1,091
Views
4
CrossRef citations to date
0
Altmetric
Full Critical Review

Photocatalytic removal of gaseous ethanol, acetaldehyde and acetic acid: from a fundamental approach to real cases

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 864-897 | Received 10 Jun 2021, Accepted 02 Dec 2021, Published online: 13 Jan 2022

References

  • WHO. Economic cost of the health impact of air pollution in Europe. 2015.
  • Brasche S, Bischof W. Daily time spent indoors in German homes – baseline data for the assessment of indoor exposure of German occupants. Int J Hyg Environ Health. 2005;208:247–253.
  • Hwang HM, Park EK, Young TM, et al. Occurrence of endocrine-disrupting chemicals in indoor dust. Sci Total Environ. 2008;404:26–35.
  • Weschler CJ, Nazaroff WW. Semivolatile organic compounds in indoor environments. Atmos Environ. 2008;42:9018–9040.
  • Weschler CJ. Changes in indoor pollutants since the 1950s. Atmos Environ. 2009;43:153–169.
  • Net S, Sempéré R, Delmont A, et al. Behavior and ecotoxicological state of phthalates in different environmental matrices. Environ Sci Technol. 2015;49:4019–4035.
  • Baez A, Padilla H, Garcia R, et al. Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico. Sci Total Environ. 2003;302:211–226.
  • Salvadores F, Minen RI, Carballada J, et al. Kinetic study of acetaldehyde degradation applying visible light photocatalysis. Chem Eng Technol. 2016;39:166–174.
  • Krýsa J, Baudys M, Vislocka X, et al. Composite photocatalysts based on TiO2–carbon for air pollutant removal: aspects of adsorption. Catal Today. 2020;340:34–39.
  • Fujishima A, Zhang X, Tryk D. Tio2 Photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63:515–582.
  • Rimoldi L, Pargoletti E, Meroni D, et al. Concurrent role of metal (Sn, Zn) and N species in enhancing the photocatalytic activity of TiO2 under solar light. Catal Today. 2018;313:40–46.
  • Cappelletti G, Pifferi V, Mostoni S, et al. Hazardous o-toluidine mineralization by photocatalytic bismuth doped ZnO slurries. Chem Commun. 2015;51:10459–10462.
  • Weon S, Choi E, Kim H, et al. Active {001} facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: from material development to commercial indoor air cleaner application. Environ Sci Technol. 2018;52:9330–9340.
  • Zhong L, Haghighat F. Modeling of by-products from photocatalytic oxidation (PCO) indoor air purifiers: a case study of ethanol. Build Environ. 2018;144:427–436.
  • Bianchi CL, Cerrato G, Bresolin BM, et al. Digitally printed AgNPs doped TiO2 on commercial porcelain-grès tiles: synergistic effects and continuous photocatalytic antibacterial activity. Surfaces. 2020;3:11–25.
  • Hauchecorne B, Lenaerts S. Unravelling the mysteries of gas phase photocatalytic reaction pathways by studying the catalyst surface: a literature review of different Fourier transform infrared spectroscopic reaction cells used in the field. J Photochem Photobiol C Photochem Rev. 2013;14:72–85.
  • Paz Y. Application of TiO2 Photocatalysis for air treatment: patents’ overview. Appl Catal B Environ. 2010;99:448–460.
  • Antonello A, Soliveri G, Meroni D, et al. Photocatalytic remediation of indoor pollution by transparent TiO2 films. Catal Today. 2014;230:35–40.
  • Millet DB, Apel E, Henze DK, et al. Natural and anthropogenic ethanol sources in North America and potential atmospheric impacts of ethanol fuel use. Environ Sci Technol. 2012;46:8484–8492.
  • Raillard C, Héquet V, Le Cloirec P, et al. Photocatalytic oxidation of methyl ethyl ketone over sol-gel and commercial TiO2 for the improvement of indoor air. Water Sci Technol. 2006;53:107–115.
  • Malayeri M, Lee CS, Haghighat F. Modeling of photocatalytic oxidation reactor for methyl ethyl ketone removal from indoor environment: systematic model development and validation. Chem Eng J. 2021;409:128265.
  • Bianchi CL, Gatto S, Pirola C, et al. Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: comparison between nano and micro-sized TiO2. Appl Catal B Environ. 2014;146:123–130.
  • Debono O, Thevenet F, Gravejat P, et al. Toluene photocatalytic oxidation at ppbv levels: kinetic investigation and carbon balance determination. Appl Catal B Environ. 2011;106:600–608.
  • D’Hennezel O, Pichat P, Ollis DF. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCl pretreated TiO2: by-products and mechanisms. J Photochem Photobiol A Chem. 1998;118:197–204.
  • Ding X, Liu H, Chen J, et al. In situ growth of well-aligned Ni-MOF nanosheets on Nickel Foam for enhanced photocatalytic degradation of typical volatile organic compounds. Nanoscale. 2020;12:9462–9470.
