8,145
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Defect phases – thermodynamics and impact on material properties

ORCID Icon, , , , , & show all
Pages 89-117 | Received 24 Oct 2020, Accepted 09 May 2021, Published online: 26 May 2021

References

  • Le Chatelier A. Influence du temps et de la température sur les essais au choc. Revue de métallurgie. 1909;6(8):914–917.
  • Kwiatkowski da Silva A, Leyson G, Kuzmina M, et al. Confined chemical and structural states at dislocations in Fe-9wt% Mn steels: a correlative TEM-atom probe study combined with multiscale modelling. Acta Mater. 2017;124:305–315.
  • Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: confined chemical and structural states at dislocations. Science. 2015;349(6252):1080–1083.
  • Turlo V, Rupert TJ. Dislocation-assisted linear complexion formation driven by segregation. Scr Mater. 2018;154:25–29.
  • Turlo V, Rupert TJ. Prediction of a wide variety of linear complexions in face centered cubic alloys. Acta Mater. 2020;185:129–141.
  • Martin F, Bataillon C, Cousty J. In situ AFM detection of pit onset location on a 304L stainless steel. Corros Sci. 2008;50(1):84–92.
  • Turnbull A. Corrosion pitting and environmentally assisted small crack growth. Proc R Soc London Ser A Math Phys Sci. 2014;470(2169):20140254.
  • Hickel T, Sandlöbes S, Marceau RK, et al. Impact of nanodiffusion on the stacking fault energy in high-strength steels. Acta Mater. 2014;75:147–155.
  • Suzuki H. Segregation of solute atoms to stacking faults. J Phys Soc Jpn. 1962;17(2):322–325.
  • Heyn E. Internal strains in cold-wrought metals, and some troubles caused thereby. J Inst Met. 1914;12:1–37.
  • Huntington A. Embrittlement of brass by mercury. J Inst Met. 1914;11:108–112.
  • Joseph B, Picat M, Barbier F. Liquid metal embrittlement: a state-of-the-art appraisal. The European Physical Journal-Applied Physics. 1999;5(1):19–31.
  • Nicholas M, Old C. Liquid metal embrittlement. J Mater Sci. 1979;14(1):1–18.
  • Wilson F. Mechanism of intergranular corrosion of austenitic stainless steels—literature review. Br Corros J. 1971;6(3):100–108.
  • Raabe D, Ponge D, Kirchheim R, et al. Interface segregation in advanced steels studied at the atomic scale. In: DA Molodov, editor. Microstructural design of advanced engineering materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2013. p. 267–298.
  • Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: example of a 9 wt.% medium Mn steel. Acta Mater. 2015;86:182–192.
  • Tytko D, Choi P-P, Klöwer J, et al. Microstructural evolution of a Ni-based superalloy (617B) at 700 C studied by electron microscopy and atom probe tomography. Acta Mater. 2012;60(4):1731–1740.
  • Cantwell PR, Tang M, Dillon SJ, et al. Grain boundary complexions. Acta Mater. 2014;62:1–48.
  • Dillon SJ, Tang M, Carter WC, et al. Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 2007;55(18):6208–6218.
  • Luo J, Cheng H, Asl KM, et al. The role of a bilayer interfacial phase on liquid metal embrittlement. Science. 2011;333(6050):1730–1733.
  • Tang M, Carter WC, Cannon RM. Grain boundary order-disorder transitions. J Mater Sci. 2006;41(23):7691–7695.
  • Landolt D. Contributions of surface analysis to corrosion science: selective dissolution and oxidation phenomena in alloy corrosion. Surf Interface Anal. 1990;15(7):395–404.
  • Hagan J, Swain MV. The origin of median and lateral cracks around plastic indents in brittle materials. J Phys D Appl Phys. 1978;11(15):2091.
  • Lawn B, Evans A. A model for crack initiation in elastic/plastic indentation fields. J Mater Sci. 1977;12(11):2195–2199.
  • Stroh A. The formation of cracks as a result of plastic flow. Proc R Soc London Ser A Math Phys Sci. 1954;223(1154):404–414.
  • Howie P, Thompson R, Korte-Kerzel S, et al. Softening non-metallic crystals by inhomogeneous elasticity. Sci Rep. 2017;7:11602.
