725
Views
2
CrossRef citations to date
0
Altmetric
Full Critical Reviews

Six decades of UHMWPE in reconstructive surgery

, , &
Pages 46-81 | Received 31 Dec 2020, Accepted 08 Feb 2022, Published online: 20 May 2022

References

  • Kurtz SM. UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices. Cambridge (MA): Academic Press; 2009.
  • Hussain M, Naqvi RA, Abbas N, et al. Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a promising polymer material for biomedical applications: a concise review. Polymers (Basel). 2020;12(2):323.
  • Pietrzak WS. Ultra-high molecular weight polyethylene for total hip acetabular liners: a brief review of current status. J Invest Surg. 2021;34(3):321–323.
  • Del Prever EMB, Bistolfi A, Bracco P, et al. UHMWPE for arthroplasty: past or future? J Orthop Traumatol. 2009;10(1):1–8.
  • Patil NA, Njuguna J, Kandasubramanian B. UHMWPE for biomedical applications: performance and functionalization. Eur Polym J. 2020;125:109529.
  • Spiegelberg S, Kozak A, Braithwaite G. Characterization of physical, chemical, and mechanical properties of UHMWPE. In: UHMWPE Biomaterials handbook. Norwich (NY): Elsevier; 2016. p. 531–552.
  • Pivec R, Johnson AJ, Mears SC, et al. Hip arthroplasty. Lancet. 2012;380(9855):1768–1777.
  • Liphardt A-M, Windahl SH, Sehic E, et al. Changes in mechanical loading affect arthritis-induced bone loss in mice. Bone. 2020;131:115149.
  • Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 2014;73(7):1323–1330.
  • Busija L, Bridgett L, Williams SR, et al. Osteoarthritis. Best Pract Res Clin Rheumatol. 2010;24(6):757–768.
  • Li Y, Yang C, Zhao H, et al. New developments of Ti-based alloys for biomedical applications. Materials (Basel, Switzerland). 2014;7(3):1709–1800.
  • Scales J, Stinson N. Tissue reactions to polytetrafluorethylene. The Lancet. 1964;283(7325):169.
  • Waugh W. The plan fulfilled: Wrightington 1959–1969. In: John Charnley: the man and the hip. London: Springer; 1990. p. 113–138.
  • Charnley J. Arthroplasty of the hip: a new operation. Lancet. 1961;1(7187):1129–1132.
  • Charnley J. Low friction arthroplasty of the hip: theory and practice. Berlin: Springer Science & Business Media; 2012.
  • Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007;370(9597):1508–1519.
  • Apostu D, Lucaciu O, Berce C, et al. Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review. J Int Med Res. 2018;46(6):2104–2119.
  • Bitar D, Parvizi J. Biological response to prosthetic debris. World J Orthop. 2015;6(2):172–189.
  • Johan Kärrholm CR, Nauclér E, Vinblad J, et al. (2018.
  • Kärrholm J. The Swedish Hip Arthroplasty Register (www.shpr.se). Acta Orthop. 2010;81(1):3–4.
  • Malchau H, Herberts P, Eisler T, et al. The Swedish total hip replacement register. JBJS. 2002;84(suppl_2):2–20.
  • Merola M, Affatato S. Materials for hip prostheses: a review of wear and loading considerations. Materials (Basel). 2019;12(3):495.
  • Basu B. Biomaterials science and tissue engineering: principles and methods. Cambridge: Cambridge University Press; 2017.
  • Puértolas J, Kurtz S. Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: a review. J Mech Behav Biomed Mater. 2014;39:129–145.
  • Wilhelm SK, Henrichsen JL, Siljander M, et al. Polyethylene in total knee arthroplasty: where are we now? J Orthop Surg. 2018;26(3):230949901880835.
  • Sobieraj M, Rimnac C. Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed Mater. 2009;2(5):433–443.
  • Brostow W, Lobland HEH. Materials: introduction and applications. Hoboken (NJ): John Wiley; 2016.
  • Kurtz SM. A primer on UHMWPE. In: Kurtz SM, editor. UHMWPE biomaterials handbook. Burlington: Elsevier; 2009. p. 1–6.
  • Lin L, Argon A. Structure and plastic deformation of polyethylene. J Mater Sci. 1994;29(2):294–323.
  • Barron D, Birkinshaw C. Ultra-high molecular weight polyethylene – evidence for a three-phase morphology. Polymer. 2008;49(13-14):3111–3115.
  • Kurtz SM, Muratoglu OK, Evans M, et al. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials. 1999;20(18):1659–1688.
  • Bellare A, Schnablegger H, Cohen R. A small-angle X-ray scattering study of high-density polyethylene and ultrahigh molecular weight polyethylene. Macromolecules. 1995;28(23):7585–7588.
  • Kurtz SM. From ethylene gas to UHMWPE component: the process of producing orthopedic implants. In: Kurtz SM, editor. UHMWPE Biomaterials handbook. Burlington: Elsevier; 2016. p. 7–20.
  • Li S. Ultra-high molecular weight polyethylene. The material and its use in total joint implants. J Bone Joint Surg. 1994;76(7):1080.
  • Li S, Burstein AH. Ultra-high molecular weight polyethylene. The material and its use in total joint implants. J Bone Joint Surg Am. 1994;76(7):1080–1090.
  • Eyerer P, Frank A, Jin R. Plastverarbeiter. 1985;36:46–54.
  • Kurtz SM, Pruitt L, Jewett CW, et al. The yielding, plastic flow, and fracture behavior of ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials. 1998;19(21):1989–2003.
  • Edidin A, Kurtz S. Development and validation of the small punch test for UHMWPE used in total joint replacements, Key Engineering Materials, 2001, Trans Tech Publ, 1–40.
  • Wagner H, Dillon J. Viscosity and molecular weight distribution of ultrahigh molecular weight polyethylene using a high temperature low shear rate rotational viscometer. J Appl Polym Sci. 1988;36(3):567–582.
  • Kusy R, Whitley J. Use of a sequential extraction technique to determine the MWD of bulk UHMWPE. J Appl Polym Sci. 1986;32(3):4263–4269.