  • Hansen JØ, Bebensee R, Martinez U, et al. Unravelling site-specific photo-reactions of ethanol on rutile TiO2(110). Sci Rep. 2016;6:21990.
  • Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293:269–271.
  • Stucchi M, Boffito D, Pargoletti E, et al. Nano-MnO2 decoration of TiO2 microparticles to promote gaseous ethanol visible photoremoval. Nanomaterials. 2018;8:686.
  • Hauchecorne B, Terrens D, Verbruggen S, et al. Elucidating the photocatalytic degradation pathway of acetaldehyde: an FTIR in situ study under atmospheric conditions. Appl Catal B Environ. 2011;106:630–638.
  • Guzman F, Chuang SSC. Tracing the reaction steps involving oxygen and IR observable species in ethanol photocatalytic oxidation on TiO2. J Am Chem Soc. 2010;132:1502–1503.
  • Tan TH, Scott J, Ng YH, et al. C–C cleavage by Au/TiO2 during ethanol oxidation: understanding bandgap photoexcitation and plasmonically mediated charge transfer via quantitative in Situ DRIFTS. ACS Catal. 2016;6:8021–8029.
  • Raskó J, Kiss J. Adsorption and surface reactions of acetaldehyde on TiO2, CeO2 and Al2O3. Appl Catal A Gen. 2005;287:252–260.
  • Wang C, Groenzin H, Shultz MJ. Comparative study of acetic acid, methanol, and water adsorbed on anatase TiO2 probed by sum frequency generation spectroscopy. J Am Chem Soc 2005;127:9736–9744.
  • Batault F, Thevenet F, Hequet V, et al. Acetaldehyde and acetic acid adsorption on TiO2 under dry and humid conditions. Chem Eng J. 2015;264:197–210.
  • Bahruji H, Bowker M, Brookes C, et al. The adsorption and reaction of alcohols on TiO2 and Pd/TiO2 catalysts. Appl Catal A Gen. 2013;454:66–73.
  • Zehr RT, Henderson MA. Acetaldehyde photochemistry on TiO2(110). Surf Sci. 2008;602:2238–2249.
  • Pepin PA, Diroll BT, Choi HJ, et al. Thermal and photochemical reactions of methanol, acetaldehyde, and acetic acid on brookite TiO2 nanorods. J Phys Chem C. 2017;121:11488–11498.
  • Farfan-Arribas E, Madix RJ. Role of defects in the adsorption of aliphatic alcohols on the TiO2(110) surface. J Phys Chem B. 2002;106:10680–10692.
  • Jayaweera PM, Quah EL, Idriss H. Photoreaction of ethanol on TiO2(110) single-crystal surface. J Phys Chem C. 2007;111:1764–1769.
  • Kim YK, Hwang C-C. Photoemission study on the adsorption of ethanol on clean and oxidized rutile TiO2(110)-1×1 surfaces. Surf Sci. 2011;605:2082–2086.
  • Ma Z, Guo Q, Mao X, et al. Photocatalytic dissociation of ethanol on TiO2(110) by near-band-Gap excitation. J Phys Chem C. 2013;117:10336–10344.
  • Wang Z, Huang J, Amal R, et al. Solid-state NMR study of photocatalytic oxidation of acetaldehyde over the flame-made F-TiO2 catalyst. Appl Catal B Environ. 2018;223:16–21.
  • Pilkenton S, Hwang S-J, Raftery D. Ethanol photocatalysis on TiO2-coated optical microfiber, supported monolayer, and powdered catalysts: an in situ NMR study. J Phys Chem B. 1999;103:11152–11160.
  • Muir JN, Choi Y, Idriss H. Computational study of ethanol adsorption and reaction over rutile TiO2(110) surfaces. Phys Chem Chem Phys. 2012;14:11910.
  • Plata JJ, Collico V, Márquez AM, et al. Understanding acetaldehyde thermal chemistry on the TiO2(110) rutile surface: from adsorption to reactivity. J Phys Chem C. 2011;115:2819–2825.
  • Yao M, Ji Y, Wang H, et al. Adsorption mechanisms of typical carbonyl-containing volatile organic compounds on anatase TiO2(001) surface: a DFT investigation. J Phys Chem C. 2017;121:13717–13722.
  • Manzhos S, Giorgi G, Yamashita K. A density functional tight binding study of acetic acid adsorption on crystalline and amorphous surfaces of titania. Molecules. 2015;20:3371–3388.
  • Hansen JØ, Huo P, Martinez U, et al. Direct evidence for ethanol dissociation on rutile TiO2(110). Phys Rev Lett. 2011;107:136102.
  • Martinez U, Hansen JØ, Lira E, et al. Reduced step edges on rutile TiO2(110) as competing defects to oxygen vacancies on the terraces and reactive sites for ethano. Phys Rev Lett. 2012;109:155501.