  • Yin L, Jin Y, Leygraf C, et al. Numerical simulation of micro-galvanic corrosion of Al alloys: effect of chemical factors. J Electrochem Soc. 2017;164(13):C768–C778.
  • Zhao H, De Geuser F, Kwiatkowski da Silva A, et al. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy. Acta Mater. 2018;156:318–329.
  • Li L, Li Z, Kwiatkowski da Silva A, et al. Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy. Acta Mater. 2019;178:1–9.
  • Kaplan WD, Chatain D, Wynblatt P, et al. A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting. J Mater Sci. 2013;48(17):5681–5717.
  • Baram M, Chatain D, Kaplan WD. Nanometer-thick equilibrium films: the interface between thermodynamics and atomistics. Science. 2011;332(6026):206–209.
  • Meiners T, Frolov T, Rudd RE, et al. Observations of grain-boundary phase transformations in an elemental metal. Nature. 2020;579(7799):375–378.
  • Herbig M, Raabe D, Li YJ, et al. Atomic-Scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett. 2014;112(12):126103.
  • Frolov T, Olmsted DL, Asta M, et al. Structural phase transformations in metallic grain boundaries. Nat Commun. 2013;4(1):1–7.
  • Liebscher CH, Yao M, Dey P, et al. Tetragonal fcc-Fe induced by κ-carbide precipitates: atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory. Phys Rev Mater. 2018;2(2):023804.
  • Frolov T, Mishin Y. Phases, phase equilibria, and phase rules in low-dimensional systems. J Chem Phys. 2015;143(4):044706.
  • Hillert M. Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis. Cambridge: Cambridge University Press; 2007.
  • Liu Z-K, Wang Y. Computational thermodynamics of materials. Cambridge: Cambridge University Press; 2016.
  • Liu Z-K. Computational thermodynamics and its applications. Acta Mater. 2020;200:745–792.
  • Cahn J. Transitions and phase equilibria among grain boundary structures. Le Journal de Physique Colloques. 1982;43(C6):C6-199-C196-213.
  • Erb U, Gleiter H. The effect of temperature on the energy and structure of grain boundaries. Scr Metall. 1979;13(1):61–64.
  • Hart EW. Grain boundary phase transformations. In: Hsun Hu and Anning Hu, editors. The nature and behavior of grain boundaries. New York: Springer; 1972. p. 155–170.
  • Meiser H, Gleiter H, Mirwald R. The effect of hydrostatic pressure on the energy of grain boundaries—structural transformations. Scr Metall. 1980;14(1):95–99.
  • Rottman C. Theory of phase transitions at internal interfaces. Le Journal de Physique Colloques. 1988;49(C5):C5–313. -C315-326.
  • Krause AR, Cantwell PR, Marvel CJ, et al. Review of grain boundary complexion engineering: know your boundaries. J Am Ceram Soc. 2019;102(2):778–800.
  • Tang M, Carter WC, Cannon RM. Diffuse interface model for structural transitions of grain boundaries. Phys Rev B. 2006;73(2):024102.
  • Tang M, Carter WC, Cannon RM. Grain boundary transitions in binary alloys. Phys Rev Lett. 2006;97(7):075502.
  • Harmer MP. The phase behavior of interfaces. Science. 2011;332(6026):182–183.
  • Zhang J, Tasan CC, Lai M, et al. Complexion-mediated martensitic phase transformation in titanium. Nat Commun. 2017;8(1):1–8.
  • Cantwell PR, Frolov T, Rupert TJ, et al. Grain boundary complexion Transitions. Annu Rev Mater Res. 2020;50(1). null.
  • Schumacher O, Marvel CJ, Kelly MN, et al. Complexion time-temperature-transformation (TTT) diagrams: opportunities and challenges. Curr Opin Solid State Mater Sci. 2016;20(5):316–323.
  • Cottrell AH, Bilby B. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc London Sect A. 1949;62(1):49.
  • Turlo V, Rupert TJ. Linear complexions: metastable phase formation and coexistence at dislocations. Phys Rev Lett. 2019;122(12):126102.
  • Bracco G, Holst B (ed.). Surface science techniques (Springer series in surface science, 51). Berlin: Springer; 2013.
