1,380
Views
3
CrossRef citations to date
0
Altmetric
Full Critical Reviews

Review of fatigue of bulk structural adhesives and thick adhesive joints

& ORCID Icon
Pages 313-338 | Received 25 Jun 2020, Accepted 28 Oct 2020, Published online: 12 Nov 2020

References

  • Fey PA. History of adhesive bonding. In: RD Adams, editor. Adhesive bonding, science, technology and applications. Cambridge, UK: Woodhead Publishing Ltd; 2005.
  • Sheppard SE, Sweet SS, Scott JW. The jelly strength of gelatins and glues. J Ind Eng Chem. 1920;12:1007–1011.
  • Hartshorn SR. Structural adhesives – chemistry and technology. New York: Plenum; 1986.
  • Brockmann W, Geiß PL, Klingen J, et al. Adhesive bonding, materials, applications and technology. Weinheim, DE: Wiley-VCH; 2009.
  • Hussey B, Wilson J. Structural adhesives, directory and databook. London, UK: Chapman & Hall; 1996.
  • Swayze DL. Adhesives — modern tool of fabrication. SAE Trans. 1946;54:412–417.
  • Adams RD, Wake WC. Structural adhesive joints in engineering. London, UK: Elsevier; 1986.
  • Abdel Wahab M, Hilmy I, Ashcroft I, et al. Evaluation of fatigue damage in adhesive bonding: part 1: bulk adhesive. J Adhes Sci Technol. 2010;24(2):305–324.
  • Burst N, Adams DO, Gascoigne HE. Investigating the thin-film versus bulk material properties of structural adhesives. J Adhes. 2011;87(1):72–92.
  • Hart-Smith LJ. Adhesive bonding of aircraft primary structures. SAE Trans. 1980;89(4):3718–3732.
  • Swallow JC. The plastics industry. J R Soc Arts. 1951(99);4843:335–381.
  • Vassilopoulos AP. The history of fiber-reinforced polymer composite laminate fatigue. Int J Fatigue. 2020;134:105512.
  • Harris B. Fatigue and accumulation of damage in reinforced plastics. Composites. 1977;8(4):214–220.
  • Sun C, Chim E. Fatigue retardation due to creep in a fibrous composite. In: KN Lauraitis, editor. Fatigue of fibrous composite materials, STP723. Conshohocken, PA, USA: ASTM International West; 1981.
  • Courtney TH, Wulff J. Matrix-limited fatigue properties in fibre composite materials. J Mater Sci. 1966;1(4):383–388.
  • Shih G, Ebert L. The effect of the fiber/matrix interface on the flexural fatigue performance of unidirectional fiberglass composites. Compos Sci Technol. 1987;28(2):137–161.
  • Sarfaraz R, Vassilopoulos AP, Keller T. Experimental investigation of the fatigue behavior of adhesively-bonded pultruded GFRP joints under different load ratios. Int J Fatigue. 2011;33(11):1451–1460.
  • Sarfaraz R, Vassilopoulos AP, Keller T. Experimental investigation and modeling of mean load effect on fatigue behavior of adhesively-bonded pultruded GFRP joints. Int J Fatigue. 2012;44:245–252.
  • Zhang Y, Vassilopoulos AP, Keller T. Fracture of adhesively-bonded pultruded GFRP joints under constant amplitude fatigue loading. Int J Fatigue. 2010;32(7):979–987.
  • Shahverdi M, Vassilopoulos AP, Keller T. A total fatigue life model for the prediction of the R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints. Compos Part A: Appl Sci Manuf. 2012;43(10):1783–1790.
  • Abdel Wahab M. Fatigue in adhesively bonded joints: a review. ISRN Mater Sci. 2012: 746308.
  • Bernasconi A, Beretta S, Moroni F, et al. Local stress analysis of the fatigue behaviour of adhesively bonded thick composite laminates. J Adhes. 2010;86(5-6):480–500.
  • Savvilotidou M, Keller T, Vassilopoulos AP. Fatigue performance of a cold-curing structural epoxy adhesive subjected to moist environments. Int J Fatigue. 2017;103:405–414.
  • Rosemeier M, Krimmer A, Bardenhagen A, et al. Tunneling crack initiation in trailing-edge bond lines of wind-turbine blades. AIAA J. 2019;57(12):5462–5474.
  • Tao G, Xia Z. Biaxial fatigue behavior of an epoxy polymer with mean stress effect. Int J Fatigue. 2009;31:678–685.
  • Tao G, Xia Z. Fatigue behavior of an epoxy polymer subjected to cyclic shear loading. Mater Sc Eng: A. 2008;486:38–44.
  • Tao G, Xia Z. Ratcheting behaviour of an epoxy polymer and its effect on fatigue life. Polym Test. 2007;26:451–460.
  • Wang G-T, Liu H-Y, Saintier N, et al. Cyclic fatigue of polymer nanocomposites. Eng Fail Anal. 2009;16:2635–2645.
  • Manjunatha CM, Taylor AC, Kinloch AJ, et al. The cyclic-fatigue behavior of an epoxy polymer modified with micron-rubber and nano-silica particles. J Mater Sci. 2009;44:4487–4490.