  • Huo P, Hansen JØ, Martinez U, et al. Ethanol diffusion on rutile TiO2(110) mediated by H adatoms. J Phys Chem Lett. 2012;3:283–288.
  • Tao J, Luttrell T, Bylsma J, et al. Adsorption of acetic acid on rutile TiO2(110) vs (011)-2 × 1 surfaces. J Phys Chem C. 2011;115:3434–3442.
  • Gamble L, Jung LS, Campbell CT. Decomposition and protonation of surface ethoxys on TiO2(110). Surf Sci. 1996;348:1–16.
  • Zhang R, Liu Z, Ling L, et al. The effect of anatase TiO2 surface structure on the behavior of ethanol adsorption and its initial dissociation step: a DFT study. Appl Surf Sci. 2015;353:150–157.
  • Kim YK, Kay BD, White JM, et al. Alcohol chemistry on rutile TiO2(110): the influence of alkyl substituents on reactivity and selectivity. J Phys Chem C. 2007;111:18236–18242.
  • Katsiev K, Harrison G, Alghamdi H, et al. Mechanism of ethanol photooxidation on single-crystal anatase TiO2(101). J Phys Chem C. 2017;121:2940–2950.
  • Nadeem AM, Muir JMR, Connelly KA, et al. Ethanol photo-oxidation on a rutile TiO2(110) single crystal surface. Phys Chem Chem Phys. 2011;13:7637.
  • Harrison G, Katsiev K, Alsalik Y, et al. Switch in photocatalytic reaction selectivity: the effect of oxygen partial pressure on carbon-carbon bond Dissociation over hydroxylated TiO2(110) surfaces. J Catal. 2018;363:117–127.
  • Stefanov BI, Topalian Z, Granqvist CG, et al. Acetaldehyde adsorption and condensation on anatase TiO2: influence of acetaldehyde dimerization. J Mol Catal A Chem. 2014;381:77–88.
  • Rekoske JE, Barteau MA. Competition between acetaldehyde and crotonaldehyde during adsorption and reaction on anatase and rutile titanium dioxide. Langmuir. 1999;15:2061–2070.
  • Lusvardi V, Barteau MA, Farneth WE. The effects of bulk titania crystal structure on the adsorption and reaction of aliphatic alcohols. J Catal. 1995;153:41–53.
  • Singh M, Zhou N, Paul DK, et al. IR spectral evidence of aldol condensation: acetaldehyde adsorption over TiO2 surface. J Catal. 2008;260:371–379.
  • Thevenet F, Olivier L, Batault F, et al. Acetaldehyde adsorption on TiO2: influence of NO2 preliminary adsorption. Chem Eng J. 2015;281:126–133.
  • Topalian Z, Stefanov BI, Granqvist CG, et al. Adsorption and photo-oxidation of acetaldehyde on TiO2 and sulfate-modified TiO2: studies by in situ FTIR spectroscopy and micro-kinetic modeling. J Catal. 2013;307:265–274.
  • Idriss H, Barteau MA. Selectivity and mechanism shifts in the reactions of acetaldehyde on oxidized and reduced TiO2(001) surfaces. Catal Letters. 1996;40:147–153.
  • Luo S, Falconer JL. Acetone and acetaldehyde oligomerization on TiO2 surfaces. J Catal. 1999;185:393–407.
  • Luo S, Falconer JL. Aldol condensation of acetaldehyde to form high molecular weight compounds on TiO2. Cataysis Lett. 1999;57:89–93.
  • Idriss H, Pierce K, Barteau MA. Carbonyl coupling on the titanium dioxide TiO2(001) surface. J Am Chem Soc. 1991;113:715–716.
  • Thomas AG, Syres KL. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem Soc Rev. 2012;41:4207.
  • Hussain H, Torrelles X, Cabailh G, et al. Quantitative structure of an acetate dye molecule analogue at the TiO2–acetic acid interface. J Phys Chem C. 2016;120:7586–7590.
  • Sayago DI, Polcik M, Lindsay R, et al. Structure determination of formic acid reaction products on TiO2(110). J Phys Chem B. 2004;108:14316–14323.
  • Onishi H, Iwasawa Y. STM-imaging of formate intermediates adsorbed on a TiO2(110) surface. Chem Phys Lett. 1994;226:111–114.
  • Thevuthasan S, Herman G, Kim Y, et al. The structure of formate on TiO2(110) by scanned-energy and scanned-angle photoelectron diffraction. Surf Sci. 1998;401:261–268.
  • Käckell P, Terakura K. Dissociative adsorption of formic acid and diffusion of formate on the TiO2(110) surface: the role of hydrogen. Surf Sci. 2000;461:191–198.
  • Tanner RE, Liang Y, Altman EI. Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2. Surf Sci. 2002;506:251–271.