  • Wood W, Li B, Zhong WH. Influence of phase morphology on the sliding wear of polyethylene blends filled with carbon nanofibers. Polym Eng Sci. 2010;50(3):613–623.
  • Premnath V, Harris W, Jasty M, et al. Gamma sterilization of UHMWPE articular implants: an analysis of the oxidation problem. Biomaterials. 1996;17(18):1741–1753.
  • Rocha M, Mansur A, Mansur H. Characterization and accelerated ageing of UHMWPE used in orthopedic prosthesis by peroxide. Materials (Basel). 2009;2(2):562–576.
  • Carlsson D, Brousseau R, Zhang C, et al. Polyolefin oxidation: Quantification of alcohol and hydroperoxide products by nitric oxide reactions. Polym Degrad Stab. 1987;17(4):303–318.
  • Costa L, Luda M, Trossarelli L, et al. Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide. Biomaterials. 1998;19(7-9):659–668.
  • Rocha M, Mansur A, Mansur H. Characterization and accelerated ageing of UHMWPE used in orthopedic prosthesis by peroxide. Materials. (2009);2(2):562-576.
  • Han K, Wallace J, Truss R, et al. Powder compaction, sintering, and rolling of ultra high molecular weight polyethylene and its composites. J Macromol Sci, Part B: Phys. 1981;19(3):313–349.
  • Barnetson A, Hornsby P. Observations on the sintering of ultra-high molecular weight polyethylene (UHMWPE) powders. J Mater Sci Lett. 1995;14(2):80–84.
  • Gul RM. Improved UHMWPE for use in total joint replacement. Cambridge (MA): Massachusetts Institute of Technology; 1997.
  • Zachariades AE, Kanamoto T. The effect of initial morphology on the mechanical properties of ultra-high molecular weight polyethylene. Polym Eng Sci. 1986;26(10):658–661.
  • Gul RM, McGarry FJ. Processing of ultra-high molecular weight polyethylene by hot isostatic pressing, and the effect of processing parameters on its microstructure. Polym Eng Sci. 2004;44(10):1848–1857.
  • Tanner MG, Whiteside LA, White SE. Effect of polyethylene quality on wear in total knee arthroplasty. Clinical orthopaedics and related research®. Clin Orthop Relat Res. 1995;317:83–88.
  • Bellare A, Cohen R. Morphology of rod stock and compression-moulded sheets of ultra-high-molecular-weight polyethylene used in orthopaedic implants. Biomaterials. 1996;17(24):2325–2333.
  • Truss R, Han K, Wallace J, et al. Cold compaction molding and sintering of ultra high molecular weight polyethylene. Polym Eng Sci. 1980;20(11):747–755.
  • Chen K-C, Ellis EJ, Crugnola A. Effects of molding cycle on the molecular structure and abrasion resistance of ultra-high molecular weight polyethylene. ANTEC. 1981;39:270–272.
  • Han S, Jin X, Wang J, et al. The three dimensional numerical analysis and validation of compression molding process. Boston (MA): SPE ANTEC; 2012.
  • Peng T. Analysis of energy utilization in 3D printing processes. Procedia Cirp. 2016;40:62–67.
  • Mount EM. 15 - Extrusion processes. In: M Kutz, editor. Applied plastics engineering handbook. Oxford: William Andrew; 2011. p. 227–222.
  • Fang L, Leng Y, Gao P. Processing and mechanical properties of HA/UHMWPE nanocomposites. Biomaterials. 2006;27(20):3701–3707.
  • Bhusari SA, Sharma V, Bose S, et al. HDPE/UHMWPE hybrid nanocomposites with surface functionalized graphene oxide towards improved strength and cytocompatibility. J R Soc Interface. 2019;16(150):20180273.
  • Panin S, Buslovich D, Kornienko L, et al. Comparative analysis of tribological and mechanical properties of extrudable polymer–polymer UHMWPE composites fabricated by 3D printing and hot-pressing methods. J Frict Wear. 2020;41(3):228–235.
  • Basu B, Ghosh S. Biomaterials for musculoskeletal regeneration. Berlin: Springer; 2017.
  • Thompson M, Flivik G, Juliusson R, et al. Proceedings of the Institution of Mechanical Engineers, Part H. J Eng Med. 2004;218(6):425–429.
  • Kurtz SM, Lau E, Ong K, et al. Future Young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clinical Orthopaedics and Related Research®. 2009;467(10):2606–2612.
  • Bracco P, Bellare A, Bistolfi A, et al. Ultra-high molecular weight polyethylene: influence of the chemical, physical and mechanical properties on the wear behavior. A review. Materials (Basel). 2017;10(7):791.
  • Costa L, Bracco P, M E, et al. Oxidation and oxidation potential in contemporary packaging for polyethylene total joint replacement components. J Biomed Mater Res Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;78B(1):20–26.
  • Streicher RM. Plast Rubber Process Appl. 1988;10(4):221–229.
  • Premnath V, Bellare A, Merrill E, et al. Molecular rearrangements in ultra high molecular weight polyethylene after irradiation and long-term storage in air. Polymer. 1999;40(9):2215–2229.
  • Peacock A. Handbook of polyethylene: structures: properties, and applications. Boca Raton (FL): CRC Press; 2000.
  • Jahan M, Thomas D, Trieu H, et al. Investigation of free radicals in shelf-aged polyethylene tibial components, Transactions of the Fifth World Biomaterials Congress, 1996, 298.
  • Rabek J, Ranby B. ESR applications to polymer research. Stockholm: Almqvist-Wiksell Forlag AB; 1973.
  • Meurant G. Atmospheric oxidation and antioxidants. Amsterdam: Elsevier Science; 1993.
  • Oral E, Wannomae KK, Hawkins N, et al. α-Tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials. 2004;25(24):5515–5522.
  • Bracco P, Del Prever EB, Cannas M, et al. Oxidation behaviour in prosthetic UHMWPE components sterilised with high energy radiation in a low-oxygen environment. Polym Degrad Stab. 2006;91(9):2030–2038.
  • Sutula LC, Collier JP, Saum KA, et al. Impact of gamma sterilization on clinical performance of polyethylene in the hip. Clin Orthop Relat Res. 1995;319:28–40.
