. 1998;391:773–775.
  • Yajima S, Okamura K, Tanaka J, et al. High-temperature strengths of aluminium composite reinforced with continuous SiC fibre. J Mater Sci. 1981;16:3033–3038.
  • Yamamura T, Ishikawa T, Shibuya M, et al. Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor. J Mater Sci. 1988;23:2589–2594.
  • Mukherjee S, Ren Z, Singh G. Molecular polymer-derived ceramics for applications in electrochemical energy storage devices. J Phy D. 2018;51:463001.
  • Vakifahmetoglu C, Presser V, Yeon SH, et al. Enhanced hydrogen and methane gas storage of silicon oxycarbide derived carbon. Microporous Mesoporous Mater. 2011;144:105–112.
  • Prasad RM, Gurlo A, Riedel R, et al. Microporous ceramic coated SnO2 sensors for hydrogen and carbon monoxide sensing in harsh reducing conditions. Sensors Actuators B Chem. 2010;149:105–109.
  • Shah SR, Raj R. Mechanical properties of a fully dense polymer-derived ceramic made by a novel pressure casting process. Acta Mater. 2002;50:4093–4103.
  • Greil P. Near net shape manufacturing of polymer derived ceramics. J Eur Ceram Soc. 1998;18:1905–1914.
  • Bechelany MC, Salameh C, Viard A, et al. Preparation of polymer-derived Si-B-C-N monoliths by spark plasma sintering technique. J Eur Ceram Soc. 2015;35:1361–1374.
  • Rouxel T. Elastic properties and short to medium range order in glasses. J Am Ceram Soc. 2007;90:3019–3039.
  • Stabler C, Ionescu E, Graczyk-Zajac M, et al. Silicon oxycarbide glasses and glass: ‘all rounder’ materials for structural and functional applications. J Am Ceram Soc. 2018;101:4817–4856.
  • Fritz S, Karl B. Production of porous shaped articles from thermoplastic materials 1956 US2744291A US Patent.
  • Fritz G, Raabe B. Bildung siliciumorganischer verbindungen. V. Die Thermische Zersetzung von Si(CH3)4 und Si(C2H5)4. Z Anorg Allg Chem. 1956;286:149–167.
  • Ainger FW, Herbert JM. The preparation of phosphorus-nitrogen compounds as non-porous solids. Spec Ceram. 1960: 168–182.
  • Chantrell PG, Popper P. Inorganic polymers and ceramics. Spec Ceram. 1965;67:87–103.
  • Verbeek W. Production of shaped articles of homogeneous mixtures of silicon carbide and nitride 1974.
  • Verbeek W, Winter G. Formkoerper aus siliciumcarbid und verfahren zu ihrer herstellung. Pat 1974;2236078:A1.
  • Winter G, Verbeek W, Mansmann M. Formkoerper aus homogenen mischungen von siliciumcarbid und siliciumnitrid und verfahren zu ihrer herstellung. Ger Offen 1974;2243527.
  • Yajima S, Hasegawa Y, Okamura K, et al. Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor. Nature. 1978;273:525–527.
  • Yajima S, Hayashi J, Omori M, et al. Development of a silicon carbide fibre with high tensile strength. Nature. 1976;261:683–685.
  • Mazdiyasni KS, West R, David LD. Characterization of organosilicon-infiltrated porous reaction-sintered Si3N4. J Am Ceram Soc. 1978;61:504–508.
  • Yajima S. Special heat-resisting materials from organometallic polymers. Am Ceram Soc Bull. 1983;62:893–903.
  • Yajima S, Okamura K, Hasegawa Y, et al. Carbides of silicons and titanium 1983.
  • Wills RR, Markle RA, Mukherjee SP. Siloxanes, silanes, and silazanes in the preparation of ceramics and glasses 1983.
  • Walker BE, Rice RW, Becher PF, et al. Preparation and properties of monolithic and composite ceramics produced by polymer pyrolysis. Am Ceram Soc Bull. 1983;62:916–923.
  • West R. Polysilane precursors to silicon carbide. Ultrastructure Processing of Ceramics, Glasses, and Composites. New York (NY): Wiley-Interscience; 1984. p. 235–244.