  • Altman EI, Tanner RE. Using scanning tunneling microscopy to characterize adsorbates and reactive intermediates on transition metal oxide surfaces. Catal Today. 2003;85:101–111.
  • Yu YY, Gong XQ. Unique adsorption behaviors of carboxylic acids at rutile TiO2(110). Surf Sci. 2015;641:82–90.
  • Grinter DC, Nicotra M, Thornton G. Acetic acid adsorption on anatase TiO2(101). J Phys Chem C. 2012;116:11643–11651.
  • Foster AS, Nieminen RM. Adsorption of acetic and trifluoroacetic acid on the TiO2(110) surface. J Chem Phys. 2004;121:9039–9042.
  • McGill PR, Idriss H. DFT Study of carboxylic acids modes of adsorption on rutile TiO2(011) surfaces. Surf Sci. 2008;602:3688–3695.
  • Onishi H, Iwasawa Y. STM observation of surface reactions on a metal oxide. Surf Sci. 1996;357–358:773–776.
  • Quah EL, Wilson JN, Idriss H. Photoreaction of the rutile TiO2(011) single-crystal surface: reaction with acetic acid. Langmuir. 2010;26:6411–6417.
  • Pichat P. Some views about indoor air photocatalytic treatment using TiO2: conceptualization of humidity effects, active oxygen species, problem of C1–C3 carbonyl pollutants. Appl Catal B Environ. 2010;99:428–434.
  • Kershis MD, White MG. Photooxidation of ethanol and 2-propanol On TiO2(110): evidence for methyl radical ejection. Phys Chem Chem Phys. 2013;15:17976.
  • Vorontsov A, Savinov E, Barannik G, et al. Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over TiO2. Catal Today. 1997;39:207–218.
  • Sauer ML, Ollis DF. Photocatalyzed oxidation of ethanol and acetaldehyde in humidified air. J Catal. 1996;158:570–582.
  • Sivachandiran L, Thevenet F, Gravejat P, et al. Investigation of NO and NO2 adsorption mechanisms on TiO2 at room temperature. Appl Catal B Environ. 2013;142–143:196–204.
  • Hadjiivanov K, Bushev V, Kantcheva M, et al. Infrared spectroscopy study of the species arising during nitrogen dioxide adsorption on Titania (anatase). Langmuir. 1994;10:464–471.
  • Walenta CA, Kollmannsberger SL, Kiermaier J, et al. Ethanol photocatalysis on rutile TiO2(110): the role of defects and water. Phys Chem Chem Phys. 2015;17:22809–22814.
  • Zhang H, Zhou P, Ji H, et al. Enhancement of photocatalytic decarboxylation on TiO2 by water-induced change in adsorption-mode. Appl Catal B Environ. 2018;224:376–382.
  • Backes MJ, Lukaski AC, Muggli DS. Active sites and effects of H2O and temperature on the photocatalytic Oxidation of 13C-acetic acid on TiO2. Appl Catal B Environ. 2005;61:21–35.
  • Liao L, Lien C, Lin J. FTIR study of adsorption and photoreactions of acetic acid on TiO2. Phys Chem Chem Phys. 2001;3:3831–3837.
  • Miller KL, Falconer JL, Medlin JW. Effect of water on the adsorbed structure of formic acid on TiO2 anatase (101). J Catal. 2011;278:321–328.
  • Hasan MA, Zaki MI, Pasupulety L. Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation. Appl Catal A Gen. 2003;243:81–92.
  • Ngo S, Betts LM, Dappozze F, et al. Kinetics and mechanism of the photocatalytic degradation of acetic acid in absence or presence of O2. J Photochem Photobiol A Chem. 2017;339:80–88.
  • Piera E, Ayllón JA, Doménech X, et al. Tio2 deactivation during Gas-phase photocatalytic oxidation of ethanol. Catal Today. 2002;76:259–270.
  • Falconer JL, Magrini-Bair KA. Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO2. J Catal. 1998;179:171–178.
  • Kim H, Choi W. Effects of surface fluorination of TiO2 on photocatalytic oxidation of gaseous acetaldehyde. Appl Catal B Environ. 2007;69:127–132.
  • Muggli DS, Keyser SA, Falconer JL. Photocatalytic decomposition of acetic acid on TiO2. Catal Letters. 1998;55:129–132.
  • Xu C, Yang W, Guo Q, et al. Photoinduced decomposition of acetaldehyde on a reduced TiO2(110) surface: involvement of lattice oxygen. Phys Chem Chem Phys. 2016;18:30982–30989.
  • Lee GD, Tuan VA, Falconer JL. Photocatalytic oxidation and decomposition of acetic acid on titanium silicalite. Environ Sci Technol. 2001;35:1252–1258.
  • Hwang SJ, Raftery D. In situ solid-state NMR studies of ethanol photocatalysis: characterization of surface sites and their reactivities. Catal Today. 1999;49:353–361.