  • Streicher R. Sterilization and long-term aging of medical-grade UHMWPE. Radiat Phys Chem. 1995;46(4-6):893–896.
  • Goosen J, Verheyen C, Kollen B, et al. In vivo wear reduction of argon compared to air sterilized UHMW-polyethylene liners. Arch Orthop Trauma Surg. 2009;129(7):879–885.
  • Lu S, Orr J, Buchanan F. The influence of inert packaging on the shelf ageing of gamma-irradiation sterilised ultra-high molecular weight polyethylene. Biomaterials. 2003;24(1):139–145.
  • Currier BH, Currier JH, Mayor MB, et al. In vivo oxidation of γ-barrier–sterilized ultra–high-molecular-weight polyethylene bearings. J Arthroplasty. 2007;22(5):721–731.
  • McKellop H, Shen F, Lu B, et al. Development of an extremely wear-resistant ultra high molecular weight polythylene for total hip replacements. J Orthop Res. 1999;17(2):157–167.
  • Atkinson J, Cicek R. Silane crosslinked polyethylene for prosthetic applications. Biomaterials. 1984;5(6):326–335.
  • Bourne RB, Barrack R, Rorabeck CH, et al. Arthroplasty options for the young patient. Clin Orthop Relat Res (1976-2007). 2005;441:159–167.
  • Shi J, Zhu W, Liang S, et al. Cross-linked versus conventional polyethylene for long-term clinical outcomes after total hip arthroplasty: a systematic review and meta-analysis. J Invest Surg. 2021;34(3):307–317.
  • Burusco IO, Romero R, Brun M, et al. Cross-linked ultra-high-molecular weight polyethylene liner and ceramic femoral head in total hip arthroplasty: a prospective study at 5 years follow-up. Arch Orthop Trauma Surg. 2011;131(12):1711–1716.
  • Muratoglu OK. Highly crosslinked and melted UHMWPE. In: Kurtz SM, editor. UHMWPE biomaterials handbook. Burlington: Academic Press; 2009. p. 197–204.
  • Muratoglu OK, Bragdon CR, O’Connor DO, et al. Erratum to ‘unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE)’. Biomaterials. 2003;24(8):1527–1527.
  • Ries MD, Pruitt L. Effect of cross-linking on the microstructure and mechanical properties of ultra-high molecular weight polyethylene. Clin Orthop Relat Res. 2005;440:149–156.
  • Oral E, Malhi AS, Muratoglu OK. Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE. Biomaterials. 2006;27(6):917–925.
  • Oral E, Muratoglu OK. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications. Nucl Instrum Methods Phys Res Sect B. 2007;265(1):18–22.
  • Gomoll A, Wanich T, Bellare A. J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE. J Orthop Res. 2002;20(6):1152–1156.
  • Baker D, Bellare A, Pruitt L. The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene. J Biomed Mater Res Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2003;66A(1):146–154.
  • Gencur SJ, Rimnac CM, Kurtz SM. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene. Biomaterials. 2006;27(8):1550–1557.
  • Simis KS, Bistolfi A, Bellare A, et al. The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene. Biomaterials. 2006;27(9):1688–1694.
  • Muratoglu O, Bragdon CR, O’Connor D, et al. A novel method of crosslinking UHMWPE to improve wear with little or no sacrifice of mechanical properties. Annual Meeting-Society for Biomaterials in Conjunction with the International Biomaterials Symposium. 1999;22:496–496.
  • Digas G, Kärrholm J, Thanner J, et al. 5-year experience of highly cross-linked polyethylene in cemented and uncemented sockets: two randomized studies using radiostereometric analysis. Acta Orthop. 2007;78(6):746–754.
  • Muratoglu OK, Bragdon CR, O’Connor DO, et al. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. J Arthroplasty. 2001;16(2):149–160.
  • Wannomae KK, Christensen SD, Freiberg AA, et al. The effect of real-time aging on the oxidation and wear of highly cross-linked UHMWPE acetabular liners. Biomaterials. 2006;27(9):1980–1987.
  • Burton G, Ingold K. Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J Am Chem Soc. 1981;103(21):6472–6477.
  • Kamal-Eldin A, Appelqvist L-Å. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31(7):671–701.
  • Tipper J, Galvin A, Williams S, et al. Isolation and characterization of UHMWPE wear particles down to ten nanometers in size fromin vitro hip and knee joint simulators. J Biomed Mater Res Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;78A(3):473–480.
  • Costa L, Bracco P. Mechanisms of crosslinking, oxidative degradation and stabilization of UHMWPE. In: Kurtz SM, editor. UHMWPE biomaterials handbook. Cambridge (MA): Elsevier; 2009. p. 309–323.
  • Oral E, Muratoglu OK. Vitamin e diffused, highly crosslinked UHMWPE: a review. Int Orthop. 2011;35(2):215–223.
  • Oral E, Muratoglu OK. Highly cross-linked UHMWPE doped with vitamin E. In: Kurtz SM, editor. UHMWPE biomaterials handbook. Norwich (NY): Elsevier; 2016. p. 307–325.
  • Knahr K. Total hip arthroplasty: wear behaviour of different articulations. Berlin: Springer Science & Business Media; 2012.
  • Chen W, Bichara DA, Suhardi J, et al. Effects of vitamin E-diffused highly cross-linked UHMWPE particles on inflammation, apoptosis and immune response against S. aureus. Biomaterials. 2017;143:46–56.
  • Kamal-Eldin A, Appelqvist LÅ. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31(7):671–701.
  • Oral E, Greenbaum ES, Malhi AS, et al. Characterization of irradiated blends of α-tocopherol and UHMWPE. Biomaterials. 2005;26(33):6657–6663.
  • Oral E, Wannomae KK, Rowell SL, et al. Diffusion of vitamin E in ultra-high molecular weight polyethylene. Biomaterials. 2007;28(35):5225–5237.
  • Oral E, Beckos CG, Malhi AS, et al. The effects of high dose irradiation on the cross-linking of vitamin E-blended ultrahigh molecular weight polyethylene. Biomaterials. 2008;29(26):3557–3560.
  • Kurtz S, Dumbleton J, Siskey R, et al. Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation. J Biomed Mater Res Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2009;90A(2):549–563.
