4,523
Views
8
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Functional liquid crystalline epoxy networks and composites: from materials design to applications

ORCID Icon, , , , , & show all
Pages 201-229 | Received 16 Jan 2021, Accepted 26 May 2021, Published online: 10 Jun 2021

References

  • Pham HQ, Marks MJ. Epoxy resins in Encyclopedia of Polymer Science and Technology. Fourth Edition. Edited by Herman F. Mark. New Jersey, John Wiley & Sons, Inc.; 2004, 678–804.
  • Vidil T, Tournilhac F, Musso S, et al. Control of reactions and network structures of epoxy thermosets. Prog Polym Sci. 2016;62:126–179.
  • Auvergne R, Caillol S, David G, et al. Biobased thermosetting epoxy: present and future. Chem Rev. 2014;114(2):1082–1115.
  • Jin FL, Li X, Park SJ. Synthesis and application of epoxy resins: a review. J Ind Eng Chem. 2015;29:1–11.
  • De Gennes PG. Possibilites offertes par la reticulation de polymeres en presence d'un cristal liquide. Phys Lett A. 1969;28(11):725–726.
  • Barclay GG, Ober CK. Liquid crystalline and rigid-rod networks. Prog Polym Sci. 1993;18(5):899–945.
  • White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater. 2015;14(11):1087–1098.
  • Douglas EP. Liquid crystalline thermosets in Encyclopedia of Polymer Science and Technology. Fourth Edition. Edited by Herman F. Mark. New Jersey, John Wiley & Sons, Inc.; 2002, 139–159.
  • Shiota A, Ober CK. Rigid rod and liquid crystalline thermosets. Prog Polym Sci. 1997;22(5):975–1000.
  • Carfagna C, Amendola E, Giamberini M. Liquid crystalline epoxy based thermosetting polymers. Prog Polym Sci. 1997;22(8):1607–1647.
  • Carfagna C, Amendola E, Giamberini M. Liquid crystalline epoxy resins containing binaphthyl group as rigid block with enhanced thermal stability. Macromol Chem Phys. 1994;195(7):2307–2315.
  • Carfagna C, Amendola E, Giamberini M, et al. Liquid-crystalline epoxy resins: a glycidyl-terminated benzaldehyde azine cured in the nematic phase. Macromol Chem Phys. 1994;195(1):279–287.
  • Lin QH, Yee AF, Earls JD, et al. Phase transformations of a liquid crystalline epoxy during curing. Polymer (Guildf). 1994;35(12):2679–2682.
  • Mormann W, Brocher M. Bröcher Markus Liquid crystalline thermosets (LCT) from diaromatic mesogenic diepoxides and aromatic diamines: synthesis and phase behaviour of model compounds and intermediate structures. Polymer (Guildf). 1998;39(25):6597–6603.
  • Giamberjni M, Amendola E, Carfagna C. 1995. Liquid crystalline epoxy thermosets. Mol Cryst Liq Cryst Sci Technol Sect A-Mol Cryst Liq Cryst; 266:9–22.
  • Sue HJ, Earls JD, Hefner RE. J Mater Sci. 1997;32(15):4031–4037.
  • Lu MG, Shim MJ, Kim SW. Dielectric relaxation and mechanical properties of liquid crystalline epoxy thermosets. J Appl Polym Sci. 2000;77(7):1568–1573.
  • Lu MG, Shim MJ, Kim SW. Thermal degradation of LC epoxy thermosets. J Appl Polym Sci. 2000;75(12):1514–1521.
  • Ortiz C, Kim R, Rodighiero E, et al. Deformation of a polydomain, liquid crystalline epoxy-based thermoset. Macromolecules. 1998;31(13):4074–4088.
  • Ortiz C, Wagner M, Bhargava N, et al. Deformation of a polydomain, smectic liquid crystalline elastomer. Macromolecules. 1998;31(24):8531–8539.
  • Ortiz C, Belenky L, Ober CK, et al. J Mater Sci. 2000;35(8):2079–2086.