  • Nosaka Y, Koenuma K, Ushida K, et al. Reaction mechanism of the decomposition of acetic acid on illuminated TiO2 powder studied by means of in situ electron spin resonance measurements. Langmuir. 1996;12:736–738.
  • Murdoch M, Waterhouse GIN, Nadeem MA, et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem. 2011;3:489–492.
  • Rimoldi L, Ambrosi C, Di Liberto G, et al. Impregnation versus bulk synthesis: how the synthetic route affects the photocatalytic efficiency of Nb/Ta:N codoped TiO2 nanomaterials. J Phys Chem C. 2015;119:24104–24115.
  • Nimlos MR, Wolfrum EJ, Brewer ML, et al. Gas-phase heterogeneous photocatalytic oxidation of ethanol: pathways and kinetic modeling. Environ Sci Technol. 1996;30:3102–3110.
  • Z Yu, S Chuang. In situ IR study of adsorbed species and photogenerated electrons during photocatalytic oxidation of ethanol on TiO2. J Catal. 2007;246:118–126.
  • Meroni D, Ardizzone S, Cappelletti G, et al. Photocatalytic removal of ethanol and acetaldehyde By N-promoted Tio2 films: the role of the different nitrogen sources. Catal Today. 2011;161:169–174.
  • Coronado JM, Kataoka S, Tejedor-Tejedor I, et al. Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO2: simultaneous FTIR analysis of gas and surface species. J Catal. 2003;219:219–230.
  • Rimoldi L, Giordana A, Cerrato G, et al. Insights on the photocatalytic degradation processes supported by TiO2/WO3 systems. The case of ethanol and tetracycline. Catal Today. 2019;328:210–215.
  • Li B, Zhao J, Onda K, et al. Ultrafast interfacial proton-coupled electron transfer. Science. 2006;311:1436–1440.
  • Tamaki Y, Furube A, Murai M, et al. Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: evaluation of the reaction rates and yields. J Am Chem Soc. 2006;128:416–417.
  • Yamakata A, Ishibashi T, Onishi H. Electron- and hole-capture reactions on Pt/TiO2 photocatalyst exposed to methanol vapor studied with time-resolved infrared absorption spectroscopy. J Phys Chem B. 2002;106:9122–9125.
  • Shen M, Henderson MA. Identification of the active species in photochemical hole scavenging reactions of methanol on TiO2. J Phys Chem Lett. 2011;2:2707–2710.
  • Muggli DS, McCue JT, Falconer JL. Mechanism of the photocatalytic oxidation of ethanol on TiO2. J Catal. 1998;173:470–483.
  • Muggli DS, Lowery KH, Falconer JL. Identification of adsorbed species during steady-state photocatalytic oxidation of ethanol on TiO2. J Catal. 1998;180:111–122.
  • Muggli DS, Larson SA, Falconer JL. Photocatalytic oxidation of ethanol: isotopic labeling and transient reaction. J Phys Chem. 1996;100:15886–15889.
  • Sopyan I, Watanabe M, Murasawa S, et al. An efficient TiO2 thin-film photocatalyst: photocatalytic properties In gas-phase acetaldehyde degradation. J Photochem Photobiol A Chem 1996;98:79–86.
  • Hu H, Xiao W, Yuan J, et al. Preparations of TiO2 Film coated on foam nickel substrate by sol-gel processes and its photocatalytic activity for degradation of acetaldehyde. J Environ Sci. 2007;19:80–85.
  • Obuchi E, Sakamoto T, Nakano K, et al. Photocatalytic decomposition of acetaldehyde over TiO2/SiO2 catalyst. Chem Eng Sci. 1999;54:1525–1530.
  • Wilson DP, Sporleder D, White MG. Final state distributions of methyl radical desorption from ketone Photooxidation On TiO2(110). Phys Chem Chem Phys. 2012;14:13630.
  • Sieland F, Schneider J, Bahnemann DW. Photocatalytic activity and charge carrier dynamics of TiO2 powders with a binary particle size distribution. Phys Chem Chem Phys. 2018;20:8119–8132.
  • Ohko Y, Tryk DA, Hashimoto K, et al. Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination. J Phys Chem B. 1998;102:2699–2704.
  • Takeuchi M, Deguchi J, Sakai S, et al. Effect of H2O vapor addition on the photocatalytic oxidation of ethanol, acetaldehyde and acetic acid in the gas phase on TiO2 semiconductor powders. Appl Catal B Environ. 2010;96:218–223.
  • Kraeutler B, Bard AJ. Photoelectrosynthesis of ethane from acetate ion at an N-type titanium dioxide electrode. The photo-kolbe reaction. J Am Chem Soc. 1977;99:7729–7731.
  • Heciak A, Morawski AW, Grzmil B, et al. Cu-modified TiO2 photocatalysts for decomposition of acetic acid with simultaneous formation of C1–C3 hydrocarbons and hydrogen. Appl Catal B Environ. 2013;140–141:108–114.