  • Lerf R, Zurbrügg D, Delfosse D. Use of vitamin E to protect cross-linked UHMWPE from oxidation. Biomaterials. 2010;31(13):3643–3648.
  • Mallegol J, Carlsson D, Deschenes L. Post-γ-irradiation reactions in vitamin E stabilised and unstabilised HDPE. Nucl Instrum Methods Phys Res Sect B. 2001;185(1-4):283–293.
  • Yamamoto K, Yamaguchi M, Tani M, et al. Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy. Appl Phys Lett. 2004;85(22):5194–5196.
  • Rowell SL, Oral E, Muratoglu OK. Comparative oxidative stability of α-tocopherol blended and diffused UHMWPEs at 3 years of real-time aging. J Orthop Res. 2011;29(5):773–780.
  • Sakoda H, Okamoto Y, Haishima Y. In vitro estimation of reduction in strength and wear resistance of UHMWPE for joint prostheses due to lipid-induced degradation. J Biomed Mater Res Part B: Appl Biomater. 2020;108(8):3155–3161.
  • Costa L, Luda M, Trossarelli L, et al. In vivo UHMWPE biodegradation of retrieved prosthesis. Biomaterials. 1998;19(15):1371–1385.
  • Upadhyay R, Naskar S, Bhaskar N, et al. Modulation of protein adsorption and cell proliferation on polyethylene immobilized graphene oxide reinforced HDPE bionanocomposites. ACS Appl Mater Interfaces. 2016;8(19):11954–11968.
  • Papageorgiou DG, Li Z, Liu M, et al. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale. 2020;12(4):2228–2267.
  • Omidi M, A HRDT, Milani S, et al. Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon N Y. 2010;48(11):3218–3228.
  • Young RJ, Liu M, Kinloch IA, et al. The mechanics of reinforcement of polymers by graphene nanoplatelets. Compos Sci Technol. 2018;154:110–116.
  • Maksimkin A, Kharitonov A, Mostovaya K, et al. Bulk oriented nanocomposites of ultrahigh molecular weight polyethylene reinforced with fluorinated multiwalled carbon nanotubes with nanofibrillar structure. Compos Part B: Eng. 2016;94:292–298.
  • Yang BX, Pramoda KP, Xu GQ, et al. Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Adv Funct Mater. 2007;17(13):2062–2069.
  • Wenzhong T, Michael HS, Suresh GA. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon N Y. 2003;41(14):2779–2785.
  • Xiao K, Zhang L, Zarudi I. Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol. 2007;67(2):177–182.
  • Wang M, Wang W, Liu T, et al. Melt rheological properties of nylon 6/multi-walled carbon nanotube composites. Compos Sci Technol. 2008;68(12):2498–2502.
  • Gong L, Kinloch IA, Young RJ, et al. Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater. 2010;22(24):2694–2697.
  • Affdl JH, Kardos J. The Halpin-Tsai equations: a review. Polymer Engineering & Science. 1976;16(5):344–352.
  • Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21(5):571–574.
  • Ramprasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: recent applications and prospects. NPJ Comput Mater. 2017;3(1):1–13.
  • Raccuglia P, Elbert KC, Adler PD, et al. Machine-learning-assisted materials discovery using failed experiments. Nature. 2016;533(7601):73–76.
  • Kim C, Chandrasekaran A, Huan TD, et al. Polymer genome: a data-powered polymer informatics platform for property predictions. J Phys Chem C. 2018;122(31):17575–17585.
  • Audus DJ, de Pablo JJ. Polymer informatics: opportunities and challenges. Chicago (IL): ACS; 2017.
  • Adams N, Murray-Rust P. Engineering polymer informatics: towards the computer-aided design of polymers. Macromol Rapid Commun. 2008;29(8):615–632.
  • Galetz M, Blaβ T, Ruckdäschel H, et al. Carbon nanofibre-reinforced ultrahigh molecular weight polyethylene for tribological applications. J Appl Polym Sci. 2007;104(6):4173–4181.
  • Zoo Y-S, An J-W, Lim D-P, et al. Effect of carbon nanotube addition on tribological behavior of UHMWPE. Tribol Lett. 2004;16(4):305–309.
  • Martínez-Morlanes M, Castell P, Martínez-Nogués V, et al. Effects of gamma-irradiation on UHMWPE/MWNT nanocomposites. Compos Sci Technol. 2011;71(3):282–288.
  • Pang W, Ni Z, Chen G, et al. Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites. RSC Adv. 2015;5(77):63063–63072.
  • Ferreira AE, Ribeiro MR, Cramail H, et al. Extraordinary mechanical performance in disentangled UHMWPE films processed by compression molding. J Mech Behav Biomed Mater. 2019;90:202–207.
  • Rezaei M, Ebrahimi NG, Kontopoulou M. Thermal properties, rheology and sintering of ultra high molecular weight polyethylene and its composites with polyethylene terephthalate. Polymer Engineering & Science. 2005;45(5):678–686.
  • Ruan S, Gao P, Yang XG, et al. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer. 2003;44(19):5643–5654.
  • Fang L, Gao P, Leng Y. High strength and bioactive hydroxyapatite nano-particles reinforced ultrahigh molecular weight polyethylene. Composites Part B: Engineering. 2007;38(3):345–351.
  • Xiong D, Lin J, Fan D, et al. Wear of nano-TiO2/UHMWPE composites radiated by gamma ray under physiological saline water lubrication. J Mater Sci: Mater Med. 2007;18(11):2131–2135.
  • Senatov F, Gorshenkov M, Kaloshkin S, et al. Biocompatible polymer composites based on ultrahigh molecular weight polyethylene perspective for cartilage defects replacement. J Alloys Compd. 2014;586:S544–S547.
  • Chang B, Akil HM, Nasir RM, et al. Mechanical and antibacterial properties of treated and untreated zinc oxide filled UHMWPE composites. J Thermoplast Compos Mater. 2011;24(5):653–667.
  • Xiong DS, Wang N, Lin JM, et al. Tribological properties of UHMWPE composites filled with nano-powder of SiO2 sliding against Ti-6Al-4V, Key Engineering Materials, 2005, Trans Tech Publ, 629-632.