  • Baney RH. Some organometallic routes to ceramics. Hench. LL Herausgeber Ultrastructure Processing of Ceramics, Glasses, and Composites Kapitel. 1984;20:245.
  • Mutsuddy BC. Use of organometallic polymer for making ceramic parts by plastic forming techniques. Ceram Int. 1987;13:41–53.
  • Schwartz KB, Rowcliffe DJ, Blum YD. Microstructural development in Si3N4/polysilazane bodies during heating. Adv Ceram Mater. 1988;3:320.
  • Blum YD, Schwartz KB, Laine RM. Preceramic polymer pyrolysis. J Mater Sci. 1989;24:1707–1718.
  • Schilling CL. Polymeric routes to silicon carbide. Br Polym J. 1986;18:355–358.
  • Baney RH, Bujalski DR. Ceramic materials with increased crystallinity from silazane polymers 1988.
  • Pouskouleli G. Metallorganic compounds as preceramic materials I. Non-oxide ceramics. Ceram Int. 1989;15:213–229.
  • Soula G. Ceramics from organometallic polymers: industrial perspectives. In: Laine RM, editor. Inorganic and organometallic polymers with special properties. Boston: Springer; 1992, p. 31–42.
  • Wynne KJ, Rice RW. Ceramics via polymer pyrolysis dagger. Annu Rev Mater Sci. 1984;14:297–334.
  • Soraru GD, Babonneau F, Mackenzie JD. Structural concepts on new amorphous covalent solids. J Non Cryst Solids. 1988;106:256–261.
  • Rice RW. Ceramics from polymer pyrolysis, opportunities and needs. A materials perspective. Am Ceram Soc Bull. 1983;62:889–892.
  • Laine RM, Babonneau F. Preceramic polymer routes to silicon carbide. Chem Mater. 1993;5:260–279.
  • Seyferth D, Tracy HJ, Robison JL. Preparation of silicon carbide ceramics from the modification of an Si-H containing polysilane. 1993.
  • Seyferth D, Wiseman GH, Prud’homme C. A liquid silazane precursor to silicon nitride. J Am Ceram Soc. 1983;66:C13–C14.
  • Miller RD, Michl J. Polysilane high polymers. Chem Rev. 1989;89:1359–1410.
  • Boury B, Carpenter L, Corriu RJP. A new way to SiC ceramic precursors by catalytic preparation of preparation polymers. Angew Chemie Int Ed Eng. 1990;29:785–787.
  • Corriu R, Jutzi P. Tailor-made silicon-oxygen compounds: from molecules to materials. Braunschweig and Wiesbedan: Vieweg; 1996. p. 273.
  • Riedel R, Kleebe H-J, Schönfelder H, et al. A covalent micro/nano-composite resistant to high-temperature oxidation. 1995.
  • Nishimura T, Haug R, Bill J, et al. Mechanical and thermal properties of Si–C–N material from polyvinylsilazane. J Mater Sci. 1998;33:5237–5241.
  • Ziegler G, Kleebe H-J, Motz G, et al. Synthesis, microstructure and properties of SiCN ceramics prepared from tailored polymers. Mater Chem Phys. 1999;61:55–63.
  • Kumar NVR, Prinz S, Cai Y, et al. Crystallization and creep behavior of Si-B-C-N ceramics. Acta Mater. 2005;53:4567–4578.
  • Kumar R, Cai Y, Gerstel P, et al. Processing, crystallization and characterization of polymer derived nano-crystalline Si-B-C-N ceramics. J Mater Sci. 2006;41:7088–7095.
  • Kumar R, Rixecker G, Aldinger F. Anelasticity of precursor derived Si–B–C–N ceramics. J Eur Ceram Soc. 2007;27:1475–1480.
  • Kumar R, Phillipp F, Aldinger F. Oxidation induced effects on the creep properties of nano-crystalline porous Si–B–C–N ceramics. Mater Sci Eng A. 2007;445-446:251–258.
  • Petrman V, Houska J, Kos S, et al. Effect of nitrogen content on electronic structure and properties of SiBCN materials. Acta Mater. 2011;59:2341–2349.
  • Yu Z, Min H, Zhan J, et al. Preparation and dielectric properties of polymer-derived SiCTi ceramics. Ceram Int. 2013;39:3999–4007.