  • Anthony Byrne J, Eggins BR, Dunlop PSM, et al. The effect of hole acceptors on the photocurrent response of particulate TiO2 anodes. Analyst. 1998;123:2007–2012.
  • Sato S. Photo-kolbe reaction at gas-solid interfaces. J Phys Chem. 1983;87:3531–3537.
  • Henderson MA. A surface science perspective on TiO2 photocatalysis. Surf Sci Rep. 2011;66:185–297.
  • Muggli DS, Falconer JL. UV-enhanced exchange of O2 with H2O adsorbed on TiO2. J Catal. 1999;181:155–159.
  • Henderson MA, Epling WS, Perkins CL, et al. Interaction of molecular oxygen with the vacuum-annealed TiO2(110) surface: molecular and dissociative channels. J Phys Chem B. 1999;103:5328–5337.
  • Henderson MA. Acetone chemistry on oxidized and reduced TiO2(110). J Phys Chem B. 2004;108:18932–18941.
  • Kraeutler B, Bard AJ. Heterogeneous photocatalytic decomposition of saturated carboxylic acids on titanium dioxide powder. Decarboxylative route to alkanes. J Am Chem Soc. 1978;100:5985–5992.
  • Saqlain S, Cha BJ, Kim SY, et al. Impact of humidity on the removal of volatile organic compounds over Fe loaded TiO2 under visible light irradiation: insight into photocatalysis mechanism by operando DRIFTS. Mater Today Commun. 2021;26:102119.
  • Sano T, Negishi N, Takeuchi K, et al. Degradation of toluene and acetaldehyde with Pt-loaded TiO2 catalyst and parabolic trough concentrator. Sol Energy. 2004;77:543–552.
  • Sato S, Ueda K, Kawasaki Y, et al. In Situ IR observation of surface species during the photocatalytic decomposition of acetic acid over TiO2 films. J Phys Chem B. 2002;106:9054–9058.
  • Bianchi CL, Pirola C, Galli F, et al. Nano and micro-TiO2 for the photodegradation of ethanol: experimental data and kinetic modelling. RSC Adv. 2015;5:53419–53425.
  • Muñoz-Batista MJ, Ballari MM, Cassano AE, et al. Ceria promotion of acetaldehyde photo-oxidation in a TiO2-based catalyst: a spectroscopic and kinetic study. Catal Sci Technol. 2015;5:1521–1531.
  • Eufinger K, Poelman D, Poelman H, et al. Photocatalytic activity of DC magnetron sputter deposited amorphous TiO2 thin films. Appl Surf Sci. 2007;254:148–152.
  • Yamamoto A. Preparation of titania foams having an open cellular structure and their application to photocatalysis. J Catal. 2004;226:462–465.
  • Adjimi S, Roux JC, Sergent N, et al. Photocatalytic oxidation of ethanol using paper-based nano-TiO2 immobilized on porous silica: a modelling study. Chem Eng J. 2014;251:381–391.
  • Ouwehand J, Van Eynde E, De Canck E, et al. Titania-functionalized diatom frustules as photocatalyst for indoor air purification. Appl Catal B Environ. 2018;226:303–310.
  • Kim S, Lim SK. Preparation of TiO2-embedded carbon nanofibers and their photocatalytic activity in the oxidation of gaseous acetaldehyde. Appl Catal B Environ. 2008;84:16–20.
  • Sabatini V, Rimoldi L, Tripaldi L, et al. TiO2-SiO2-PMMA terpolymer floating device for the photocatalytic remediation of water and gas phase pollutants. Catalysts. 2018;8:568.
  • Pei Z-F, Ponec V. On the intermediates of the acetic acid reactions on oxides: an IR study. Appl Surf Sci. 1996;103:171–182.
  • Murcia JJ, Hidalgo MC, Navío JA, et al. In situ FT-IR study of the adsorption and photocatalytic oxidation of ethanol over sulfated and metallized TiO2. Appl Catal B Environ. 2013;142–143:205–213.
  • Fraters BD, Amrollahi R, Mul G. How Pt nanoparticles affect TiO2-induced gas-phase photocatalytic oxidation reactions. J Catal. 2015;324:119–126.
  • Zeng Q, Xie X, Wang X, et al. Enhanced photocatalytic performance of Ag@TiO2 for the gaseous acetaldehyde photodegradation under fluorescent lamp. Chem Eng J. 2018;341:83–92.
  • Körösi L, Papp S, Bertóti I, et al. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chem Mater. 2007;19:4811–4819.
  • Ghosh M, Liu J, Chuang SSC, et al. Fabrication of hierarchical V2O5 nanorods on TiO2 nanofibers and their enhanced photocatalytic activity under visible light. ChemCatChem. 2018;10:3305–3318.