  • Liu Y, Sinha SK. Wear performances and wear mechanism study of bulk UHMWPE composites with nacre and CNT fillers and PFPE overcoat. Wear. 2013;300(1–2):44–54.
  • Rezaei M, Shirzad A, Golshan Ebrahimi N, et al. Surface modification of ultra-high-molecular-weight polyethylene. II. Effect on the physicomechanical and tribological properties of ultra-high-molecular-weight polyethylene/poly(ethylene terephthalate) composites. J Appl Polym Sci. 2006;99(5):2352–2358.
  • Golchin A, Villain A, Emami N. Tribological behaviour of nanodiamond reinforced UHMWPE in water-lubricated contacts. Tribol Int. 2017;110:195–200.
  • Aliyu IK, Mohammed AS, Al-Qutub A. Tribological performance of ultra high molecular weight polyethylene nanocomposites reinforced with graphene nanoplatelets. Polym Compos. 2019;40(S2):E1301–E1311.
  • Chang BP, Akil HM, Nasir RM. Mechanical and tribological properties of zeolite-reinforced UHMWPE composite for implant application. Procedia Eng. 2013;68:88–94.
  • Xue Y, Wu W, Jacobs O, et al. Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym Test. 2006;25(2):221–229.
  • Lim K, Ishak ZM, Ishiaku U, et al. High-density polyethylene/ultrahigh-molecular-weight polyethylene blend. I. The processing, thermal, and mechanical properties. J Appl Polym Sci. 2005;97(1):413–425.
  • Sui G, Zhong W, Ren X, et al. Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers. Mater Chem Phys. 2009;115(1):404–412.
  • Lucas A, Ambrósio JD, et al. Abrasive wear of HDPE/UHMWPE blends. Wear. 2011;270(9–10):576–583.
  • Khasraghi SS, Rezaei M. Preparation and characterization of UHMWPE/HDPE/MWCNT melt-blended nanocomposites. J Thermoplast Compos Mater. 2015;28(3):305–326.
  • Melk L, Emami N. Mechanical and thermal performances of UHMWPE blended vitamin E reinforced carbon nanoparticle composites. Composites Part B: Engineering. 2018;146:20–27.
  • Lim K, Ishak ZM, Ishiaku U, et al. High density polyethylene/ultra high molecular weight polyethylene blend. II. Effect of hydroxyapatite on processing, thermal, and mechanical properties. J Appl Polym Sci. 2006;100(5):3931–3942.
  • Li Y, He H, Ma Y, et al. Rheological and mechanical properties of ultrahigh molecular weight polyethylene/high density polyethylene/polyethylene glycol blends. Adv Ind Eng Polym Res. 2019;2(1):51–60.
  • Costa H, Hutchings I. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol Int. 2007;40(8):1227–1238.
  • Yan-qing W, Gao-feng W, Qing-gong H, et al. Tribological properties of surface dimple-textured by pellet-pressing. Procedia Earth Planet Sci. 2009;1(1):1513–1518.
  • Qian S, Zhu D, Qu N, et al. Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining. Int J Adv Manuf Technol. 2010;47(9–12):1121–1127.
  • Etsion I, Halperin G, Brizmer V, et al. Experimental investigation of laser surface textured parallel thrust bearings. Tribol Lett. 2004;17(2):295–300.
  • Jithin S, Shetye SS, Rodrigues JJ, et al. Analysis of electrical discharge texturing using different electrode materials. Adv Mater Process Technol. 2018;4(3):466–479.
  • Zhou R, Cao J, Wang QJ, et al. Effect of EDT surface texturing on tribological behavior of aluminum sheet. J Mater Process Technol. 2011;211(10):1643–1649.
  • Firouzi D, Youssef A, Amer M, et al. A new technique to improve the mechanical and biological performance of ultra high molecular weight polyethylene using a nylon coating. J Mech Behav Biomed Mater. 2014;32:198–209.
  • Berumen J, De la Mora T, López-Perrusquia N, et al. Structural, chemical and mechanical study of TiAlV film on UHMWPE produced by DC magnetron sputtering. J Mech Behav Biomed Mater. 2019;93:23–30.
  • Azam MU, Samad MA. A novel organoclay reinforced UHMWPE nanocomposite coating for tribological applications. Prog Org Coat. 2018;118:97–107.
  • Ruan F, Bao L. Mechanical enhancement of UHMWPE fibers by coating with carbon nanoparticles. Fibers Polym. 2014;15(4):723–728.
  • Puértolas J, Martínez-Nogués V, Martínez-Morlanes M, et al. Improved wear performance of ultra high molecular weight polyethylene coated with hydrogenated diamond like carbon. Wear. 2010;269(5–6):458–465.
  • Firouzi D, Foucher DA, Bougherara H. Nylon-coated ultra high molecular weight polyethylene fabric for enhanced penetration resistance. J Appl Polym Sci. 2014;131(11). DOI:10.102/app.40350
  • Navarro C, Moreno K, Chávez-Valdez A, et al. Friction and wear properties of poly(methyl methacrylate)–hydroxyapatite hybrid coating on UHMWPE substrates. Wear. 2012;282-283:76–80.
  • Chen J, Sun Z, Guo P, et al. Effect of ion implantation on surface energy of ultrahigh molecular weight polyethylene. J Appl Phys. 2003;93(9):5103–5108.
  • Grubova IY, Surmeneva MA, Shugurov VV, et al. Effect of electron beam treatment in air on surface properties of ultra-high-molecular-weight polyethylene. J Med Biol Eng. 2016;36(3):440–448.
  • Perni S, Kong MG, Prokopovich P. Cold atmospheric pressure gas plasma enhances the wear performance of ultra-high molecular weight polyethylene. Acta Biomater. 2012;8(3):1357–1365.
  • Mändl S, Rauschenbach B. Improving the biocompatibility of medical implants with plasma immersion ion implantation. Surf Coat Technol. 2002;156(1):276–283.
  • Schiller TL, Sheeja D, McKenzie DR, et al. Plasma immersion ion implantation of poly(tetrafluoroethylene). Surf Coat Technol. 2004;177-178:483–488.