  • Smith AR, Feenstra RM, Greve DW, et al. Reconstructions of the GaN(000−1) surface. Phys Rev Lett. 1997;79(20):3934–3937.
  • Dulub O, Diebold U, Kresse G. Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys Rev Lett. 2003;90(1):016102.
  • King DA, Woodruff DP. Phase transitions and adsorbate restructuring at metal surfaces (The chemical physics of solid surfaces). Amsterdam: Elsevier; 1994.
  • Felice RD, Northrup JE, Neugebauer J. Energetics of AlN thin films and the implications for epitaxial growth on SiC. Phys Rev B. 1996;54(24):R17351–R17354.
  • Kim I-H, Park H-S, Park Y-J, et al. Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films. Appl Phys Lett. 1998;73(12):1634–1636.
  • Van de Walle CG, Neugebauer J. First-principles surface phase diagram for hydrogen on GaN surfaces. Phys Rev Lett. 2002;88(6):066103.
  • Maurice V, Yang WP, Marcus P. XPS and STM investigation of the passive film formed on Cr(110) single-crystal surfaces. J Electrochem Soc. 1994;141(11):3016–3027.
  • Stampfl C, Veronica Ganduglia-Pirovano M, Reuter K, et al. Catalysis and corrosion: the theoretical surface-science context. Surf Sci. 2002;500(1):368–394.
  • Ralston KD, Birbilis N, Cavanaugh MK, et al. Role of nanostructure in pitting of Al–Cu–Mg alloys. Electrochim Acta. 2010;55(27):7834–7842.
  • Maurice V, Marcus P. Passive films at the nanoscale. Electrochim Acta. 2012;84:129–138.
  • Smoluchowski R. Anisotropy of the electronic work function of metals. Phys Rev. 1941;60(9):661.
  • Narasimhan S, Vanderbilt D. Elastic stress domains and the herringbone reconstruction on Au(111). Phys Rev Lett. 1992;69(10):1564–1567.
  • Schlier R, Farnsworth H. Structure and adsorption characteristics of clean surfaces of germanium and silicon. J Chem Phys. 1959;30(4):917–926.
  • Maurice V, Marcus P. Current developments of nanoscale insight into corrosion protection by passive oxide films. Curr Opin Solid State Mater Sci. 2018;22(4):156–167.
  • Davis JR. Stainless steels. Materials Park: ASM International; 1994.
  • Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 2007;55(15):5129–5138.
  • Weissmüller J. Alloy effects in nanostructures. Nanostruct Mater. 1993;3(1-6):261–272.
  • Kaptay G. Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J Mater Sci. 2012;47(24):8320–8335.
  • Zhou N, Luo J. Developing grain boundary diagrams for multicomponent alloys. Acta Mater. 2015;91:202–216.
  • Shi X, Luo J. Developing grain boundary diagrams as a materials science tool: a case study of nickel-doped molybdenum. Phys Rev B. 2011;84(1):014105.
  • Qian G-X, Martin RM, Chadi DJ. First-principles study of the atomic reconstructions and energies of Ga- and As-stabilized GaAs(100) surfaces. Phys Rev B. 1988;38(11):7649–7663.
  • Northrup JE, Froyen S. Energetics of GaAs(100)-(2×4) and -(4×2) reconstructions. Phys Rev Lett. 1993;71(14):2276–2279.
  • Northrup JE, Neugebauer J. Theory of GaN(10¯10) and (11¯20) surfaces. Phys Rev B. 1996;53(16):R10477–R10480.
  • Finnis MW, Lozovoi AY, Alavi A. The oxidation of nial: what can we learn from ab initio calculations? Annu Rev Mater Res. 2005;35(1):167–207.
  • Xu H, Cheng D. First-principles-aided thermodynamic modeling of transition-metal heterogeneous catalysts: a review. Green Energy & Environment. 2020;5(3):286–302.
  • Rogal J, Reuter K. Ab initio atomistic thermodynamics for surfaces: a primer. Berlin: Max-Planck-Gesellschaft zur Förderung der Wissenschaften eV; 2006.
  • Frolov T, Asta M, Mishin Y. Segregation-induced phase transformations in grain boundaries. Phys Rev B. 2015;92(2):020103.