  • Sannino D, Vaiano V, Ciambelli P. Innovative structured VOx/TiO2 photocatalysts supported on phosphors for the selective photocatalytic oxidation of ethanol to acetaldehyde. Catal Today. 2013;205:159–167.
  • Lin W, Xie X, Wang X, et al. Efficient adsorption and sustainable degradation of gaseous acetaldehyde and O-xylene using rGO-TiO2 photocatalyst. Chem Eng J. 2018;349:708–718.
  • Araña J, Doña-Rodrı́guez JM, González-Dı́az O, et al. Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu. J Mol Catal A Chem. 2004;215:153–160.
  • Kim DS, Kwak S-Y. The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl Catal A Gen. 2007;323:110–118.
  • Verbruggen SW, Masschaele K, Moortgat E, et al. Factors driving the activity of commercial titanium dioxide powders towards gas phase photocatalytic oxidation of acetaldehyde. Catal Sci Technol. 2012;2:2311–2318.
  • Rismanchian A, Chen Y-W, Chuang SSC. In situ infrared study of photoreaction of ethanol on Au and Ag/TiO2. Catal Today. 2016;264:16–22.
  • Gonzalez-Yañez EO, Fuentes GA, Hernández-Terán ME, et al. Influence of supported gold particles on the surface reactions of ethanol on TiO2. Appl Catal A Gen. 2013;464–465:374–383.
  • Boyle DT, Wilke JA, Palomino RM, et al. Elucidation of active sites for the reaction of ethanol on TiO2/Au(111). J Phys Chem C. 2017;121:7794–7802.
  • Kennedy JC, Datye AK. Photothermal Heterogeneous oxidation of ethanol over Pt/TiO2. J Catal. 1998;179:375–389.
  • Zeng J, Francia C, Dumitrescu MA, et al. Electrochemical performance of Pt-based catalysts supported on different ordered mesoporous carbons (Pt/OMCs) for oxygen reduction reaction. Ind Eng Chem Res. 2012;51:7500–7509.
  • Kong L, Guo X, Xu J, et al. Morphology control of WO3 nanoplate film on W foil by oxalic acid for photocatalytic gaseous acetaldehyde degradation. J Photochem Photobiol A Chem. 2020;401:112760.
  • Jin Z, Murakami N, Tsubota T, et al. Complete oxidation of acetaldehyde over a composite photocatalyst of graphitic carbon nitride and tungsten(VI) oxide under visible-light irradiation. Appl Catal B Environ. 2014;150–151:479–485.
  • Katsumata K, Motoyoshi R, Matsushita N, et al. Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J Hazard Mater. 2013;260:475–482.
  • Li C, Raziq F, Liu C, et al. Enhanced photocatalytic activity for degrading pollutants of g-C3N4 by promoting oxygen adsorption after H3BO3 modification. Appl Surf Sci. 2015;358:240–245.
  • Raziq F, Qu Y, Humayun M, et al. Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl Catal B Environ. 2017;201:486–494.
  • Yamaguchi Y, Usuki S, Yamatoya K, et al. Efficient photocatalytic degradation of gaseous acetaldehyde over ground Rh–Sb Co-doped SrTiO3 under visible light irradiation. RSC Adv. 2018;8:5331–5337.
  • Pargoletti E, Mostoni S, Rassu G, et al. Zn- vs Bi-based oxides for o-toluidine photocatalytic treatment under solar light. Environ Sci Pollut Res. 2017;24.
  • Dias LP, Correia FC, Ribeiro JM, et al. Photocatalytic Bi2O3/TiO2:N thin films with enhanced surface area and visible light activity. Coatings. 2020;10:445.
  • Gao Z, Wang J, Muhammad Y, et al. Enhanced moisture-resistance and excellent photocatalytic performance of synchronous N/Zn-decorated MIL-125(Ti) for vaporous acetaldehyde degradation. Chem Eng J. 2020;388:124389.
  • Zhang J, Hu Y, Qin J, et al. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chem Eng J. 2020;385:123814.
  • Fang X, Lu G, Mahmood A, et al. A novel ternary mica/TiO2/Fe2O3 composite pearlescent pigment for the photocatalytic degradation of acetaldehyde. J Photochem Photobiol A Chem. 2020;400:112617.
  • Fang X, Lu G, Mahmood A, et al. A novel ternary mica-titania@rGO composite pearlescent pigment for the photocatalytic degradation of gaseous acetaldehyde. Chem Eng J. 2020;396:125312.
  • Peral J, Ollis DF. Tio2 photocatalyst deactivation by gas-phase oxidation of heteroatom organics. J Mol Catal A Chem. 1997;115:347–354.
  • J Peral, D Ollis. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J Catal 1992;136:554–565.
  • Destaillats H, Sleiman M, Sullivan DP, et al. Key parameters influencing the performance of Photocatalytic oxidation (PCO) air purification under realistic indoor conditions. Appl Catal B Environ. 2012;128:159–170.