  • Broutman LJ, Gaggar SK. Fatigue behavior of epoxy and polyester resins. Int J Polym Mater Polym Biomater. 1972;1:295–316.
  • Andrews EH, Walker BJ. Fatigue fracture in polyethylene. Proc Royal Soci London. 1971;325(1560):57–79.
  • Nielsen LE. Fatigue behavior of some filled polymers. J Compos Mater. 1975;9(2):149–156.
  • Stammes E, Nijssen RPL, Westphal T. Static and fatigue tests on resin for wind turbine rotor blades. 14th European Conference on Composite Materials; ECCM14, Budapest, 7–10 June, 2010.
  • Kinloch AJ. Adhesion and adhesives: science and technology. London, UK: Springer-Science+Business Media,B.V; 1987.
  • Mays GC, Hutchinson AR. Adhesives in civil engineering. Cambridge, UK: Cambridge University Press; 1992.
  • Sims SA. Applications of resins in bridge and structural engineering. Int J Cem Compos Lightweight Concrete. 1985;7:225–232.
  • Michels J, Sena-Cruz J, Czaderski C, et al. Structural strengthening with prestressed CFRP strips with gradient anchorage. J Compos Constr. 2013;17:651–661.
  • Kumar P, Patnaik A, Chaudhary S. A review on application of structural adhesives in concrete and steel-concrete composite and factors influencing the performance of composite connections. Int J Adhes Adhes. 2017;77:1–14.
  • Keller T, Rothe J, de Casto J, et al. GFRP-balsa sandwich bridge deck: concept, design, and experimental validation. J Compos Constr. 2014;18(2):04013043.
  • Reising RMW, Sharooz BM, Hunt VJ, et al. Close look at construction issues and performance of four fiber-reinforced polymer composite bridge decks. J Compos Constr. 2004;8(1):33–42.
  • Zarouchas D, Nijssen RPL. Mechanical behaviour of thick structural adhesives in wind turbines blades under multi-axial loading. J Adhes Sci Technol. 2016;30(13):1413–1429.
  • De Goeij W, Van Tooren M, Beukers A. Composite adhesive joints under cyclic loading. Mater Design. 1999;20(5):213–221.
  • EN 1991-2 Eurocode 1. Actions on structures – Part 2: traffic loads on bridge. European committee for standardization. 2003.
  • Lahuerta F, Westphal T, Nijssen RPL, et al. Static and fatigue performance of thick laminates test design and experimental compression results. 16th European Conference on Composite Materials; ECCM16, Seville, Spain, 22–26 June 2014.
  • Jarry E, Shenoy RA. Performance of butt strap joints for marine applications. Int J Adhes Adhes. 2006;26:162–176.
  • Antoniou A, Vespermann M, Sayer F, et al. Life prediction analysis of thick adhesive bond lines under variable amplitude fatigue loading. 18th European Conference on Composite Materials; ECCM18, Athens, Greece, 24–28 June, 2018.
  • Sayer F, Post N, van Wingerde A, et al. Testing of adhesive joints in the wind industry. EWEC 2009, The European wind energy Conference and Exhibition; Marseille, France, 16–19 March, 2009.
  • Jørgensen JB. Adhesive joints in wind turbine blades. DTU Wind Energy DTU Wind Energy PhD. 2017;79. doi:10.11581/DTU:00000027.
  • He X. Effect of mechanical properties of adhesives on stress distributions in structural bonded joints. Proceedings of the World Congress on Engineering 2010 Vol II; WCD 2010, June 30–July 2, 2010, London.
  • ASTM D907-15. Standard terminology of adhesives. West Conshohocken (PA): ASTM International; 2015.
  • ASTM D1002-10(2019). Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (metal-to-metal). West Conshohocken (PA): ASTM International; 2019.
  • Bolger JC. Structural adhesives: today’s state of the art. In: GL Schneberger, editor. Adhesives in manufacturing. New York, USA: Marcel Dekker; 1983.
  • Maheri MR, Adams RD. Determination of dynamic shear modulus of structural adhesives in thick adherend shear test specimens. Int J Adhes Adhes. 2002;22(2):119–127.
  • Savvilotidou M, Vassilopoulos AP, Frigione M, et al. Development of physical and mechanical properties of a cold-curing structural adhesive in a wet bridge environment. Constr Build Mater. 2017;144:115–124.
  • Sarfaraz R, Vassilopoulos AP, Keller T. Block loading fatigue of adhesively bonded pultruded GFRP joints. Int J Fatigue. 2013;49:40–49.
  • Imanaka M, Liu X, Kimoto M. Comparison of fracture behavior between acrylic and epoxy adhesives. Int J Adhes Adhes. 2017;75:31–39.
  • Jeandrau JP. Intrinsic mechanical characterization of structural adhesives. Int J Adhes Adhes. 1986;6(4):229–231.
  • Adams RD, Coppendale J. The elastic moduli of structural adhesives. In: W Allen, editor. Adhesion-1. Lond: Applied Science Publishers; 1977.1: 1–17.
  • Lilleheden L. Mechanical properties of adhesives in situ and in bulk. Int J Adhes Adhes. 1994;14:31–37.
  • Katnam K, Stevenson J, Stanley W, et al. Tensile strength of two-part epoxy paste adhesives: influence of mixing technique and micro-void formation. Int J Adhes Adhes. 2011;31:666–673.