  • Bauer K-D, Todorova M, Hingerl K, et al. A first principles investigation of zinc induced embrittlement at grain boundaries in bcc iron. Acta Mater. 2015;90:69–76.
  • White C, Coghlan W. The spectrum of binding energies approach to grain boundary segregation. Metall Trans A. 1977;8(9):1403–1412.
  • Lejček P, Šob M. An analysis of segregation-induced changes in grain boundary cohesion in bcc iron. J Mater Sci. 2014;49(6):2477–2482.
  • Huber L, Hadian R, Grabowski B, et al. A machine learning approach to model solute grain boundary segregation. NPJ Computat Mater. 2018;4(1):64.
  • Wagih M, Schuh CA. Spectrum of grain boundary segregation energies in a polycrystal. Acta Mater. 2019;181:228–237.
  • Detor AJ, Schuh CA. Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system. Acta Mater. 2007;55(12):4221–4232.
  • Wagih M, Schuh CA. Grain boundary segregation beyond the dilute limit: separating the Two contributions of site spectrality and solute interactions. Acta Mater. 2020;199:63–72.
  • Kwiatkowski da Silva A, Kamachali RD, Ponge D, et al. Thermodynamics of grain boundary segregation, interfacial spinodal and their relevance for nucleation during solid-solid phase transitions. Acta Mater. 2019;168:109–120.
  • Mishin Y. Solute drag and dynamic phase transformations in moving grain boundaries. Acta Mater. 2019;179:383–395.
  • Jin ZH, Gumbsch P, Albe K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater. 2008;56(5):1126–1135.
  • Olmsted DL, Buta D, Adland A, et al. Dislocation-pairing transitions in hot grain boundaries. Phys Rev Lett. 2011;106(4):046101.
  • Lany S. Defect phase diagram for doping of Ga2O3. APL Mater. 2018;6(4):046103.
  • Nazarov R, Hickel T, Neugebauer J. First-principles study of the thermodynamics of hydrogen-vacancy interaction in fcc iron. Phys Rev B. 2010;82(22):224104.
  • Nazarov R, Hickel T, Neugebauer J. Ab initio study of H-vacancy interactions in fcc metals: implications for the formation of superabundant vacancies. Phys Rev B. 2014;89(14):144108.
  • Todorova M, Neugebauer J. Identification of bulk oxide defects in an electrochemical environment. Faraday Discuss. 2015;180:97–112.
  • Beyerlein IJ, Demkowicz MJ, Misra A, et al. Defect-interface interactions. Prog Mater Sci. 2015;74:125–210.
  • Kalidindi SR, Niezgoda SR, Salem AA. Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM. 2011;63(4):34–41.
  • Yasi JA, Hector Jr LG, Trinkle DR. Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model. Acta Mater. 2012;60(5):2350–2358.
  • Beyerlein I, Capolungo L, Marshall P, et al. Statistical analyses of deformation twinning in magnesium. Philos Mag. 2010;90(16):2161–2190.
  • Cogswell DA. Toward quantitative phase-field modeling of dendritic electrodeposition. arXiv preprint arXiv:1411.6615, 2014.
  • Heo TW, Tang M, Chen LQ, et al. Defects, entropy, and the stabilization of alternative phase boundary orientations in battery electrode particles. Adv Energy Mater. 2016;6(6):1501759.
  • Jain A, Castelli IE, Hautier G, et al. Performance of genetic algorithms in search for water splitting perovskites. J Mater Sci. 2013;48(19):6519–6534.
  • Larche FC, Cahn JW. Thermochemical equilibrium of multiphase solids under stress. Acta Metall. 1978;26(10):1579–1589.
  • Frolov T, Mishin Y. Thermodynamics of coherent interfaces under mechanical stresses. I. Theory. Phys Rev B. 2012;85(22):224106.
  • Alerhand OL, Berker AN, Joannopoulos JD, et al. Finite-temperature phase diagram of vicinal Si(100) surfaces. Phys Rev Lett. 1990;64(20):2406–2409.
  • Wulff G. Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen. Zeitschrift für Kristallographie und Mineralogie. 1901;34:449–530.
  • Tang L, Han B, Persson K, et al. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J Am Chem Soc. 2010;132(2):596–600.
  • Rogal J, Reuter K, Scheffler M. Thermodynamic stability of PdO surfaces. Phys Rev B. 2004;69(7):075421.