  • Harada M, Aoyama K, Ochi M. Fracture mechanism of liquid-crystalline epoxy resin systems with different phase structures. J Polym Sci Part B-Polymer Phys. 2004;42(22):4044–4052.
  • Harada M, Akamatsu N, Ochi M, et al. Tobita Masayuki investigation of fracture mechanism on liquid crystalline epoxy networks arranged by a magnetic field. J Polym Sci Part B-Polymer Phys. 2006;44(10):1406–1412.
  • Harada M, Sumitomo K, Nishimoto Y, et al. Ochi Mitsukazu relationship between fracture toughness and domain size of liquid-crystalline epoxy resins having polydomain structure. J Polymer Sci Part B-Polymer Phys. 2009;47(2):156–165.
  • Akatsuka M, Takezawa Y. Study of high thermal conductive epoxy resins containing controlled high-order structures. J Appl Polym Sci. 2003;89(9):2464–2467.
  • Harada M, Ochi M, Tobita M, et al. Thermal-conductivity properties of liquid-crystalline epoxy resin cured under a magnetic field. J Polymer Sci Part B-Polymer Phys. 2003;41(14):1739–1743.
  • Tokushige N, Mihara T, Koide N. Thermal properties and photo-polymerization of diepoxy monomers with mesogenic group. Mol Cryst Liq Cryst. 2005;428:33–47.
  • Lin CH, Huang JM, Wang CS. Synthesis, characterization and properties of tetramethyl stilbene-based epoxy resins for electronic encapsulation. Polymer (Guildf). 2002;43(10):2959–2967.
  • Feng JX, Berger KR, Douglas EP. Water vapor transport in liquid crystalline and non-liquid crystalline epoxies. J Mater Sci. 2004;39(10):3413–3423.
  • Giamberini M, Malucelli G, Ambrogi V, et al. The effect of chain packing on the thermal and dynamic mechanical behaviour of liquid-crystalline epoxy thermosets. Polym Int. 2010;59(10):1415–1421.
  • Kisiel M, Mossety-Leszczak B. Eur Polym J. 2020;124:109507.
  • Yang Y, Xu Y, Ji Y, et al. Prog Mater Sci. 2020;100710.
  • Montarnal D, Capelot M, Tournilhac F, et al. Silica-like malleable materials from permanent organic networks. Science. 2011;334(6058):965–968.
  • Ohm C, Brehmer M, Zentel R. Liquid crystalline Elastomers as actuators and sensors. Adv Mater. 2010;22(31):3366–3387.
  • Pei ZQ, Yang Y, Chen QM, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater. 2014;13(1):36–41.
  • Liu GD, Gao JG, Song LL, et al. Synthesis and curing of liquid-crystalline epoxy resins containing a biphenyl mesogen. Macromol Chem Phys. 2006;207(23):2222–2231.
  • Carfagna C, Amendola E, Giamberini M, et al. Curing kinetics of liquid-crystalline epoxy resins. Liq Cryst. 1993;13(4):571–584.
  • Barclay GG, Ober CK, Papathomas KI, et al. Liquid crystalline epoxy thermosets based on dihydroxymethylstilbene: synthesis and characterization. J Polym Sci Part A – Polym Chem. 1992;30(9):1831–1843.
  • Mormann W, Brocher M. “Liquid crystalline” thermosets from 4,4′-bis(2,3-epoxypropoxy)biphenyl and aromatic diamines. Macromol Chem Phys. 1996;197(6):1841–1851.
  • Lee JY, Jang JS. The effect of mesogenic length on the curing behavior and properties of liquid crystalline epoxy resins. Polymer (Guildf). 2006;47(9):3036–3042.
  • Lee JY, S J. Jang. Effect of substituents on the curing of liquid crystalline epoxy resin. J Polym Sci Part A – Polym Chem. 1998;36(6):911–917.
  • Mormann W, Brocher M. Liquid crystalline thermosets from triaromatic ester group containing diepoxides and aromatic diamines. Macromol Chem Phys. 1998;199(5):853–859.