  • Zheng S, Ashcroft I. A depth sensing indentation study of the hardness and modulus of adhesives. Int J Adhes Adhes. 2005;25:67–76.
  • Lees D, Hutchinson A. Mechanical characteristics of some cold-cured structural adhesives. Int J Adhes Adhes. 1992;12(3):197–205.
  • Banea MD, da Silva LFM. Adhesively bonded joints in composite materials: an overview. Proc Inst Mech Eng, Part J: J Eng Tribol. 2009;223(1):1–15.
  • Adams RD. Testing of adhesives. In: KW Allen, editor. Adhesion 15. London, UK: Springer; 1991.
  • Sharpe LH. The interphase in adhesion. J Adhes. 1972;4(1):51–64.
  • Foletti AIM, Sena Cruz J, Vassilopoulos AP. Fabrication and curing conditions effects on the fatigue behavior of a structural adhesive. Int J Fatigue. 2020;139:105743.
  • Mishnaevsky L, Branner K, Petersen HN, et al. Materials for wind turbine blades: An overview. Materials (Basel). 2017;10:1285. doi:10.3390/ma10111285.
  • Bidaud P. Analysis of the cyclic behavior of an adhesive in an assembly for offshore windmills applications. Mater Université Bretagne Occidentale, HAL archives-ouvertes.fr. 2014.
  • Kim S-W-R, Kang W-R, Jeong M-S, et al. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line. Smart Mater Struct. 2013;22:125004.
  • Fernandez G, Vandepitte D, Usabiaga H, et al. Static and cyclic strength properties of brittle adhesives with porosity. Int J Fatigue. 2018;117:340–351.
  • Griffin DA, Malkin MC. Lessons learned from recent blade failures: primary causes and risk-reducing Technologies. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition; 4-7 January 2011, Orlando, Florida.
  • Wetzel KK. Defect-Tolerant structural design of wind turbine blades. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 4–7 May 2009, Palm Springs, California.
  • Branner K, Berring P. Methods for testing of geometrical down-scaled rotor blades. DTU Wind Energy. DTU Wind Energy E, No. 0069, 2014.
  • Mishnaevsky L, Brøndsted P, Nijssen RPL, et al. Materials of large wind turbine blades: recent results in testing and modelling. Wind Energy. 2012;15:83–97.
  • McGugan M, Pereira G, Sørensen BF, et al. Damage tolerance and structural monitoring for wind turbine blades. Philos Trans Royal Soci Math, Phys Eng Sci. 2015;373:20140077.
  • Marshall SJ, Bayne SC, Baier R, et al. A review of adhesion science. Dent Mater. 2010;26(2):e11–e16.
  • Pinnaratip R, Bhuiyan MSA, Meyers K, et al. Multifunctional biomedical adhesives. Adv Healthc Mater. 2019;8(11):1801568.
  • Hollaway L. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr Build Mater. 2010;24(12):2419–2445.
  • Al-Saadi NTK, Mohammed A, Al-Mahaidi R, et al. A state-of-the-art review: near-surface mounted FRP composites for reinforced concrete structures. Constr Build Mater. 2019;209:748–769.
  • Durodola J. Functionally graded adhesive joints–A review and prospects. Int J Adhes Adhes. 2017;76:83–89.
  • Smith EH. Mechanical engineer’s reference book. 12th ed. Butteworth: Hainemann; 1994.
  • Xu X, Crocombe AD, Smith PA. Fatigue crack growth rates in adhesive joints tested at different frequencies. J Adhes. 1996;58:191–204.
  • Vassilopoulos AP. Fatigue and fracture of adhesively-bonded composite joints. Amsterdam, NL: Woodhead Publishing; 2014.
  • Brunner AJ. Investigating the performance of adhesively-bonded composite joints: standards, test protocols and experimental design [M]. In: AP Vassilopoulos, editor. Fatigue and fracture of adhesively-bonded composite joints. Woodhead Publishing; 2014.3-42.
  • Eder MA, Bitsche RD, Nielsen M, et al. A practical approach to fracture analysis at the trailing edge of wind turbine rotor blades. Wind Energy. 2014;17:483–497.
  • Pascoe JA, Zavatta N, Troiani E, et al. The effect of bondline thickness on fatigue crack growth rate in adhesively bonded joints. Eng Fract Mech. 2020;229:106959.
  • Azari A, Papini M, Spelt JK. Effect of adhesive thickness on fatigue and fracture of toughened epoxy joints – part I: experiments. Eng Fract Mech. 2011;78:153–162.
  • Chai H. On the correlation between the mode I failure of adhesive joints and laminated composites. Eng Fract Mech. 1986;24(3):413–431.
  • Mall S, Ramamurthy G. Effect of bond thickness on fracture and fatigue strength of adhesively bonded composite joints. Int J Adhes Adhes. 1989;9:33–37.
  • Abou-Hamda M, Megahed M, Hammouda M. Fatigue crack growth in double cantilever beam specimen with an adhesive layer. Eng Fract Mech. 1998;60(5-6):605–614.
  • Banea MD, da Silva LFM. Static and fatigue behaviour of room temperature vulcanising silicone adhesives for high temperature aerospace applications. In: Mat.-wiss. u.Werkstofftech. 2010;41(5):325–335.