  • Wilhelm M, Adam M, Bumer M, et al. Synthesis and properties of porous hybrid materials containing metallic nanoparticles. Adv Eng Mater. 2008;10:241–245.
  • Seifollahi Bazarjani M, Kleebe HJ, Müller MM, et al. Nanoporous silicon oxycarbonitride ceramics derived from polysilazanes in situ modified with nickel nanoparticles. Chem Mater. 2011;23:4112–4123.
  • Zaheer M, Motz G, Kempe R. The generation of palladium silicide nanoalloy particles in a SiCN matrix and their catalytic applications. J Mater Chem. 2011;21:18825–18831.
  • Bernardo E, Parcianello G, Colombo P, et al. SiAlON ceramics from preceramic polymers and nano-sized fillers: application in ceramic joining. J Eur Ceram Soc. 2012;32:1329–1335.
  • Tang B-Z, Petersen R, Foucher DA, et al. Novel ceramic and organometallic depolymerization products from poly (ferrocenylsilanes) via pyrolysis. J Chem Soc Chem Commun. 1993:523–525.
  • Gou Y, Tong X, Zhang Q, et al. The preparation and characterization of polymer-derived Fe/Si/C magnetoceramics. Ceram Int. 2016;42:681–689.
  • Xie Z, Cao S, Wang J, et al. Engineering of silicon-based ceramic fibers: novel SiTaC(O) ceramic fibers prepared from polytantalosilane. Mater Sci Eng A. 2010;527:7086–7091.
  • Ionescu E, Linck C, Fasel C, et al. Polymer-derived SiOC/ZrO2 ceramic nanocomposites with excellent high-temperature stability. J Am Ceram Soc. 2010;93:241–250.
  • Saha A, Shah SR, Raj R. Oxidation behavior of SiCN – ZrO2 fiber prepared from silazanes. J Am Ceram Soc. 2004;1558:1556–1558.
  • Liu C, Pan R, Hong C, et al. Effects of Zr on the precursor architecture and high-temperature nanostructure evolution of SiOC polymer-derived ceramics. J Eur Ceram Soc. 2016;36:395–402.
  • Pizon D, Charpentier L, Lucas R, et al. Oxidation behavior of spark plasma sintered ZrC-SiC composites obtained from the polymer-derived ceramics route. Ceram Int. 2014;40:5025–5031.
  • Brahmandam S, Raj R. Novel composites constituted from hafnia and a polymer-derived ceramic as an interface: phase for severe ultrahigh temperature applications. J Am Ceram Soc. 2007;90:3171–3176.
  • Ionescu E, Papendorf B, Kleebe HJ, et al. Polymer-derived silicon oxycarbide/hafnia ceramic nanocomposites. part II: stability toward decomposition and microstructure evolution at T1000˚C. J Am Ceram Soc. 2010;93:1783–1789.
  • Kleebe H-J, Nonnenmacher K, Ionescu E, et al. Decomposition-coarsening model of SiOC/HfO2 ceramic nanocomposites upon isothermal anneal at 1300°C. J Am Ceram Soc. 2012;95:2290–2297.
  • Ionescu E, Papendorf B, Kleebe HJ, et al. Phase separation of a hafnium alkoxide-modified polysilazane upon polymer-to-ceramic transformation – a case study. J Eur Ceram Soc. 2012;32:1873–1881.
  • Sujith R, Kousaalya AB, Kumar R. Coarsening induced phase transformation of hafnia in polymer-derived Si-Hf-C-N-O ceramics. J Am Ceram Soc. 2011;94:2788–2791.
  • Sujith R, Kumar R. Indentation response of pulsed electric current sintered polymer derived HfO2/Si–C–N(O) nanocomposites. Ceram Int. 2013;39:9743–9747.
  • Jothi S, Ravindran S, Neelakantan L, et al. Corrosion behavior of polymer-derived SiHfCN(O) ceramics in salt and acid environments. Ceram Int. 2015;41:10659–10669.
  • Sujith R, Kousaalya AB, Kumar R. Synthesis and phase stability of precursor derived HfO2/Si–C–N–O nanocomposites. Ceram Int. 2012;38:1227–1233.