  • Mormann W, Broche M, Schwarz P. Mesogenic azomethine based diepoxides – monomers for the synthesis of “liquid crystal” thermoset networks. Macromol Chem Phys. 1997;198(11):3615–3626.
  • Jahromi S, Lub J, Mol GN. Synthesis and photoinitiated polymerization of liquid crystalline diepoxides. Polymer (Guildf). 1994;35(3):622–629.
  • Mallon JJ, M P. Adams. Synthesis and characterization of novel epoxy monomers and liquid crystal thermosets. J Polym Sci Part A – Polym Chem. 1993;31(9):2249–2260.
  • Shiota A, K C. Ober. Synthesis and curing of novel LC twin epoxy monomers for liquid crystal thermosets. J Polym Sci Part A – Polym Chem. 1996;34(7):1291–1303.
  • Choi EJ, Ahn HK, Lee JK, et al. Liquid crystalline twin epoxy monomers based on azomethine mesogen: synthesis and curing with aromatic diamines. Polymer (Guildf). 2000;41(21):7617–7625.
  • Shiota A, Ober CK. Analysis of smectic structure formation in liquid crystalline thermosets. Polymer (Guildf). 1997;38(23):5857–5867.
  • Harada M, Ando J, Hattori S, et al. In-situ analysis of the structural formation process of liquid–crystalline epoxy thermosets by simultaneous SAXS/WAXS measurements using synchrotron radiation. Polym J. 2013;45(1):43–49.
  • Lee JY, Jang JS, Hwang SS, et al. Synthesis and curing of liquid crystalline epoxy resins based on 4,4′-biphenol. Polymer (Guildf). 1998;39(24):6121–6126.
  • Su WFA, Chen KC, Tseng SY. Effects of chemical structure changes on thermal, mechanical, and crystalline properties of rigid rod epoxy resins. J Appl Polym Sci. 2000;78(2):446–451.
  • Islam AM, Lim H, You NH, et al. Enhanced thermal conductivity of liquid crystalline epoxy resin using controlled linear polymerization. ACS Macro Lett. 2018;7(10):1180–1185.
  • McCracken JM, Tondiglia VP, Auguste AD, et al. Adv Funct Mater. 2019;29(40):10.
  • Ambrogi V, Giamberini M, Cerruti P, et al. Liquid crystalline elastomers based on diglycidyl terminated rigid monomers and aliphatic acids. Part 1. Synthesis and characterization. Polymer (Guildf). 2005;46(7):2105–2121.
  • Stuparu MC, Khan A. Thiol-epoxy “click” chemistry: application in preparation and postpolymerization modification of polymers. J Polym Sci Part A – Polym Chem. 2016;54(19):3057–3070.
  • Gablier A, Saed MO, Terentjev EM. Transesterification in epoxy–thiol exchangeable liquid crystalline elastomers. Macromolecules. 2020;53(19):8642–8649.
  • Giamberini M, Cerruti P, Ambrogi V, et al. Liquid crystalline elastomers based on diglycidyl terminated rigid monomers and aliphatic acids. Part 2. Mechanical characterization. Polymer (Guildf). 2005;46(21):9113–9125.
  • Amendola E, Carfagna C, Giamberini M, et al. Pisaniello Giuseppina curing reactions of a liquid crystalline epoxy resin based on the diglycidyl ether of 4,4′-dihydroxy-α-methylstilbene. Macromol Chem Phys. 1995;196(5):1577–1591.
  • Lin QH, Yee AF, Sue HJ, et al. Evolution of structure and properties of a liquid crystalline epoxy during curing. J Polym Sci Part B-Polym Phys. 1997;35(14):2363–2378.
  • Liu JP, Wang CC, Campbell GA, et al. Effects of liquid crystalline structure formation on the curing kinetics of an epoxy resin. J Polym Sci Part A – Polym Chem. 1997;35(6):1105–1124.