  • Krenk S, Jönsson J, Hansen LP. Fatigue analysis and testing of adhesive joints. Eng Fract Mech. 1996;53(6):859–872.
  • Katsiropoulos CV, Chamos A, Tserpes K, et al. Fracture toughness and shear behavior of composite bonded joints based on a novel aerospace adhesive. Compos Part B: Eng. 2012;43(2):240–248.
  • Schmueser DW. A fracture mechanics approach to characterizing cyclic debonding of varied thickness adhesive joints to electroprimed steel surfaces. J Adhes. 1991;36(1):1–23.
  • Manshadi BD, Vassilopoulos AP, Botsis J. A combined experimental/numerical study of the scaling effects on mode I delamination of GFRP. Compos Struct. 2013;83:32–39.
  • Manshadi BD, Ashtiani EF, Botsis J, et al. An iterative analytical/experimental study of bridging in delamination of the double cantilever beam specimen. Compos Part A: Appl Sci Manuf. 2014;61:43–50.
  • Farmand-Ashtiani E, Cugnoni J, Botsis J. Specimen thickness dependence of large scale fiber bridging in mode I interlaminar fracture of carbon epoxy composite. Int J Solids Struct. 2015;55:58–65.
  • Yao L, Cui H, Alderliesten RC, et al. Thickness effects on fibre-bridged fatigue delamination growth in composites. Compos Part A: Appl Sci Manuf. 2018;110:21–28.
  • Shahverdi M, Vassilopoulos AP, Keller T. Experimental investigation of R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints under CA loading. Compos Part A: Appl Sci Manuf. 2012;43(10):1689–1697.
  • Shahverdi M, Vassilopoulos AP, Keller T. Mixed-mode fatigue failure criteria for adhesively-bonded pultruded GFRP joints. Compos Part A: Appl Sci Manuf. 2013;54:46–55.
  • Martin RH, Murri GB. Characterization of mode I and mode II delamination growth and thresholds in AS4/PEEK composites. In SP Garbo, editor. ASTM International: ASTM STP 1059; West Conshohocken, PA1990. p. 251–270.
  • Jablonski D. Fatigue crack growth in structural adhesives. J Adhes. 1980;11(2):125–143.
  • Khan R, Alderliesten R, Badshah S, et al. Effect of stress ratio or mean stress on fatigue delamination growth in composites: critical review. Compos Struct. 2015;124:214–227.
  • Pascoe JA, Alderliesten RC, Benedictus R. On the physical interpretation of the R-ratio effect and the LEFM parameters used for fatigue crack growth in adhesive bonds. Int J Fatigue. 2017;97:162–176.
  • Jones R, Hu W, Kinloch AJ. A convenient way to represent fatigue crack growth in structural adhesives. Fatigue Fract Eng Mater Struct. 2015;38(4):379–391.
  • Yao L, Alderliesten RC, Jones R, et al. Delamination fatigue growth in polymer-matrix fibre composites: A methodology for determining the design and lifing allowables. Compos Struct. 2018;196:8–20.
  • Shahverdi M, Vassilopoulos AP, Keller T. A phenomenological analysis of mode I fracture of adhesively-bonded pultruded GFRP joints. Eng Fract Mech. 2011;78(10):2161–2173.
  • Rocha AVM, Akhavan-Safar A, Carbas R, et al. Fatigue crack growth analysis of different adhesive systems: effects of mode mixity and load level. Fatigue Fract Eng Mater Struct. 2020;43:330–341.
  • Naito K, Fujii T. Static and fatigue crack growth of epoxy adhesives and fractal dimensions. Int J Adhes Adhes. 1998;18(3):199–213.
  • Dessureault M, Spelt J. Observations of fatigue crack initiation and propagation in an epoxy adhesive. Int J Adhes Adhes. 1997;17(3):183–195.
  • Quaresimin M, Ricotta M. Fatigue behaviour and damage evolution of single lap bonded joints in composite material. Compos Sci Technol. 2006;66:176–187.
  • Potter KD, Guild FJ, Harvey HJ, et al. Understanding and control of adhesive crack propagation in bonded joints between carbon fibre composite adherends I. experimental. Int J Adhes Adhes. 2001;21:435–443.
  • Zhang Z, Shang JK, Lawrence FV. Backface strain technique for detecting fatigue crack initiation in adhesive joints. J Adhes. 1995;49:23–36.
  • Jones R, Pitt S, Bunner AJ, et al. Application of the hartman–schijve equation to represent mode I and mode II fatigue delamination growth in composites. Compos Struct. 2012;94:1343–1351.
  • Jones R, Barter S, Chen F. Experimental studies into short crack growth. Eng Fail Anal. 2011;18:1711–1722.
  • Crocombe AD, Richardson G, Smith PA. A unified approach for predicting the strength of cracked and Non-cracked adhesive joints. J Adhes. 1995;49:211–244.
  • Zhang Y, Vassilopoulos AP, Keller T. Stiffness degradation and fatigue life prediction of adhesively-bonded joints for fiber-reinforced polymer composites. Int J Fatigue. 2008;30(10-11):1813–1820.
  • Hart-Smith LJ. Developments in adhesives-2. Kinloch, A. J., Ed. London: Applied Science Publishers; 1981.