  • Sujith R, Zimmermann A, Kumar R. Crack evolution and estimation of fracture toughness of HfO2/SiCN(O) polymer derived ceramic nanocomposites. Adv Eng Mater. 2015;17:1265–1269.
  • Terauds K, Marshall DB, Raj R. Oxidation of polymer-derived HfSiCNO up to 1600°C. J Am Ceram Soc. 2013;96:1278–1284.
  • Shopova-Gospodinova D, Burghard Z, Dufaux T, et al. Mechanical and electrical properties of polymer-derived Si-C-N ceramics reinforced by octadecylamine – modified single-wall carbon nanotubes. Compos Sci Technol. 2011;71:931–937.
  • Mantzel N, Rannabauer S, Bucharsky EC, et al. A novel approach for the processing of advanced polymer derived ceramics with carbon nanotubes with the help of pores. Adv Eng Mater. 2014;16:295–300.
  • Schmalz T, Kraus T, Gunthner M, et al. Catalytic formation of carbon phases in metal modified, porous polymer derived SiCN ceramics. Carbon. 2011;49:3065–3072.
  • David L, Bhandavat R, Barrera U, et al. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nature Commun. 2016;7:10998.
  • Shen C, Barrios E, Zhai L. Bulk polymer-derived ceramic composites of graphene oxide. ACS Omega. 2018;3:4006–4016.
  • Sujith R, Chauhan PK, Gangadhar J, et al. Graphene nanoplatelets as nanofillers in mesoporous silicon oxycarbide polymer derived ceramics. Sci Rep. 2018;8:17633.
  • Maheshwari A, Prasanna E, Gangadhar J, et al. Highly conducting graphene enriched silicon oxycarbide ceramics. Mater Chem Phys. 2020;239:121963.
  • Mera G, Tamayo A, Nguyen H, et al. Nanodomain structure of carbon-rich silicon carbonitride polymer-derived ceramics. J Am Ceram Soc. 2010;93:1169–1175.
  • Liao N, Xue W, Zhang M. Effect of carbon content on structural and mechanical properties of SiCN by atomistic simulations. J Eur Ceram Soc. 2012;32:1275–1281.
  • Mazo MA, Palencia C, Nistal A, et al. Dense bulk silicon oxycarbide glasses obtained by spark plasma sintering. J Eur Ceram Soc. 2012;32:3369–3378.
  • Wan J, Gasch MJ, Mukherjee AK. Silicon nitride-silicon carbide nancocomposites fabricated by electric-field-assisted sintering. J Am Ceram Soc. 2003;86:526–528.
  • Esfehanian M, Oberacker R, Fett T, et al. Development of dense filler-free polymer-derived SiOC ceramics by field-assisted sintering. J Am Ceram Soc. 2008;91:3803–3805.
  • Sujith R, Srinivasan N, Kumar R. Small-scale deformation of pulsed electric current sintered silicon oxycarbide polymer derived ceramics. Adv Eng Mater. 2013;15:1040–1045.
  • Martinez-Crespiera S, Ionescu E, Kleebe HJ, et al. Pressureless synthesis of fully dense and crack-free SiOC bulk ceramics via photo-crosslinking and pyrolysis of a polysiloxane. J Eur Ceram Soc. 2011;31:913–919.
  • Janakiraman N, Aldinger F. Fabrication and characterization of fully dense Si-C-N ceramics from a poly(ureamethylvinyl)silazane precursor. J Eur Ceram Soc. 2009;29:163–173.
  • Ma B, Wang Y. Fabrication of dense polymer-derived silicon carbonitride ceramics by precursor infiltration and pyrolysis without losing piezoresistivity. J Am Ceram Soc. 2018;101:2752–2759.
  • Lu B, Zhang Y. Densification behavior and microstructure evolution of hot-pressed SiC-SiBCN ceramics. Ceram Int. 2015;41:8541–8551.
  • Ishihara S, Gu H, Bill J, et al. Densification of precursor-derived Si-C-N ceramics by high-pressure hot isostatic pressing. J Am Ceram Soc. 2002;85:1706–1712.
  • Wilamowska M, Graczyk-Zajac M, Riedel R. Composite materials based on polymer-derived SiCN ceramic and disordered hard carbons as anodes for lithium-ion batteries. J Power Sources. 2013;244:80–86.