  • Li Y, Badrinarayanan P, Kessler MR. Liquid crystalline epoxy resin based on biphenyl mesogen: thermal characterization. Polymer (Guildf). 2013;54(12):3017–3025.
  • Rosu D, Mititelu A, Cascaval CN. Cure kinetics of a liquid-crystalline epoxy resin studied by non-isothermal data. Polym Test. 2004;23(2):209–215.
  • Vyazovkin S, Mititelu A, Sbirrazzuoli N. Kinetics of epoxy–amine curing accompanied by the formation of liquid crystalline structure. Macromol Rapid Commun. 2003;24(18):1060–1065.
  • Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27(18):1515–1532.
  • Li Y, Kessler MR. Cure kinetics of liquid crystalline epoxy resins based on biphenyl mesogen. J Therm Anal Calorim. 2014;117(1):481–488.
  • Mossety-Leszczak B, Kisiel M, Lechowicz JB, et al. Analysis of curing reaction of liquid-crystalline epoxy compositions by using temperature-modulated DSC TOPEM®. J Therm Anal Calorim. 2019;138(4):2435–2444.
  • Li Y, Pruitt C, Rios O, et al. Controlled shape memory behavior of a smectic main-chain liquid crystalline elastomer. Macromolecules. 2015;48(9):2864–2874.
  • Li Y, Kessler MR. Creep-resistant behavior of self-reinforcing liquid crystalline epoxy resins. Polymer (Guildf). 2014;55(8):2021–2027.
  • Harada M, Okamoto N, Ochi M. Fracture toughness and fracture mechanism of liquid-crystalline epoxy resins with different polydomain structures. J Polym Sci Part B-Polym Phys. 2010;48(22):2337–2345.
  • Robinson EJ, Douglas EP, Mecholsky JJ. The effect of stoichiometry on the fracture toughness of a liquid crystalline epoxy. Polym Eng Sci. 2002;42(2):269–279.
  • Guo HL, Zheng J, Gan JQ, et al. Relationship between crosslinking structure and low dielectric constant of hydrophobic epoxies based on substituted biphenyl mesogenic units. RSC Adv. 2015;5(107):88014–88020.
  • Castell P, Galia M, Serra A. Synthesis of new epoxy liquid-crystalline monomers with Azo groups in the central mesogenic core. crosslinking with amines. Macromol Chem Phys. 2001;202(9):1649–1657.
  • Ribera D, Mantecon A, Serra A. Liquid crystalline thermosets from dimeric LC epoxy resins cured with primary and tertiary amines. Macromol Symp. 2003;199:267–276.
  • Barclay GG, McNamee SG, Ober CK, et al. The mechanical and magnetic alignment of liquid crystalline epoxy thermosets. J Polym Sci Part A – Polym Chem. 1992;30(9):1845–1853.
  • Giamberini M, Amendola E, Carfagna C. Lightly crosslinked liquid crystalline epoxy resins: The effect of rigid-rod length and applied stress on the state of order of the cured thermoset. Macromol Chem Phys 1997;198(10):3185–3196.
  • Li Y, Kessler MR. Liquid crystalline epoxy resin based on biphenyl mesogen: effect of magnetic field orientation during cure. Polymer (Guildf). 2013;54(21):5741–5746.
  • Shiota A, Ober KC. Smectic networks obtained from twin LC epoxy monomers?Mechanical deformation of the smectic networks. J Polym Sci Part B-Polym Phys. 1998;36(1):31–38.
  • Tan CB, Sun H, Fung BM, et al. Properties of liquid crystal epoxy thermosets cured in a magnetic field. Macromolecules. 2000;33(17):6249–6254.
  • Lincoln DM, Douglas EP. Control of orientation in liquid crystalline epoxies via magnetic field processing. Polym Eng Sci. 1999;39(10):1903–1912.
  • Pottie L, Costa-Torro F, Tessier M, et al. Investigation of anisotropic epoxy–amine thermosets synthesised in a magnetic field. Liq Cryst. 2008;35(8):913–924.