  • Baierlein R. The elusive chemical potential. Am J Phys. 2001;69(4):423–434.
  • Chen L-Q. Chemical potential and Gibbs free energy. MRS Bull. 2019;44(7):520–523.
  • Job G, Herrmann F. Chemical potential—a quantity in search of recognition. Eur J Phys. 2006;27(2):353–371.
  • Todorova M, Neugebauer J. Extending the concept of defect chemistry from semiconductor physics to electrochemistry. Phys Rev Appl. 2014;1(1):014001.
  • Hannon JB, J F, Heringdorf Mz, et al. Phase coexistence during surface phase transitions. Phys Rev Lett. 2001;86(21):4871–4874.
  • Pond RC, Ma X, Hirth JP, et al. Disconnections in simple and complex structures. Philos Mag. 2007;87(33):5289–5307.
  • Chen K, Srolovitz DJ, Han J. Grain-boundary topological phase transitions. Proc Natl Acad Sci USA. 2020;117(52):33077–33083.
  • Frost HJ, Ashby MF. Deformation-mechanism map. Oxford: Pergaman Press; 1982.
  • Kaptay G. A new paradigm on the chemical potentials of components in multi-component nano-phases within multi-phase systems. RSC Adv. 2017;7(65):41241–41253.
  • Johansson SAE, Wahnström G. First-principles derived complexion diagrams for phase boundaries in doped cemented carbides. Curr Opin Solid State Mater Sci. 2016;20(5):299–307.
  • Leyson G, Grabowski B, Neugebauer J. Multiscale description of dislocation induced nano-hydrides. Acta Mater. 2015;89:50–59.
  • Fukai Y, Yamatomo S, Harada S, et al. The phase diagram of the Ni· H system revisited. J Alloys Compd. 2004;372(1-2):L4–L5.
  • Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A Math Phys Sci. 1957;241(1226):376–396.
  • Lassila D, Birnbaum H. The effect of diffusive hydrogen segregation on fracture of polycrystalline nickel. Acta Metall. 1986;34(7):1237–1243.
  • Sofronis P, Robertson I. Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals. Philos Mag A. 2002;82(17-18):3405–3413.
  • Von Pezold J, Lymperakis L, Neugebeauer J. Hydrogen-enhanced local plasticity at dilute bulk H concentrations: The role of H–H interactions and the formation of local hydrides. Acta Mater. 2011;59(8):2969–2980.
  • Leyson G, Grabowski B, Neugebauer J. Multiscale modeling of hydrogen enhanced homogeneous dislocation nucleation. Acta Mater. 2016;107:144–151.
  • Kley A, Neugebauer J. Atomic and electronic structure of the GaAs/ZnSe (001) interface. Phys Rev B. 1994;50(12):8616.
  • Reuter K, Scheffler M. Composition, structure, and stability of RuO 2 (110) as a function of oxygen pressure. Phys Rev B. 2001;65(3):035406.
  • Valtiner M, Todorova M, Neugebauer J. Hydrogen adsorption on polar ZnO (0001)-Zn: extending equilibrium surface phase diagrams to kinetically stabilized structures. Phys Rev B. 2010;82(16):165418.
  • Lundgren E, Gustafson J, Mikkelsen A, et al. Kinetic hindrance during the initial oxidation of Pd (100) at ambient pressures. Phys Rev Lett. 2004;92(4):046101.
  • Lundgren E, Kresse G, Klein C, et al. Two-dimensional oxide on Pd (111). Phys Rev Lett. 2002;88(24):246103.
  • Todorova M, Lundgren E, Blum V, et al. The Pd(100)–(5×5)R27°-O surface oxide revisited. Surf Sci. 2003;541(1):101–112.
  • Valtiner M, Todorova M, Grundmeier V, et al. Temperature Stabilized Surface Reconstructions at Polar ZnO(0001). Phys. Rev. Lett. 2009;103(6):065502.
  • Kwiatkowski da Silva A, Ponge D, Peng Z, et al. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys. Nat Commun. 2018;9(1):1137.
  • Bohlen J, Letzig D, Kainer KU. New perspectives for wrought magnesium alloys. Mater Sci Forum. 2007;546:1–10.