  • Behera SK, Raj R. Extreme-rate capable and highly stable SiCO-TiO2 hybrids for Li-ion battery anodes. Chem Commun. 2013;49:9657–9659.
  • David L, Bhandavat R, Barrera U, et al. Polymer-derived ceramic functionalized MoS2 composite paper as a stable lithium-ion battery electrode. Sci Rep. 2015;5:9792.
  • Mera G, Gallei M, Bernard S, et al. Ceramic nanocomposites from tailor-made preceramic polymers. Nanomaterials. 2015;5:468–540.
  • Dalcanale F, Grossenbacher J, Blugan G, et al. Influence of carbon enrichment on electrical conductivity and processing of polycarbosilane derived ceramic for MEMS applications. J Eur Ceram Soc. 2014;34:3559–3570.
  • Grossenbacher J, Gullo MR, Bakumov V, et al. On the micrometre precise mould filling of liquid polymer-derived ceramic precursor for 300-$μ$m-thick high aspect ratio ceramic MEMS. Ceram Int. 2015;41:623–629.
  • Seo D, Jung S, Lombardo SJ, et al. Fabrication and electrical properties of polymer-derived ceramic (PDC) thin films for high-temperature heat flux sensors. Sensors Actuators A Phys. 2011;165:250–255.
  • Zhao R, Shao G, Li N, et al. Development of a wireless temperature sensor using polymer-derived ceramics. J Sensors. 2016;6:1–5.
  • Su B, Meng J, Zhang Z. Crack-free drying of ceramic microparts on a hydrophobic flexible polymer substrate using soft lithography. J Am Ceram Soc. 2016;99:1141–1143.
  • Zanchetta E, Cattaldo M, Franchin G, et al. Stereolithography of SiOC ceramic microcomponents. Adv Mater. 2016;28:370–376.
  • Duong B, Gangopadhyay P, Brent J, et al. Printed sub-100 nm polymer-derived ceramic structures. ACS Appl Mater Interf. 2013;5:3894–3899.
  • Pierin G, Grotta C, Colombo P, et al. Direct Ink writing of micrometric SiOC ceramic structures using a preceramic polymer. J Eur Ceram Soc. 2016;36:1589–1594.
  • Frachin G, Wahl L, Colombo P. Direct ink writing of ceramic composite structures. J Am Ceram Soc. 2017;100:4397–4401.
  • Xiong H, Zhao L, Chen H, et al. 3D SiC containing uniformly dispersed, aligned SiC whiskers: printability, microstructure and mechanical properties. J Alloys Compd. 2019;809:151824.
  • Eckel ZC, Zhou C, Martin JH, et al. Additive manufacturing of polymer derived ceramics. Science. 2016;351:58–62.
  • Bauer J, Crook C, Izard AG, et al. Additive manufacturing of ductile, ultrastrong polymer derived ceramics. Matter. 2019;1:1547–1556.
  • Tian Y, Shao G, Wang X, et al. Fabrication of nano-scaled polymer-derived SiAlCN ceramic components using focused ion beam. J Micromech Microeng. 2013;23:95035.
  • Bunsell AR, Piant A. A review of the development of three generations of small diameter silicon carbide fibres. J Mater Sci. 2006;41:823–839.
  • Takeda M, Sakamoto J, Saeki A, et al. High performance silicon carbide fiber Hi-Nicalon for ceramic matrix composites. Proceedings of the 19th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures – B: Ceramic Engineering and Science Proceedings, Vol. 16, 2009. p. 37.
  • Soraru GD, Mercadini M, Maschio RD, et al. Si-Al-O-N fibers from polymeric precursor: synthesis, structural, and mechanical characterization. J Am Ceram Soc. 1993;76:2595–2600.
  • Bernard S, Weinmann M, Gerstel P, et al. Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: synthesis, melt-spinning, curing and ceramic conversion. J Mater Chem. 2005;15:289–299.
  • Vashisth A, Khatri S, Hahn SH, et al. Mechanical size effects of amorphous polymer-derived ceramics at the nanoscale: experiments and ReaxFF simulations. Nanoscale. 2019;11:7447–7456.