  • Ramírez FMG, de Moura MFSF, Moreira RDF, et al. A review on the environmental degradation effects on fatigue behaviour of adhesively bonded joints. Fatigue Fract Eng Mater Struct. 2020;43(7):1307–1326.
  • Zhang Y, Vassilopoulos AP, Keller T. Effects of low and high temperatures on tensile behavior of adhesively-bonded GFRP joints. Compos Struct. 2010;92(7):1631–1639.
  • Zhang Y, Vassilopoulos AP, Keller T. Environmental effects on fatigue behavior of adhesively-bonded pultruded structural joints. Compos Sci Technol. 2009;69(7-8):1022–1028.
  • Beber V, Schneider B, Brede M. Influence of temperature on the fatigue behaviour of a toughened epoxy adhesive. J Adhes. 2016;92(7-9):778–794.
  • Harris JA, Fay PA. Fatigue life evaluation of structural adhesives for automotive applications. Int J Adhes Adhes. 1992;12:9–18.
  • Ashcroft IA, Abdel Wahab M, Crocombe AD, et al. The effect of environment on the fatigue of bonded composite joints. part 1: testing and fractography. Compos Part A: Appl Sci Manuf. 2001;32:45–58.
  • Crocombe AD, Richardson G. Assessing stress state and mean load effects on the fatigue response of adhesively bonded joints. Int J Adhes Adhes. 1999;19(1):19–27.
  • Pereira AM, Reis PNB, Ferreira JAM. Effect of the mean stress on the fatigue behaviour of single lap joints. J Adhes. 2015;93(6):504–513.
  • Sarfaraz R, Vassilopoulos AP, Keller T. Modeling the constant amplitude fatigue behavior of adhesively bonded pultruded GFRP joints. J Adhes Sci Technol. 2013;27(8):855–878.
  • Vassilopoulos AP, editor. Fatigue life prediction of composites and composite structures – second edition. Cambridge, UK: Woodhead publishing; 2020.
  • Vassilopoulos AP, Manshadi BD, Keller T. Influence of the constant life diagram formulation on the fatigue life prediction of composite materials. Int J Fatigue. 2010;32(4):659–669.
  • Vassilopoulos AP, Manshadi BD, Keller T. Piecewise non-linear constant life diagram formulation for FRP composite materials. Int J Fatigue. 2010;32(10):1731–1738.
  • Boerstra GK. The multislope model: a new description for the fatigue strengthof glass reinforced plastic. Int J Fatigue. 2007;29(8):1571–1576.
  • Beheshty MH, Harris B. A constant life model of fatigue behavior for carbonfiber composites: the effect of impact damage. Compos Sci Technol. 1998;58(1):9–18.
  • Dastin SJ, Lubin G. Adhesive bonding of high modulus composite aircraft structures. SAE Trans. 1971;80(1):379–384.
  • Adams R, Peppiatt N. Stress analysis of adhesive-bonded lap joints. J Strain Anal. 1974;9(3):185–196.
  • Park J-H, Choi J-H, Kweon J-H. Evaluating the strengths of thick aluminum-to-aluminum joints with different adhesive lengths and thicknesses. Compos Struct. 2010;92(9):2226–2235.
  • Grant LDR, Adams RD, da Silva LFM. Experimental and numerical analysis of single-lap joints for the automotive industry. Int J Adhes Adhes. 2009;29:405–413.
  • Sayer F, Antoniou A, van Wingerde A. Investigation of structural bondlines in wind turbine blades by sub-component tests. Int J Adhes Adhes. 2012;37:129–135.
  • Sharp K, Bogdanovich A, Boyle R, et al. Wind blade joints based on non-crimp 3D orthogonal woven Pi shape performs. Compos Part A: Appl Sci Manuf. 2013;49:9–17.
  • Broughton WR, Mera RD. Review of durability test methods and standards for assessing long term performance of adhesive joints. NPL REPORT CMMT(A)61, 1997.
  • DNVGL-ST-0376. Rotor blades for wind turbines [J]. DNV GL AS; 2015.
  • Fernandez G, Vandepitte D, Usabiaga H, et al. Experimental identification of static and dynamic strength of epoxy based adhesives in high thickness joints. Int J Solids Struct. 2017;120:292–303.
  • Tang JH, Sridhar I, Srikanth N. Static and fatigue failure analysis of adhesively bonded thick composite single lap joints. Compos Sci Technol. 2013;86:18–25.
  • Samborsky D, Mandell J, Sears A, et al. Static and fatigue testing of thick adhesive joints for wind turbine blades. Proceedings 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition; p. 1550.
  • Sears AT, Samborsky DD, Agastra P, et al. Fatigue results and analysis for thick adhesive notched Lap shear test). 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 12–15 April 2010, Orlando, Florida.
  • Kavdir EÇ, Aydin MD. The investigation of mechanical properties of a structural adhesive via digital image correlation (DIC) technic. Compos Part B: Eng. 2019;173:106995.
  • ASTM International D7791-17. Standard test method for uniaxial fatigue properties of plastics. West Conshohocken PA, USA: ASTM International; 2017.
  • ASTM International D638-14. Standard test method for tensile properties of plastics. West Conshohocken (PA): ASTM International; 2014.