  • Lee JY. Relationship between anisotropic orientation and curing of liquid crystalline epoxy resin. J Appl Polym Sci. 2006;102(2):1712–1716.
  • Amendola E, Carfagna C, Giamberini M, et al. Anisotropic liquid crystalline epoxy thermoset. Liq Cryst. 1996;21(3):317–325.
  • Tanaka S, Hojo F, Takezawa Y, et al. Highly oriented liquid crystalline epoxy film: robust high thermal-conductive ability. ACS Omega. 2018;3(3):3562–3570.
  • Tanaka S, Takezawa Y, Kanie K, et al. Muramatsu Atsushi homeotropically aligned monodomain-like smectic-A structure in liquid crystalline epoxy films: analysis of the local ordering structure by microbeam small-angle X-ray scattering. ACS Omega. 2020;5(33):20792–20799.
  • Benicewicz BC, Smith ME, Earls JD, et al. Magnetic field orientation of liquid crystalline epoxy thermosets. Macromolecules. 1998;31(15):4730–4738.
  • Li Y, Rios O, Kessler MR. Thermomagnetic processing of liquid-crystalline epoxy resins and their mechanical characterization using nanoindentation. ACS Appl Mater Interfaces. 2014;6(21):19456–19464.
  • Kotikian A, Truby RL, Boley JW, et al. Adv Mater. 2018;30(10):6.
  • Davidson EC, Kotikian A, Li SC, et al. 3D printable and reconfigurable liquid crystal elastomers with light-induced shape memory via dynamic bond exchange. Adv Mater. 2020;32(1):1905682.
  • Lopez-Valdeolivas M, Liu DQ, Broer DJ, et al. 4D printed actuators with soft-robotic functions. Macromol. Rapid Commun. 2018;39(5):1700710.
  • Ambulo CP, Burroughs JJ, Boothby JM, et al. Four-dimensional printing of liquid crystal elastomers. ACS Appl Mater Interfaces. 2017;9(42):37332–37339.
  • Mossety-Leszczak B, Strachota B, Strachota A, et al. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field. Eur Polym J. 2015;72:238–255.
  • Mossety-Leszczak B, Wlodarska M. Liquid-crystalline epoxy thermosets as matrices for ordered nanocomposites-a summary of experimental studies. Polym Compos. 2017;38(2):277–286.
  • Mossety-Leszczak B, Kisiel M, Szalanski P, et al. The influence of a magnetic field on the morphology and thermomechanical properties of a liquid crystalline epoxy carbon composite. Polym Compos. 2018;39:E2573–E2583.
  • Bae J, Jang J, Yoon SH. Cure behavior of the liquid-crystalline epoxy/carbon nanotube system and the effect of surface treatment of carbon fillers on cure reaction. Macromol Chem Phys. 2002;203(15):2196–2204.
  • Chen S, Hsu SH, Wu MC, et al. Kinetics studies on the accelerated curing of liquid crystalline epoxy resin/multiwalled carbon nanotube nanocomposites. J Polym Sci Part B – Polym Phys. 2011;49(4):301–309.
  • Luo X, Yu XY, Ma YH, et al. Preparation and cure kinetics of epoxy with nanodiamond modified with liquid crystalline epoxy. Thermochim Acta. 2018;663:1–8.
  • Cai ZQ, Sun JZ, Ren H, et al. Effects of the heating rate and the amount of organic montmorillonite on the thermal Properties of the novel liquid crystalline epoxy nanocomposite. Polym Plast Technol Eng. 2008;47(4):363–366.
  • Shanmugharaj AM, Ryu SH. Study on the effect of aminosilane functionalized nanoclay on the curing kinetics of epoxy nanocomposites. Thermochim Acta. 2012;546:16–23.
  • Esmizadeh E, Naderi G, Yousefi AA, et al. Investigation of curing kinetics of epoxy resin/novel nanoclay–carbon nanotube hybrids by non-isothermal differential scanning calorimetry. J Therm Anal Calorim. 2016;126(2):771–784.