  • Renlund GM, Prochazka S, Doremus RH. Silicon oxycarbide glasses: part II. Structure and properties. J Mater Res. 1991;6:2723–2734.
  • Moysan C, Riedel R, Harshe R, et al. Mechanical characterization of a polysiloxane-derived SiOC glass. J Eur Ceram Soc. 2007;27:397–403.
  • Nishimura T, Haug R, Bill J, et al. Mechanical and thermal properties of Si-C-N material from polyvinylsilazane. J Mater Sci. 1998;33:5237–5241.
  • Riedel R, Seher M, Mayer J, et al. Polymer derived bulk ceramics, part I: preparation, processing and properties. J Eur Ceram Soc. 1995;15:703–715.
  • Moraes KV, Interrante LV. Processing, fracture toughness, and Vickers hardness of allylhydridopolycarbosilane-derived silicon carbide. J Am Ceram Soc. 2003;86:342–346.
  • Lee SH, Weinmann M, Aldinger F. Processing and properties of C/Si-B-C-N fiber-reinforced ceramic matrix composites prepared by precursor impregnation and pyrolysis. Acta Mater. 2008;56:1529–1538.
  • Kroll P. Modelling and simulation of amorphous silicon oxycarbide. J Mater Chem. 2003;13:1657–1668.
  • Bai W, Widgeon S, Sen S. Structure and topological characteristics of amorphous silicon oxycarbide networks: results from reverse Monte Carlo simulations. J Non Cryst Solids. 2014;386:29–33.
  • Sen S, Widgeon S. On the mass fractal character of Si-based structural networks in amorphous polymer derived ceramics. Nanomaterials. 2015;5:366–375.
  • Stein IY, Constable AJ, Morales-Medina N, et al. Structure-mechanical property relations of non-graphitizing pyrolytic carbon synthesized at low temperatures. Carbon. 2017;117:411–420.
  • Ziegler G, Richter I, Suttor D. Fiber-reinforced composites with polymer-derived matrix: processing, matrix formation and properties. Composites Part A. 1999;30:411–417.
  • Yang Y, Ramirez C, Wang X, et al. Impact of carbon nanotube defects on fracture mechanisms in ceramic nanocomposites. Carbon. 2017;115:402–408.
  • Janakiraman N, Aldinger F. Fracture in precursor-derived Si-C-N ceramics – analysis of crack roughness and damage mechanisms. J Non Cryst Solids. 2009;355:2114–2121.
  • Bauer A, Christ M, Zimmermann A, et al. Fracture toughness of amorphous precursor derived ceramics in the silicon carbon nitrogen system. J Am Ceram Soc. 2001;84:2203–2207.
  • Anstis GR, Chantikul P, Lawn BR, et al. A critical evaluation of indentation techniques for measuring fracture toughness: direct crack measurements. J Am Ceram Soc. 1981;64:533.
  • Sellappan P, Rouxel T, Celarie F, et al. Composition dependence of indentation deformation and indentation cracking in glass. Acta Mater. 2013;61:5949–5965.
  • Burghard Z, Zimmermann A, Rödel J, et al. Crack opening profiles of indentation cracks in normal and anomalous glasses. Acta Mater. 2004;52:293–297.
  • Katsuda Y, Gerstel P, Narayanan J, et al. Reinforcement of precursor-derived Si-C-N ceramics with carbon nanotubes. J Eur Ceram Soc. 2006;26:3399–3405.
  • To T, Stabler C, Ionescu E, et al. Elastic properties and fracture toughness of SiOC-based glass-ceramic nanocomposites. J Am Ceram Soc. 2020;103:491–499.
  • Wang J, Yang Z, Duan X, et al. Microstructure and mechanical properties of SiCf/SiBCN ceramic matrix composites. J Adv Ceram. 2015;4:31–38.
  • Rouxel T, Sanglebœuf J-C, Moysan C, et al. Indentation topometry in glasses by atomic force microscopy. J Non Cryst Solids. 2004;344:26–36.
  • Rouxel T, Ji H, Guin JP, et al. Indentation deformation mechanism in glass: densification versus shear flow. J Appl Phys. 2010;107:94903.
  • Yoshida S, Sanglebœuf J-C, Rouxel T. Quantitative evaluation of indentation-induced densification in glass. J Mater Res. 2005;20:3404–3412.