  • ASTM International D5379/D5379M-12. Standard test method for shear properties of composite materials by the V-notched beam method. West Conshohocken PA, USA: ASTM International; 2012.
  • ISO 13003:2003(en) Fibre-reinforced plastics — determination of fatigue properties under cyclic loading conditions.
  • ISO 527-2:2012 plastics — determination of tensile properties — Part 2: test conditions for moulding and extrusion plastics.
  • ISO 527-4, plastics — determination of tensile properties — Part 4: test conditions for isotropic and orthotropic fibre-reinforced plastic composites.
  • Hagerup E. Flexural fatigue testing of polyesters. J Appl Polym Sci. 1963;7:1093–1116.
  • Koo GP, Riddell MN, O’Toole JL. Fatigue properties of polytetrafluoroethylene and related fluoropolymers. Polym Eng Sci. 1967;7(3):182–188.
  • Riddell MN. A guide to better testing of plastics. Plast Eng. 1974;30(4):71–78.
  • Hertzberg RW, Manson JA. Environment, frequency and temperature effects on fatigue in engineering plastics. In: JA Burke, V Weiss, editors. Fatigue, environmental and temperature effects. New York, USA: Springer; 1983.
  • Sauer J, Richardson G. Fatigue of polymers. Int J Fract. 1980;16(6):499–532.
  • Takemori MT. Polymer fatigue. Annu Rev Mater Sci. 1984;14(1):171–204.
  • Movahedi-Rad AV, Keller T, Vassilopoulos AP. Modeling of fatigue behavior based on interaction between time- and cyclic-dependent mechanical properties. Compos Part A: Appl Sci Manuf. 2019;124:105469.
  • Movahedi-Rad AV, Keller T, Vassilopoulos AP. Creep effects on tension-tension fatigue behavior of angle-ply GFRP composite laminates. Int J Fatigue. 2019;123:144–156.
  • Movahedi-Rad AV, Keller T, Vassilopoulos AP. Fatigue damage in angle-ply GFRP laminates under tension-tension fatigue. Int J Fatigue. 2018;109:60–69.
  • Sendeckyj GP, Stalnaker HD. Effect of time at load on fatigue response of [(0/±45/90)s]2 T300/5208 Graphite-epoxy laminate. Composite Materials: Testing and Design (Fourth Conference), ASTM STP 617; American Society for Testing and Materials, 1977, p. 39–52.
  • Ciardiello R, Belingardi G, Litterio F, et al. Thermomechanical characterization of reinforced and dismountable thermoplastic adhesive joints activated by microwave and induction processes. Compos Struct. 2020;244:112314.
  • Belingardi G, Brunella V, Martorana B, et al. Thermoplastic adhesive for automotive applications. In: A Rudawska, editor. Adhesives – applications and properties; INTECH, 2016: 341–362.
  • Schinker M, Könczöl L, Döll W. Micromechanics of fatigue crack propagation in glassy thermoplastics. Colloid Polym Sci. 1984;262(3):230–235.
  • Lu Z, Feng B, Loh C. Fatigue behaviour and mean stress effect of thermoplastic polymers and composites. Frattura ed Integrità Strutturale. 2018;12(46):150–157.
  • Eftekhari M, Fatemi A. Creep-fatigue interaction and thermo-mechanical fatigue behaviors of thermoplastics and their composites. Int J Fatigue. 2016;91:136–148.
  • Safai L, Cuellar JS, Smit G, et al. A review of the fatigue behavior of 3D printed polymers. Addit Manuf. 2019;28:87–97.
  • Zhang H, Cai L, Golub M, et al. And fatigue behaviors of 3D-printed. J Mater Eng Perform. 2018;27:57–62.
  • Riddell M, Koo G, O’Toole J. Fatigue mechanisms of thermoplastics. Polym Eng Sci. 1966;6(4):363–368.
  • Constable I, Williams J, Burns D. Fatigue and cyclic thermal softening of thermoplastics. J Mech Eng Sci. 1970;12(1):20–29.
  • Simsiriwong J, Shrestha R, Shamsaei N, et al. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK). J Mech Behav Biomed Mater. 2015;51:388–397.
  • Saib K, Evans W, Isaac D. The role of microstructure during fatigue crack growth in poly (aryl ether ether ketone)(PEEK). Polymer (Guildf). 1993;34(15):3198–3203.
  • Shrestha R, Simsiriwong J, Shamsaei N. Load history and sequence effects on cyclic deformation and fatigue behavior of a thermoplastic polymer. Polym Test. 2016;56:99–109.
  • Mizobe K, Honda T, Koike H, et al. Relationship between load, rotation speed and, strength in all-PEEK and PEEK race–PTFE retainer hybrid polymer bearings under dry rolling contact fatigue. Proceedings Advanced Materials Research; Trans Tech Publ, p. 66–70.
  • Mellott SR, Fatemi A. Fatigue behavior and modeling of thermoplastics including temperature and mean stress effects. Polym Eng Sci. 2014;54(3):725–738.
  • Berrehili A, Castagnet S, Na Y. Multiaxial fatigue criterion for a high-density polyethylene thermoplastic. Fatigue Fract Eng Mater Struct. 2010;33(6):345–357.