  • Shen MM, Lu MG, Chen YL, et al. Effects of modifiers in organoclays on the curing reaction of liquid-crystalline epoxy resin. J Appl Polym Sci. 2005;96(4):1329–1334.
  • Ha SM, Lee HL, Lee SG, et al. Thermal conductivity of graphite filled liquid crystal polymer composites and theoretical predictions. Compos Sci Technol. 2013;88:113–119.
  • Zhang ZY, Zhang QK, Shen Z, et al. Synthesis and characterization of new liquid crystalline thermoplastic elastomers containing mesogen-jacketed liquid crystalline polymers. Macromolecules. 2016;49(2):475–482.
  • Wang FF, Yao YM, Zeng XL, et al. Highly thermally conductive polymer nanocomposites based on boron nitride nanosheets decorated with silver nanoparticles. RSC Adv. 2016;6(47):41630–41636.
  • Harada M, Hamaura N, Ochi M, et al. Thermal conductivity of liquid crystalline epoxy/BN filler composites having ordered network structure. Compos Pt B-Eng. 2013;55:306–313.
  • Yang XT, Zhu JH, Yang D, et al. Compos Pt B-Eng. 2020;185:107784.
  • Giang T, Kim J. Effect of backbone moiety in diglycidylether-terminated liquid crystalline epoxy on thermal conductivity of epoxy/alumina composite. J Ind Eng Chem. 2015;30:77–84.
  • Yeo H, Islam AM, You NH, et al. Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Compos Sci Technol. 2017;141:99–105.
  • Yeom YS, Cho KY, Seo HY, et al. Compos Sci Technol. 2020;186:107915.
  • Carfagna C, Acierno D, Di Palma V, et al. Composites based on carbon fibers and liquid crystalline epoxy resins, 1 monomer synthesis and matrix curing. Macromol Chem Phys. 2000;201(18):2631–2638.
  • Carfagna C, Meo G, Nicolais L, et al. Composites based on carbon fibers and liquid crystalline epoxy resins, 2 dynamic-mechanical analysis and fracture toughness behavior. Macromol Chem Phys. 2000;201(18):2639–2645.
  • Sue HJ, Earls JD, Hefner RE, et al. Plummer: ‘morphology in diglycidyl ether of 4,4 ‘-dihydroxy-alpha-methylstilbene liquid crystalline epoxy composites. Lancaster: Technomic Publ Co Inc; 618–626; 1999.
  • Guo HL, Lu MG, Liang LY, et al. J Appl Polym Sci. 2014;131(12):9.
  • Jang J, Bae J, Yoon SH. A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide–carbon nanotube composites. J Mater Chem. 2003;13(4):676–681.
  • Hsu SH, Wu MC, Chen S, et al. Synthesis, morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites. Carbon N Y. 2012;50(3):896–905.
  • Lin YS, Hsu SLC, Ho TH, et al. Polymers (Basel). 2020;12(9):1913.
  • Ambrogi V, Silvestre MG, Vito F, et al. Nanocomposites based on liquid crystalline resins. Mol Cryst Liq Cryst. 2005;429:1–20.
  • Guo HL, Li YW, Zheng J, et al. High thermo-responsive shape memory epoxies based on substituted biphenyl mesogenic with good water resistance. RSC Adv. 2015;5(82):67247–67257.
  • Rao YQ, Liu AD, O'Connell K. Barrier properties and structure of liquid crystalline epoxy and its nanocomposites. Polymer (Guildf). 2018;142:109–118.
  • Jeong I, Kim CB, Kang DG, et al. Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole-dipole interactions. J Polym Sci Part A – Polym Chem. 2019;57(6):708–715.
  • Shen WB, Wang L, Cao YP, et al. Cationic photopolymerization of liquid crystalline epoxide in mesogenic solvents and its application in polymer-stabilized liquid crystals. Polymer (Guildf). 2019;172:231–238.