  • Lee JH, Gao YF, Johanns KE, et al. Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials. Acta Mater. 2012;60:5448–5467.
  • Madge SV, Louzguine-Luzgin DV, Lewandowski JJ, et al. Toughness, extrinsic effects and Poisson’s ratio of bulk metallic glasses. Acta Mater. 2012;60:4800–4809.
  • Greaves GN, Greer AL, Lakes RL, et al. Poisson’s ratio and modern materials. Nature Mater. 2011;10:823–837.
  • Rouxel T, Ji H, Hammouda T, et al. Poisson's ratio and densification of glass under high pressure. Phy Rev B. 2008;100:225501.
  • Sujith R, Kumar R. Experimental investigation on the indentation hardness of precursor derived Si-B-C-N ceramics. J Eur Ceram Soc. 2013;33:2399–2405.
  • Szymanski W, Lipa S, Fortuniak W, et al. Silicon oxycarbice (SiOC) ceramic microspheres – structure and mechanical properties by nanoindentation studies. Ceram Intern. 2019;45:11946–11954.
  • Soraru GD, Kunadanati L, Santhosh B, et al. Influence of free carbon on the Young's modulus and hardness of polymer derived silicon oxycarbide glasses. J Am Ceram Soc. 2019;102:907–913.
  • Mera G, Navrotsky A, Sen S, et al. Polymer-derived SiCN and SiOC ceramics-structure and energetics at the nanoscale. J Mater Chem A. 2013;1:3826–3836.
  • Saha A, Raj R, Williamson DL, et al. Characterization of nanodomains in polymer-derived SiCN ceramics employing multiple techniques. J Am Ceram Soc. 2005;88:232–234.
  • Burghard Z, Schon D, Garstel P, et al. Polymer-derived Si-C-N ceramics reinforced by single-wall carbon nanotubes. Int J Mater Res. 2006;7:1667–1672.
  • Galusek D, Riley FL, Riedel R. Nanoindentation of a polymer-derived amorphous silicon carbonitride ceramic. J Am Ceram Soc. 2001;84:1164–1166.
  • Janakiraman N, Aldinger F. Yielding, strain hardening, and creep under nanoindentation of precursor-derived Si-C-N ceramics. J Am Ceram Soc. 2010;93:821–829.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–1583.
  • Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20.
  • Rouxel T. Driving force for indentation cracking in glass: composition, pressure and temperature dependence. Phil Trans A. 2015;28:20140140.
  • Sujith R, Kumar R. Room temperature strain rate sensitivity in precursor derived HfO2/Si-CN (O) ceramic nanocomposites. AIP Adv. 2014;4:17129.
  • Gan M, Tomar V. Role of length scale and temperature in indentation induced creep behavior of polymer derived Si-C-O ceramics. Mater Sci Eng A. 2010;527:7615–7623.
  • Li H, Ngan AHW. Size effects of nanoindentation creep. J Mater Res. 2004;19:513–522.
  • Ohkawara Y, Ohshio S, Suzuki T, et al. Quantitative analysis of hydrogen in amorphous films of hydrogenated carbon nitride. Jpn J Appl Phys. 2001;40:7007.
  • Weinmann M, Schuhmacher J, Kummer H, et al. Synthesis and thermal behavior of novel Si-B-C-N ceramic precursors. Chem Mater. 2000;12:623–632.
  • Wang Z-C, Aldinger F, Riedel R. Novel silicon-boron-carbon-nitrogen materials thermally stable up to 2200°C. J Am Ceram Soc. 2001;84:2179–2183.
  • Müller A, Gerstel P, Weinmann M, et al. Correlation of boron content and high temperature stability in Si-B-C-N ceramics II. J Eur Ceram Soc. 2001;21:2171–2177.
  • Rouxel T, Massouras G, Sorarù GD. High temperature behavior of a gel-derived SiOC glass: elasticity and viscosity. J Sol-Gel Sci Technol. 1999;14:87–94.
  • Papendorf B, Ionescu E, Kleebe HJ, et al. High-temperature creep behavior of dense SiOC-based ceramic nanocomposites: microstructural and phase composition effects. J Am Ceram Soc. 2013;96:272–280. doi:10.1111/jace.12067.