  • Zhang B, Huang W, Wang J, et al. Comparison of the effects of surface texture on the surfaces of steel and UHMWPE. Tribol Int. 2013;65:138–145.
  • Dougherty PS, Srivastava G, Onler R, et al. Lubrication enhancement for UHMWPE sliding contacts through surface texturing. Tribol Trans. 2015;58(1):79–86.
  • Eddoumy F, Addiego F, Celis J-P, et al. Reciprocating sliding of uniaxially-stretched ultra-high molecular weight polyethylene for medical device applications. Wear. 2011;272(1):50–61.
  • Zhang Y, Zhang X, Matsoukas G. Numerical study of surface texturing for improving tribological properties of ultra-high molecular weight polyethylene. Biosurface and Biotribology. 2015;1(4):270–277.
  • Kustandi TS, Choo JH, Low HY, et al. Texturing of UHMWPE surface via NIL for low friction and wear properties. J Phys D: Appl Phys. 2009;43(1):015301.
  • Sufyan M, Hussain M, Ahmad H, et al. Bulge micro-textures influence on tribological performance of ultra-high-molecular-weight-polyethylene (UHMWPE) under phosphatidylcholine (Lipid) and bovine serum albumin (BSA) solutions. Biomedical Physics & Engineering Express. 2019;5(3):035021.
  • Bastiaansen C, Meyer H, Lemstra P. Memory effects in polyethylenes: influence of processing and crystallization history. Polymer. 1990;31(8):1435–1440.
  • Muratoglu OK, Merrill EW, Bragdon CR, et al. Clin Orthop Relat Res®. 2003;417:253–262.
  • Wolf C, Krivec T, Blassnig J, et al. J Mater Sci: Mater Med. 2002;13(2):185–189.
  • Oral E, Christensen SD, Malhi AS, et al. Wear resistance and mechanical properties of highly cross-linked, ultrahigh–molecular weight polyethylene doped With Vitamin E. J Arthroplasty. 2006;21(4):580–591.
  • ASTM E2647-08 Standard Test Method for Quantification of a Pseudomonas aeruginosa Biofilm Grown using a Drip Flow Biofilm Reactor with Low Shear and Continuous Flow, 2008.
  • Sathasivam S, Walker PS. Optimization of the bearing surface geometry of total knees. J Biomech. 1994;27(3):255–264.
  • Beck RT, Illingworth KD, Saleh KJ. Review of periprosthetic osteolysis in total joint arthroplasty: an emphasis on host factors and future directions. J Orthop Res. 2012;30(4):541–546.
  • Kandahari AM, Yang X, Laroche KA, et al. A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response. Bone Res. 2016;4(1):1–13.
  • Di Puccio F, Mattei L. Biotribology of artificial hip joints. World J Orthop. 2015;6(1):77.
  • Ali M, Al-Hajjar M, Jennings LM. Tribology of UHMWPE in the hip. In: Kurtz SM, editor. UHMWPE biomaterials handbook. Norwich (NY): Elsevier; 2016. p. 579–598.
  • Stewart T. Tribology of artificial joints. Orthop Trauma. 2010;24(6):435–440.
  • Fisher J, Dowson D. Tribology of total artificial joints. Proceedings of the Institution of Mechanical Engineers, Part H: J Eng Med. 1991;205(2):73–79.
  • Wang A, Sun D, Stark C, et al. Wear mechanisms of UHMWPE in total joint replacements. Wear. 1995;181–183:241–249.
  • Wroblewski B.. 15-21-year results of the Charnley low-friction arthroplasty. Clin Orthop Relat Res. 1986;1(211):30–35.
  • Fisher J. Curr Orthop. 1994;8(3):164–169.
  • Ebnesajjad S, Khaladkar P. Fluoropolymers applications in chemical processing industries. Cambridge: William Andrew, Applied Science publisher; 2005. p. 15–112.
  • Archard J, Hirst W. Proceedings of the Royal Society of London. Series A. Math Phys Sci. 1956;236(1206):397–410.
  • JA S, Overcamp L, Black J. Size and shape of biomaterial wear debris. Clin Mater. 1994;15(2):101–147.
  • Essner A, Wang A. Tribological assessment of UHMWPE in the hip. In: Kurtz SM, editor. UHMWPE biomaterials handbook. Cambridge (MA): Elsevier; 2009. p. 369–379.
  • Benz EB, Federman M, Godleski JJ, et al. Transmission electron microscopy of intracellular particles of polyethylene from joint replacement prostheses: size distribution and cellular response. Biomaterials. 2001;22(21):2835–2842.
  • Mabrey JD, Afsar-Keshmiri A, Engh GA, et al. Standardized analysis of UHMWPE wear particles from failed total joint arthroplasties. J Biomed Mater Res: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2002;63(5):475–483.
  • Hongtao L, Shirong G, Shoufan C, et al. Comparison of wear debris generated from ultra high molecular weight polyethylene in vivo and in artificial joint simulator. Wear. 2011;271(5–6):647–652.
  • Zolotarevova E, Entlicher G, Pavlova E, et al. Distribution of polyethylene wear particles and bone fragments in periprosthetic tissue around total hip joint replacements. Acta Biomater. 2010;6(9):3595–3600.
  • Wang SB, Ge SR, Liu HT, et al. Wear behaviour and wear debris characterization of UHMWPE on alumina ceramic, stainless steel, CoCrMo and Ti6Al4 V hip prostheses in a hip joint simulator. J Biomim, Biomater Tissue Eng. 2010;7:7–25.
  • Lapcikova M, Slouf M, Dybal J, et al. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo. Wear. 2009;266(1-2):349–355.
  • Richards L, Brown C, Stone M, et al. Identification of nanometre-sized ultra-high molecular weight polyethylene wear particles in samples retrievedin vivo. J Bone Joint Surg Br. 2008;90-B(8):1106–1113.
  • Koseki H, Matsumoto T, Ito S, et al. Analysis of polyethylene particles isolated from periprosthetic tissue of loosened hip arthroplasty and comparison with radiographic appearance. J Orthop Sci. 2005;10(3):284–290.
  • Visentin M, Stea S, Squarzoni S, et al. A new method for isolation of polyethylene wear debris from tissue and synovial fluid. Biomaterials. 2004;25(24):5531–5537.