  • Zhou Y, Mallick P. Fatigue performance of an injection molded talc-filled polypropylene. Polym Eng Sci. 2005;45(4):510–516.
  • Unver O, Sitti M. Flat dry elastomer adhesives as attachment materials for climbing robots. IEEE Trans Robot. 2010;26(1):131–141.
  • Kwon J, Cheung E, Park S, et al. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces. Biomed Mater. 2006;1(4):216–220.
  • Tyczkowski J, Krawczyk-Kłys I, Kuberski S, et al. Chemical nature of adhesion: plasma modified styrene–butadiene elastomer and polyurethane adhesive joints. Eur Polym J. 2010;46(4):767–773.
  • Alshuth T, Abraham F, Jerrams S. Parameter dependence and prediction of fatigue properties of elastomer products. Rubber Chem Technol. 2002;75(4):635–642.
  • Kanters MJ, Kurokawa T, Govaert LE. Competition between plasticity-controlled and crack-growth controlled failure in static and cyclic fatigue of thermoplastic polymer systems. Polym Test. 2016;50:101–110.
  • Shen X, Xia Z, Ellyin F. Cyclic deformation behavior of an epoxy polymer. part I: experimental investigation. Polym Eng Sci. 2004;44(12):2240–2246.
  • Movahedi-Rad AV, Keller T, Vassilopoulos PA. Interrupted tension-tension fatigue behavior of angle-ply GFRP composite laminates. Int J Fatigue. 2018;113:377–388.
  • Samborsky D, Mandell JF, Miller DA. Creep/fatigue behavior of resin infused biaxial glass fabric laminates. AIAA SDM Wind Energy Session. 2013.
  • Tao G, Xia Z. An experimental study of uniaxial fatigue behavior of an epoxy resin by a new noncontact real-time strain measurement and control system. Polym Eng Sci. 2007;47(6):780–788.
  • Xia Z, Shen X, Ellyin F. Biaxial cyclic deformation of an epoxy resin: experiments and constitutive modeling. J Mater Sci. 2005;40(3):643–654.
  • Tao G, Xia Z. Mean stress/strain effect on fatigue behavior of an epoxy resin. Int J Fatigue. 2007;29(12):2180–2190.
  • Brunbauer J, Pinter G. Effects of mean stress and fibre volume content on the fatigue-induced damage mechanisms in CFRP. Int J Fatigue. 2015;75:28–38.
  • Bortz DR, Merino C, Martin-Gullon I. Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system. Compos Sci Technol. 2011;71(1):31–38.
  • Manjunatha CM, Taylor AC, Kinloch AJ, et al. The tensile fatigue behavior of a GFRP composite with rubber particle modified epoxy matrix. J Reinforced Plastics Compos. 2010;29:2170–2183.
  • Barcelos Carneiro MDRI. Numerical and experimental investigation of hygrothermal aging in laminated composites [TUDELFT PhD thesis], 2019.
  • Beber V, Fernandes P, Schneider B, et al. Effect of notch size on the fatigue damage behaviour of toughened epoxy adhesive specimens. J Adhes. 2017;93(1-2):113–126.
  • Beber V, Schneider B, Brede M. On the fatigue behavior of notched structural adhesives with considerations of mechanical properties and stress concentration effects. Procedia Eng. 2018;213:459–469.
  • Ezeh OH, Susmel L. Fatigue strength of additively manufactured polylactide (PLA): effect of raster angle and non-zero mean stresses. Int J Fatigue. 2019;126:319–326.
  • Ezeh OH, Susmel L. On the notch fatigue strength of additively manufactured polylactide (PLA). Int J Fatigue. 2020;136:105583.
  • Manjunatha CM, Taylor AC, Kinloch AJ, et al. The tensile fatigue behaviour of a silica nanoparticle-modified glass fibre reinforced epoxy composite. Compos Sci Technol. 2010;70:193–199.
  • Kang M-H, Choi J-H, Kweon J-HJCs. Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes. Compos Struct. 2014;108:417–422.
  • Zhou J, Lucas JP. Hygrothermal effects of epoxy resin. part II: variation of glass transition temperature. Polymer (Guildf). 1999;40:5513–5522.
  • Broughton WR, Dean GD. Fatigue and creep testing of adhesives and thermoplastic joined systems. Measurement good practice guide No. 104, NPL, 2007.
  • Luckyram J, Vardy AE. Fatigue performance of two structural adhesives. J Adhes. 1988;26(4):273–291.
  • Bascom W, Cottington R, Jones R, et al. The fracture of epoxy-and elastomer-modified epoxy polymers in bulk and as adhesives. J Appl Polym Sci. 1975;19(9):2545–2562.
  • ASTM E647-15e1. Standard test method for measurement of fatigue crack growth rates. West Conshohocken (PA): ASTM International; 2015.
  • Ashcroft IA, Silberschmidt VV, Echard B, et al. Crack propagation in a toughened epoxy adhesive under repeated impacts. Shock Vib. 2011;18(1-2):157–170.
  • Hilmy I, Abdel Wahab M, Ashcroft IA, et al. Measuring of damage parameters in adhesive bonding. Key Eng Mater. 2006;324-325:275–278.
  • Chen Z, Adams RD, da Silva LFM. Fracture toughness of bulk adhesives in mode I and mode III and curing effect. Int J Fract. 2011;167:221–234.