  • Lyu J, Zhu L, Burda C. Considerations to improve adsorption and photocatalysis of low concentration air pollutants on TiO2. Catal Today. 2014;225:24–33.
  • Mamaghani AH, Haghighat F, Lee CS. Photocatalytic degradation of VOCs on various commercial titanium dioxides: impact of operating parameters on removal efficiency and by-products generation. Build Environ. 2018;138:275–282.
  • Héquet V, Raillard C, Debono O, et al. Photocatalytic oxidation of VOCs at ppb level using a closed-loop reactor: the mixture effect. Appl Catal B Environ. 2018;226:473–486.
  • Mamaghani AH, Haghighat F, Lee CS. Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl Catal B Environ. 2017;203:247–269.
  • Lugo-Vega CS, Moreira J, Serrano-Rosales B, et al. Kinetics of the pollutant photocatalytic conversion in a photo-CREC-air reactor. Chem Eng J. 2017;317:1069–1082.
  • Boyjoo Y, Sun H, Liu J, et al. A review on photocatalysis for air treatment: from catalyst development to reactor design. Chem Eng J. 2017;310:537–559.
  • van Walsem, J.; Verbruggen, S.W.; Modde, B.; Lenaerts, S.; Denys, S. CFD investigation of a multi-tube photocatalytic reactor in non-steady-state conditions. Chem Eng J 2016, 304, 808–816.
  • ISO 22197-2:2019, Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for air-purification performance of semiconducting photocatalytic materials — Part 2: Removal of acetaldehyde. 2019.
  • Mills A, Hill C, Robertson PKJ. Overview of the current ISO tests for photocatalytic materials. J Photochem Photobiol A Chem. 2012;237:7–23.
  • AFNOR Norme expérimentale XP B44-13 Méthode D’essais Et D’analyse Pour La Mesure D’efficacité De Systèmes Photocatalytiques Pour L’élimination Des Composés Organiques Volatiles/Odeurs Dans L’air Intérieur En Recirculation: Test En Enceinte Confinée 2009.
  • Costarramone N, Kartheuser B, Pecheyran C, et al. Efficiency and harmfulness of air-purifying photocatalytic commercial devices: from standardized chamber tests to nanoparticles release. Catal Today. 2015;252:35–40.
  • Costarramone N, Cantau C, Desauziers V, et al. Photocatalytic air purifiers for indoor air: European standard and pilot room experiments. Environ Sci Pollut Res. 2017;24:12538–12546.
  • Ghislain M, Costarramone N, Pigot T, et al. High frequency air monitoring by selected ion flow tube-mass spectrometry (SIFT-MS): influence of the matrix for simultaneous analysis of VOCs, CO2, ozone and water. Microchem J 2020;153:104435.
  • Chen W, Zhang JS, Zhang Z. Performance of air cleaners for removing multiple volatile organic compounds in indoor air. ASHRAE Trans. 2005;111(PART 1):1101–1114.
  • Blondeau P, Abadie MO, Durand A, et al. Experimental characterization of the removal efficiency and energy effectiveness of central air cleaners. Energy Built Environ. 2021;2:1–12.
  • Zhong L, Haghighat F. Photocatalytic air cleaners and materials technologies – abilities and limitations. Build Environ. 2015;91:191–203.
  • Furukawa S, Shishido T, Teramura K, et al. Photocatalytic oxidation of alcohols over TiO2 covered with Nb2O5. ACS Catal. 2012;2:175–179.
  • Araña J, Doña-Rodrı́guez JM, Cabo CGI, et al. FTIR Study of gas-phase alcohols photocatalytic degradation with TiO2 and AC-TiO2. Appl Catal B Environ. 2004;53:221–232.
  • Awa K, Akashi R, Akita A, et al. Highly efficient and selective oxidation of ethanol to acetaldehyde by a hybrid photocatalyst consisting of SnO2 nanorod and rutile TiO2 with heteroepitaxial junction. ChemPhysChem. 2019;20:2155–2161.
  • Balayeva NO, Fleisch M, Bahnemann DW. Surface-grafted WO3/TiO2 photocatalysts: enhanced visible-light activity towards indoor air purification. Catal Today. 2018;313:63–71.
  • Weon S, Choi W. Tio2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds. Environ Sci Technol. 2016;50:2556–2563.
  • Wang X, Yang Y, Lu G, et al. In-situ preparation of Ti3C2/Ti3+-TiO2 composites with mosaic structures for the adsorption and photo-degradation of flowing acetaldehyde under visible light. Appl Surf Sci. 2020;531:147101.
  • Kong L, Zhang X, Wang C, et al. Ti3+ defect mediated g-C3N4/TiO2 Z-scheme system For Enhanced photocatalytic redox performance. Appl Surf Sci. 2018;448:288–296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.