  • Golchin A, Wikner A, Emami N. An investigation into tribological behaviour of multi-walled carbon nanotube/graphene oxide reinforced UHMWPE in water lubricated contacts. Tribol Int. 2016;95:156–161.
  • Tai Z, Chen Y, An Y, et al. Tribological Behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol Lett. 2012;46(1):55–63.
  • Xiong D, Ge S. Friction and wear properties of UHMWPE/Al2O3 ceramic under different lubricating conditions. Wear. 2001;250(1–12):242–245.
  • Sharma V, Bose S, Kundu B, et al. Probing the influence of γ-sterilization on the oxidation, crystallization, sliding wear resistance, and cytocompatibility of chemically modified graphene-oxide-reinforced HDPE/UHMWPE nanocomposites and wear debris. ACS Biomater Sci Eng. 2020;6(3):1462–1475.
  • Besong A, Hailey J, Ingham E, et al. A study of the combined effects of shelf ageing following irradiation in air and counterface roughness on the wear of UHMWPE. Bio-Med Mater Eng. 1997;7(1):59–65.
  • Basu B. Biomaterials for musculoskeletal regeneration: concepts. Singapore: Springer; 2016.
  • Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941–2953.
  • Huang CH, Ho FY, Ma HM, et al. Particle size and morphology of UHMWPE wear debris in failed total knee arthroplasties – a comparison between mobile bearing and fixed bearing knees. J Orthop Res. 2002;20(5):1038–1041.
  • Tipper J, Ingham E, Hailey J, et al. J Mater Sci: Mater Med. 2000;11(2):117–124.
  • Nine MJ, Choudhury D, Hee AC, et al. Wear debris characterization and corresponding biological response: artificial hip and knee joints. Materials (Basel). 2014;7(2):980–1016.
  • Liu A, Richards L, Bladen CL, et al. The biological response to nanometre-sized polymer particles. Acta Biomater. 2015;23:38–51.
  • Maitra R, Clement CC, Scharf B, et al. Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol Immunol. 2009;47(2-3):175–184.
  • Anwar IB, Saputra E, Jamari J, et al. Preliminary study on the biocompatibility of stainless steel 316L and UHMWPE material. Adv Mat Res. 2015;1123:160–163.
  • Vu NB, Truong NH, Dang LT, et al. Biomed Res Therapy. 2016;3(3):567–577.
  • Marshall A, Ries MD, Paprosky W. How prevalent are implant wear and osteolysis, and how has the scope of osteolysis changed since 2000? JAAOS - J Am Acad Orthop Surg. 2008;16:S1–S6.
  • Cho YJ, Lee JH, Sagong ES. Comparison of linear wear rate according to femoral head sizes in metal on conventional UHMWPE liner. In: Knahr K, editor. Tribology in total hip and knee arthroplasty. Berlin: Springer; 2014. p. 27–33.
  • Ohlin A, Selvik G. Socket wear assessment. J Arthroplasty. 1993;8(4):427–431.
  • Schmalzried TP, Callaghan JJ. Current concepts review – wear in total hip and knee replacements*. JBJS. 1999;81(1):115–136.
  • Scherge M, Shakhvorostov D, Pöhlmann K. Fundamental wear mechanism of metals. Wear. 2003;255(1–6):395–400.
  • Fu J, Jin Z-M, Wang J-W. UHMWPE Biomaterials for Joint Implants. Singapore: Springer; 2019.
  • Jones S, Pinder I, Moran C, et al. Polyethylene wear in uncemented knee replacements. J Bone Joint Surg Br. 1992;74-B(1):18–22.
  • Callaghan JJ, Pedersen DR, Olejniczak JP, et al. Clin Orthop Relat Res. 1995;1(317):14–18.
  • Friedrich K. Friction and wear of polymer composites. Amsterdam: Elsevier; 2012.
  • Basu B, Kalin M, Kumar BM. Friction and wear of ceramics: principles and case studies. Hoboken (NJ): John Wiley & Sons; 2020.
  • Alhassan S, Goswami T. Wear rate model for UHMWPE in total joint applications. Wear. 2008;265(1-2):8–13.
  • Lancaster J. Abrasive wear of polymers. Wear. 1969;14(4):223–239.
  • Galliera E, Ragone V, Marazzi MG, et al. Vitamin E-stabilized UHMWPE: biological response on human osteoblasts to wear debris. Clin Chim Acta. 2018;486:18–25.
  • Matthews JB, Green TR, Stone MH, et al. Comparison of the response of primary human peripheral blood mononuclear phagocytes from different donors to challenge with model polyethylene particles of known size and dose. Biomaterials. 2000;21(20):2033–2044.
  • Sieving A, Wu B, Mayton L, et al. Morphological characteristics of total joint arthroplasty-derived ultra-high molecular weight polyethylene (UHMWPE) wear debris that provoke inflammation in a murine model of inflammation. J Biomed Mater Res Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2003;64A(3):457–464.
  • Matthews JB, Besong AA, Green TR, et al. Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge within vitro generated clinically relevant UHMWPE particles of known size and dose. J Biomed Mater Res: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2000;52(2):296–307.
  • Kaufman AM, Alabre CI, Rubash HE, et al. Human macrophage response to UHMWPE, TiAlV, CoCr, and alumina particles: analysis of multiple cytokines using protein arrays. J Biomed Mater Res A. 2008;84A(2):464–474.
  • Martınez M, Medina S, Del Campo M, et al. Effect of polyethylene particles on human osteoblastic cell growth. Biomaterials. 1998;19(1–3):183–187.
  • Illgen II RL, Forsythe TM, Pike JW, et al. Highly crosslinked vs conventional polyethylene particles – an In vitro comparison of biologic activities, J Arthroplasty. 2008;23(5):721–731.
  • Zhang L, Haddouti E-M, Welle K, et al. The effects of biomaterial implant wear debris on osteoblasts. Front Cell Dev Biol. 2020;8:352–352.
  • Abu-Amer Y, Darwech I, Clohisy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007;9(S1):S6.