  • Nie L, Burgess A, Ryan A. Moisture permeation in liquid crystalline epoxy thermosets. Macromol Chem Phys. 2013;214(2):225–235.
  • Kawamoto S, Fujiwara H, Nishimura S. Hydrogen characteristics and ordered structure of mono-mesogen type liquid-crystalline epoxy polymer. Int J Hydrogen Energy. 2016;41(18):7500–7510.
  • Shen WB, Wang L, Chen G, et al. A facile route towards controllable electric-optical performance of polymer-dispersed liquid crystal via the implantation of liquid crystalline epoxy network in conventional resin. Polymer (Guildf). 2019;167:67–77.
  • Shen WB, Cao YP, Zhang CH, et al. Network morphology and electro-optical characterisations of epoxy-based polymer stabilised liquid crystals. Liq Cryst. 2020;47(4):481–488.
  • Hsu SH, Chen RS, Chang YL, et al. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite. Acta Biomater. 2012;8(11):4151–4161.
  • Giamberini M, Amendola E, Carfagna C. Curing of a rigid rod epoxy resin with an aliphatic diacid: an example of a lightly crosslinked liquid crystalline thermoset. Macromol Rapid Commun. 1995;16(2):97–105.
  • Belmonte A, Lama GC, Gentile G, et al. Thermally-triggered free-standing shape-memory actuators. Eur Polym J. 2017;97:241–252.
  • Belmonte A, Lama GC, Gentile G, et al. Synthesis and characterization of liquid-crystalline networks: toward autonomous shape-memory actuation. J Phys Chem C. 2017;121(40):22403–22414.
  • Belmonte A, Lama GC, Cerruti P, et al. Motion control in free-standing shape-memory actuators. Smart Mater Struct. 2018;27(7):17.
  • Li Y, Zhang Y, Rios O, et al. Liquid crystalline epoxy networks with exchangeable disulfide bonds. Soft Matter. 2017;13(29):5021–5027.
  • Li Y, Zhang Y, Rios O, et al. Photo-responsive liquid crystalline epoxy networks with exchangeable disulfide bonds. RSC Adv. 2017;7(59):37248–37254.
  • Chen QM, Li YS, Yang Y, et al. Durable liquid-crystalline vitrimer actuators. Chem Sci. 2019;10(10):3025–3030.
  • Liu XF, Luo X, Liu BW, et al. Toughening epoxy resin using a liquid crystalline elastomer for versatile application. ACS Appl Polym Mater. 2019;1(9):2291–2301.
  • Yang Y, Terentjev EM, Zhang YB, et al. Reprocessable thermoset soft actuators. Angew Chem Int Ed. 2019;58(48):17474–17479.
  • Pei Z, Yang Y, Chen Q, et al.Regional shape control of strategically assembled multishape memory vitrimers. Adv Mater. 2016;28(1):156–160.
  • Yang Y, Pei ZQ, Li Z, et al. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold. J Am Chem Soc. 2016;138(7):2118–2121.
  • Wang HM, Yang Y, Zhang MC, et al. Electricity-triggered self-healing of conductive and thermostable vitrimer enabled by paving aligned carbon nanotubes. ACS Appl Mater Interfaces. 2020;12(12):14315–14322.
  • Lama GC, Cerruti P, Lavorgna M, et al. Controlled actuation of a carbon nanotube/epoxy shape-memory liquid crystalline elastomer. J Phys Chem C. 2016;120(42):24417–24426.
  • Marotta A, Lama GC, Ambrogi V, et al. Shape memory behavior of liquid-crystalline elastomer/graphene oxide nanocomposites. Compos Sci Technol. 2018;159:251–258.
  • Li Y, Rios O, Keum JK, et al. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds. ACS Appl Mater Interfaces. 2016;8(24):15750–15757.
  • Lu XL, Guo SW, Tong X, et al. Adv Mater. 2017;29(28):7.
  • Lu XL, Zhang H, Fei GX, et al. Adv Mater. 2018;30(14):8.