  • Partridge P. The crystallography and deformation modes of hexagonal close-packed metals. Metall Rev. 1967;12(1):169–194.
  • Yoo M. Slip, twinning, and fracture in hexagonal close-packed metals. Metall Trans A. 1981;12(3):409–418.
  • Sandlöbes S, Zaefferer S, Schestakow I, et al. On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys. Acta Mater. 2011;59(2):429–439.
  • Sandlöbes S, Friák M, Zaefferer S, et al. The relation between ductility and stacking fault energies in Mg and Mg–Y alloys. Acta Mater. 2012;60(6):3011–3021.
  • Pei Z, Friák M, Sandlöbes S, et al. Rapid theory-guided prototyping of ductile Mg alloys: from binary to multi-component materials. New J Phys. 2015;17(9):093009.
  • Sandlöbes S, Friák M, Korte-Kerzel S, et al. A rare-earth free magnesium alloy with improved intrinsic ductility. Sci Rep. 2017;7(1):10458.
  • Zeng ZR, Bian MZ, Xu SW, et al. Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet. Mater Sci Eng A. 2016;674:459–471.
  • Weinberger CR, Thompson GB. Review of phase stability in the group IVB and VB transition-metal carbides. J Am Ceram Soc. 2018;101(10):4401–4424.
  • Xie C, Oganov AR, Li D, et al. Effects of carbon vacancies on the structures, mechanical properties, and chemical bonding of zirconium carbides: a first-principles study. Phys Chem Chem Phys. 2016;18(17):12299–12306.
  • Hu W, Xiang J, Zhang Y, et al. Superstructural nanodomains of ordered carbon vacancies in nonstoichiometric ZrC0. 61. J Mater Res. 2012;27(9):1230.
  • Zhang Y, Wang J, Liu B, et al. Understanding the behavior of native point defects in ZrC by first-principles calculations. J Am Ceram Soc. 2014;97(12):4024–4030.
  • Du H, Jia C-L, Mayer J. Local crystallographic shear structures in a [201] extended mixed dislocations of SrTiO3 unraveled by atomic-scale imaging using transmission electron microscopy and spectroscopy. Faraday Discuss. 2019;213:245–258.
  • Batuk M, Turner S, Abakumov AM, et al. Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure. Inorg Chem. 2014;53(4):2171–2180.
  • Müller J, Eggeler G, Spiecker E. On the identification of superdislocations in the γ′-phase of single-crystal Ni-base superalloys – An application of the LACBED method to complex microstructures. Acta Mater. 2015;87:34–44.
  • Heggen M, Houben L, Feuerbacher M. Plastic-deformation mechanism in complex solids. Nat Mater. 2010;9(4):332–336.
  • Heidelmann M, Heggen M, Dwyer C, et al. Comprehensive model of metadislocation movement in Al13Co4. Scr Mater. 2015;98:24–27.
  • Korte-Kerzel S. Microcompression of brittle and anisotropic crystals: recent advances and current challenges in studying plasticity in hard materials. MRS Commun. 2017;7:109–120.
  • Östlund F, Howie PR, Ghisleni R, et al. Ductile–brittle transition in micropillar compression of GaAs at room temperature. Philos Mag. 2011;91(7-9):1190–1199.
  • Korte-Kerzel S, Schnabel V, Clegg WJ, et al. Room temperature plasticity in m-Al13Co4 studied by microcompression and high resolution scanning transmission electron microscopy. Scr Mater. 2018;146:327–330.
  • Paufler P. Early work on Laves phases in East Germany. Intermetallics. 2011;19(4):599–612.
  • Guénolé J, Mouhib F-Z, Huber L, et al. Basal slip in Laves phases: the synchroshear dislocation. Scr Mater. 2019;166:134–138.
  • Hazzledine PM, Pirouz P. Synchroshear transformations in Laves phases. Scr Metall Mater. 1993;28(10):1277–1282.
  • Chisholm MF, Kumar S, Hazzledine P. Dislocations in complex materials. Science. 2005;307(5710):701–703.
  • Zhou Y, Xue Y, Chen D, et al. Atomic-scale configurations of synchroshear-induced deformation twins in the ionic MnS crystal. Sci Rep. 2014;4:5118.