  • Hatton A, Nevelos J, Matthews J, et al. Effects of clinically relevant alumina ceramic wear particles on TNF-α production by human peripheral blood mononuclear phagocytes. Biomaterials. 2003;24(7):1193–1204.
  • Pazzaglia U, Dell’Orbo C, Wilkinson M. The foreign body reaction in total hip arthroplasties. Arch Orthop Trauma Surg. 1987;106(4):209–219.
  • Clarke I, Campbell P. Progress in bioengineering. Glasgow: Strathclyde University; 1989. 104–115
  • Murray D, Rushton N. Macrophages stimulate bone resorption when they phagocytose particles. J Bone Joint Surg Br. 1990;72-B(6):988–992.
  • P. Revell and N. Al-Saffar, In: Downes S, Dabestani N, editors. Failure of joint replacement. A biological, mechanical or surgical problem, 1994, p. 89–96.
  • Fisher J, Bell J, Barbour P, et al. A novel method for the prediction of functional biological activity of polyethylene wear debris. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2001;215(2):127–132.
  • Besong A. The influence of tribological conditions on the wear and morphology of UHMWPE wear particles in total artificial joints. Leeds: University of Leeds; 1999.
  • Fisher J, Stone M, Ingham E. Functional biological activity of wear debris generated in artificial hip joints; 2001. na.
  • Vallés G, Vilaboa N. Osteolysis after total hip arthroplasty: basic science. In: García-Rey E, García-Cimbrelo E, editors. Acetabular revision surgery in major bone defects. Cham: Springer; 2019. p. 1–31.
  • Harris WH. The problem is osteolysis. Clin Orthop Relat Res; 1995;311:46–53.
  • Harris WH. Osteolysis and particle disease in hip replacement: a review. Acta Orthop Scand. 1994;65(1):113–123.
  • Kobayashi A, Freeman M, Bonfield W, et al. Number of polyethylene particles and osteolysis in total joint replacements. J Bone Joint Surg Br. 1997;79-B(5):844–848.
  • Dumbleton JH, Manley MT, Edidin AA. A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplasty. 2002;17(5):649–661.
  • Ward C. Iowa Orthop J. 2009;29:127.
  • Kurtz SM. The origins of UHMWPE in total hip arthroplasty. In: Kurtrz SM, editor. UHMWPE biomaterials handbook. Burlington: Elsevier; 2016. p. 33–44.
  • Wilke A, Orth J, Lomb M, et al. Biocompatibility analysis of different biomaterials in human bone marrow cell cultures. J Biomed Mater Res: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials. 1998;40(2):301–306.
  • Fishman EK, Magid D, Ney DR, et al. Three-dimensional imaging. Radiology. 1991;181(2):321–337.
  • Kumar A, Mandal S, Barui S, et al. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: processing related challenges and property assessment. Mater Sci Eng: R: Reports. 2016;103:1–39.
  • Barui S, Chatterjee S, Mandal S, et al. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: experimental and computational analysis. Mater Sci Eng: C. 2017;70:812–823.
  • Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: a review and prospective. Compos Part B: Eng. 2017;110:442–458.
  • Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–10290.
  • Dimitrov D, Schreve K, de Beer N. Advances in three dimensional printing - State of the art and future perspectives. Rapid Prototyp J. 2006;12(3):136–147.
  • Mercuri LG, Wolford LM, Sanders B, et al. Custom CAD/CAM total temporomandibular joint reconstruction system. J Oral Maxillofac Surg. 1995;53(2):106–115.
  • Rhodes ML, Kuo Y-M, Rothman SL, et al. An application of computer graphics and networks to anatomic model and prosthesis manufacturing. IEEE Comput Graph Appl. 1987;7(2):12–25.
  • Basu B, Katti DS, Kumar A. Advanced biomaterials: fundamentals, processing, and applications. Hoboken (NJ): John Wiley; 2010.
  • Zhu X, Yang Q. Sintering the feasibility improvement and mechanical property of UHMWPE via selective laser sintering. Plast, Rubber Compos. 2020;49(3):116–126.
  • Suwanprateeb J, Kerdsook S, Boonsiri T, et al. Evaluation of heat treatment regimes and their influences on the properties of powder-printed high-density polyethylene bone implant. Polym Int. 2011;60(5):758–764.
  • Suwanprateeb J, Chumnanklang R. Three-dimensional printing of porous polyethylene structure using water-based binders. J Biomed Mater Res Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;78(1):138–145.
  • Dechet MA, Goblirsch A, Romeis S, et al. Production of polyamide 11 microparticles for Additive Manufacturing by liquid-liquid phase separation and precipitation. Chem Eng Sci. 2019;197:11–25.
  • Kloos S, Dechet MA, Peukert W, et al. Production of spherical semi-crystalline polycarbonate microparticles for additive manufacturing by liquid-liquid phase separation. Powder Technol. 2018;335:275–284.
  • Schmidt J, Sachs M, Blümel C, et al. A novel process route for the production of spherical LBM polymer powders with small size and good flowability. Powder Technol. 2014;261:78–86.
  • Hapgood KP, Khanmohammadi B. Granulation of hydrophobic powders. Powder Technol. 2009;189(2):253–262.
  • Williams D. Curr Pharm Des. 2015;21.
  • Rimell JT, Marquis PM. Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J Biomed Mater Res: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2000;53(4):414–420.
  • Goodridge RD, Hague RJ, Tuck CJ. An empirical study into laser sintering of ultra-high molecular weight polyethylene (UHMWPE). J Mater Process Technol. 2010;210(1):72–80.
  • Zhao Y, Yang Q, Ma H, et al. An investigation of post treatment on properties and structure of ultrahigh molecular weight polyethylene parts prepared by selective laser sintering for biomedical application. Polym Adv Technol. 2020;31(7):1484–1495.
  • Borges RA, Choudhury D, Zou M. 3D printed PCU/UHMWPE polymeric blend for artificial knee meniscus. Tribol Int. 2018;122:1–7.
  • Schirmeister CG, Hees T, Licht EH, et al. 3D printing of high density polyethylene by fused filament fabrication. Addit Manuf. 2019;28:152–159.
  • Basu B. Biomaterials Science and Implants Status, Challenges and Recommendations. Singapore: Springer Publication; 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.