  • Kanchanomai C, Rattananon S, Soni M. Effects of loading rate on fracture behavior and mechanism of thermoset epoxy resin. Polym Test. 2005;24:886–892.
  • The Paris law. Fatigue crack growth theory. University of Plymouth [cited 2020 May 28]. Available from: https://www.fose1.plymouth.ac.uk/fatiguefracture/tutorials/FractureMechanics/Fatigue/FatTheory1.htm
  • Paris PC, Gomez MP, Anderson WE. A rational analytic theory of fatigue. Trend Eng. 1961;13(1):9–14.
  • Paris P, Erdogan F. A critical analysis of crack propagation laws. J Basic Eng. 1963;85(4):528–533.
  • Srivastava I, Koratkar N. Fatigue and fracture toughness of nanocomposites. JOM. 2010;62:50–57.
  • Brillhart M, Gregory B, Botsis J. Fatigue fracture behaviour of PEEK: 1. Effects of load level. Polymer (Guildf). 1991;32(9):1605–1611.
  • Brillhart M, Botsis J. Fatigue fracture behaviour of PEEK: 2. Effects of thickness and temperature. Polymer (Guildf). 1992;33(24):5225–5232.
  • Brillhart M, Botsis J. Fatigue crack growth analysis in PEEK. Int J Fatigue. 1994;16(2):134–140.
  • Lowe A, Kwon O-H, Mai Y-W. Fatigue and fracture behaviour of novel rubber modified epoxy resins. Polymer (Guildf). 1996;37(4):565–572.
  • Kinloch AJ, Lee S, Taylor A. Improving the fracture toughness and the cyclic-fatigue resistance of epoxy-polymer blends. Polymer (Guildf). 2014;55(24):6325–6334.
  • Sarrado C, Turon A, Costa J, et al. On the validity of linear elastic fracture mechanics methods to measure the fracture toughness of adhesive joints. Int J Solids Struct. 2016;81:110–116.
  • Sobieraj MC, Murphy JE, Brinkman JG, et al. Notched fatigue behavior of PEEK. Biomaterials. 2010;31(35):9156–9162.
  • Hsieh TH, Kinloch AJ, Taylor AC, et al. The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci. 2011;46(23):7525–7535.
  • Zhang W, Picu R, Koratkar N. The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites. Nanotechnology. 2008;19(28):285709.
  • Blackman BRK, Kinloch AJ, Sohn Lee J, et al. The fracture and fatigue behaviour of nano-modified epoxy polymers. J Mater Sci. 2007;42:7049–7051.
  • Hwang J-F, Manson JA, Hertzberg RW, et al. Fatigue crack propagation of rubber-toughened epoxies. Polym Eng Sci. 1989;29(20):1477–1487.
  • Pelch J, Ritter J, Lesser A, et al. Fatigue resistance of silane-bonded epoxy/glass interfaces using neat and rubber-toughened epoxies. J Mater Sci. 2002;37(15):3269–3276.
  • Johnson WS, Mall S. A fracture mechanics approach to designing adhesively bonded joints. NASA Technical Memorandum 85694; NTIS, Springfield, VA, 1983.
  • Chen Q, Guo H, Avery K, et al. Mixed-mode fatigue crack growth and life prediction of an automotive adhesive bonding system. Eng Fract Mech. 2018;189:439–450.
  • Monteiro J, Akhavan-Safar A, Carbas R, et al. Influence of mode mixity and loading conditions on the fatigue crack growth behaviour of an epoxy adhesive. Fatigue Fract Eng Mater Struct. 2020;43:308–316.
  • Bureau M, Di Francesco E, Dickson J, et al. Mechanical behavior of injection-molded polystyrene/polyethylene blends: fracture toughness vs. fatigue crack propagation. Polym Eng Sci. 1999;39(6):1119–1129.
  • Brown EN, White SR, Sottos NR. Fatigue crack propagation in microcapsule-toughened epoxy. J Mater Sci. 2006;41(19):6266–6273.
  • Azimi HR, Pearson RA, Hertzberg RW. Fatigue of rubber-modified epoxies: effect of particle size and volume fraction. J Mater Sci. 1996;31:3777–3789.
  • Karger-Kocsis J, Friedrich K. Fatigue crack propagation and related failure in modified, andhydride-cured epoxy resins. Colloid Polym Sci. 1992;270(6):549–562.
  • Neuser S, Michaud V. Fatigue response of solvent-based self-healing smart materials. Exp Mech. 2014;54:293–304.
  • Adams RD, Comyn J. Joining using adhesives. Assem Autom. 2000;20(2):109–117.
  • Sarfaraz R, Vassilopoulos AP, Keller T. Variable amplitude fatigue of adhesively-bonded pultruded GFRP joints. Int J Fatigue. 2013;55:22–32.
  • Erpolat S, Ashcroft I, Crocombe A, et al. A study of adhesively bonded joints subjected to constant and variable amplitude fatigue. Int J Fatigue. 2004;26(11):1189–1196.
  • Erpolat S, Ashcroft I, Crocombe A, et al. Fatigue crack growth acceleration due to intermittent overstressing in adhesively bonded CFRP joints. Compos Part A: Appl Sci Manuf. 2004;35(10):1175–1183.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.