  • Vedmedenko O, Rösch F, Elsässer C. First-principles density functional theory study of phase transformations in NbCr2 and TaCr2. Acta Mater. 2008;56(18):4984–4992.
  • Zubair M, Sandlöbes S, Wollenweber M, et al. On the role of Laves phases on the mechanical properties of Mg-Al-Ca alloys. Mater Sci Eng A. 2019;756:272–283.
  • Zubair M, Sandlöbes-Haut S, Wollenweber MA, et al. Strain heterogeneity and micro-damage nucleation under tensile stresses in an Mg–5Al–3Ca alloy with an intermetallic skeleton. Mater Sci Eng A. 2019;767:138414.
  • Maaß R, Derlet PM. Micro-plasticity and recent insights from intermittent and small-scale plasticity. Acta Mater. 2018;143:338–363.
  • Mathur H, Maier-Kiener V, Korte-Kerzel S. Deformation in the γ-Mg17Al12 phase at 25–278° C. Acta Mater. 2016;113:221–229.
  • Durst K, Maier V. Dynamic nanoindentation testing for studying thermally activated processes from single to nanocrystalline metals. Curr Opin Solid State Mater Sci. 2015;19(6):340–353.
  • Barnoush A, Hosemann P, Molina-Aldareguia J, et al. In situ small-scale mechanical testing under extreme environments. MRS Bull. 2019;44(6):471–477.
  • Gibson JSKL, Schröders S, Zehnder C, et al. On extracting mechanical properties from nanoindentation at temperatures up to 1000°C. Extreme Mech Lett. 2017;17:43–49.
  • Schröders S, Sandlöbes S, Birke C, et al. Room temperature deformation in Fe7Mo6 µ-phase. Int J Plast. 2018;108:125–143.
  • Takata N, Ghassemi Armaki H, Terada Y, et al. Plastic deformation of the C14 Laves phase (Fe,Ni)2Nb. Scr Mater. 2013;68(8):615–618.
  • Chen R, Sandlöbes S, Zehnder C, et al. Deformation mechanisms, activated slip systems and critical resolved shear stresses in an Mg-LPSO alloy studied by micro-pillar compression. Mater Des. 2018;154:203–216.
  • Kishida K, Shinkai Y, Inui H. Room temperature deformation of 6H–SiC single crystals investigated by micropillar compression. Acta Mater. 2020;187:19–28.
  • Zhao C, Chu K, Mei Q, et al. Laves phase strengthening in ultrafine-grained Co–Cr–Ta micropillars under uniaxial compression at modest temperature. Mater Sci Eng A. 2020;791:139782.
  • Korte S, Barnard JS, Stearn RJ, et al. Deformation of silicon – insights from microcompression testing at 25–500 °C. Int J Plast. 2011;27(11):1853–1866.
  • Schröders S, Sandlöbes S, Berkels B, et al. On the structure of defects in the Fe7Mo6 μ-phase. Acta Mater. 2019;167:257–266.
  • Pei Z, Zhang X, Hickel T, et al. Atomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on Mg. NPJ Comput Mater. 2017;3(1):1–7.
  • Pei Z, Zhu L-F, Friák M, et al. Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg–Y alloys. New J Phys. 2013;15(4):043020.
  • Nie JF, Zhu Y, Liu J, et al. Periodic segregation of solute atoms in fully coherent twin boundaries. Science. 2013;340(6135):957–960.
  • Sadigh B, Erhart P, Stukowski A, et al. Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B. 2012;85(18):184203.
  • Zhao H, Huber L, Lu W, et al. Interplay of chemistry and faceting at grain boundaries in a model Al Alloy. Phys Rev Lett. 2020;124(10):106102.
  • Yang Z, Zhang L, Chisholm MF, et al. Precipitation of binary quasicrystals along dislocations. Nat Commun. 2018;9(1):1–7.
  • Liu X, Song X, Wang H, et al. Complexions in WC-Co cemented carbides. Acta Mater. 2018;149:164–178.
  • Korte S, Clegg WJ. Studying plasticity in hard and soft Nb-Co intermetallics. Adv Eng Mater. 2012;14(11):991–997.
  • Guénolé J, Zubair M, Roy S, et al. Exploring the transfer of plasticity across Laves phase interfaces in a dual phase magnesium alloy. Mater Des. 2021;202:109572.