  • Ionescu E, Balan C, Kleebe H-J, et al. High-temperature creep behavior of SiOC glass-ceramics: influence of network carbon versus segregated carbon. J Am Ceram Soc. 2014;97:3935–3942.
  • Stabler C, Schliephake D, Heilmaier M, et al. Influence of SiC/silica and carbon/silica interfaces on the high-temperature creep of silicon oxycarbide-based glass ceramics: a case study. Adv Eng Mater. 2018;21:1800596.
  • Papendorf B, Ionescu E, Kleebe H-J, et al. High temperature creep behavior of dense SiOC-based ceramic composites: microstructural and phase composition effects. J Am Ceram Soc. 2013;96:272–280.
  • An L, Riedel R, Konetschny C, et al. Newtonian viscosity of amorphous silicon carbonitride at high temperature. J Am Ceram Soc. 1998;81:1349–1352.
  • Bill J, Seitz J, Thurn G, et al. Structure analysis and properties of Si–C–N ceramics derived from polysilazanes. Phys Status Solidi. 1998;166:269–296.
  • Thurn G, Canel J, Bill J, et al. Compression creep behaviour of precursor-derived Si- C-N ceramics. J Eur Ceram Soc. 1999;19:2317–2323.
  • Christ M, Thurn G, Weinmann M, et al. High-temperature mechanical properties of Si-B-C-N-precursor-derived amorphous ceramics and the applicability of deformation models developed for metallic glasses. J Am Ceram Soc. 2000;83:3025–3032.
  • Riedel R, Ruswisch LM, An L, et al. Amorphous silicoboron carbonitride ceramic with very high viscosity at temperatures above 1500 C. J Am Ceram Soc. 1998;81:3341–3344.
  • Baufeld B, Gu H, Bill J, et al. High temperature deformation of precursor-derived amorphous Si–B–C–N ceramics. J Eur Ceram Soc. 1999;19:2797–2814.
  • Ravi Kumar NV. The influence of crystallization on the high temperature deformation behavior of precursor derived Si-B-C-N ceramics. Stuttgart: Universität Stuttgart; 2005.
  • Castellan E, Shah SR, Raj R. Compression creep of alumina containing interfacial silicon, carbon, and nitrogen, derived from a polysilazane precursor. J Am Ceram Soc. 2010;93:954–958.
  • Luan X, Chang S, Yu R, et al. Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic. Ceram Intern. 2019;45:9515–9521.
  • Vakifahmetoglu C, Pippel E, Colombo P. Growth of one-dimensional nanostructures in porous polymer- derived ceramics by catalyst-assisted pyrolysis. Part I: iron catalyst. J Am Ceram Soc. 2010;98:959–968.
  • Chauhan PK, Sujith R, Parameshwaran R, et al. Role of polysiloxanes in the synthesis of aligned porous silicon oxycarbide ceramics. Ceram Intern. 2019;45:8150–8156.
  • Colombo P, Hellmann JR, Shelleman DL. Mechanical properties of silicon oxycarbide ceramic foams. J Am Ceram Soc. 2001;84:2245–2251.
  • Choudhary A, Pratihar SK, Behera SK. Single step processing of polymer derived macroporous SiOC ceramics with dense struts. Ceram Intern. 2019;45:8063–8068.
  • Colombo P, Modesti M, Chimici P. Silicon oxycarbide ceramic foams from a preceramic polymer. J Am Ceram Soc. 1999;82:573–578.
  • Eom J-H, Kim Y-W, Song I-H, et al. Processing and properties of polysiloxane-derived porous silicon carbide ceramics using hollow microspheres as templates. J Eur Ceram Soc. 2008;28:1029–1035.
  • Chae S-H, Kim Y-W. Effect of inert filler addition on microstructure and strength of porous PDCs. J Mater Sci. 2009;44:1404–1406.
  • Zocca A, Gomes CM, Staude A, et al. SiOC ceramics with ordered porosity by 3D printing of a preceramic polymer. J Mater Res. 2013;28:2243–2252.
  • Huang K, Elsayed H, Franchin G, et al. Complex SiOC ceramics from 2D structures by 3D prinitng and origami. Addi Manuf. 2020;33:101144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.