2,838
Views
4
CrossRef citations to date
0
Altmetric
Full Critical Review

Binary polymer systems for biomedical applications

, &
Pages 184-224 | Received 20 Aug 2021, Accepted 08 Apr 2022, Published online: 12 May 2022

References

  • Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci. 2011;36(9):1254–1276.
  • Kumbar S, Laurencin C, Deng M. Natural and synthetic biomedical polymers. Elsevier; 2014. p. 1–402.
  • Shoichet MS. Polymer scaffolds for biomaterials applications. Macromolecules. 2010;43(2):581–591.
  • Lei B, Guo BL, Rambhia KJ, et al. Hybrid polymer biomaterials for bone tissue regeneration. Front Med. 2019;13(2):189–201.
  • Banoriya D, Purohit R, Dwivedi RK. Advanced application of polymer based biomaterials. Mater Today-Proc. 2017;4(2):3534–3541.
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–798.
  • Madhumanchi S, Srichana T, Domb A. Polymeric biomaterials. In: Narayan R, editor. Biomedical materials. 2021. p. 49–100.
  • Zhang HM, Zuo M, Zhang XY, et al. Effect of agglomeration on the selective distribution of nanoparticles in binary polymer blends. Compos Part A Appl Sci Manuf. 2021;149:6.
  • Grossen P, Witzigmann D, Sieber S, et al. PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Controlled Release. 2017;260:46–60.
  • Lim CT. Nanofiber technology: current status and emerging developments. Prog Polym Sci. 2017;70:1–17.
  • Ajili SH, Ebrahimi NG, Soleimani M. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater. 2009;5(5):1519–1530.
  • Gultekinoglu M, Sarisozen YT, Erdogdu C, et al. Designing of dynamic polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to prevent infections. Acta Biomater. 2015;21:44–54.
  • Afjoul H, Shamloo A, Kamali A. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: an in vitro, in vivo study. Mater Sci Eng C Mater Biol Appl. 2020;113:110957.
  • Sivakumar R, Lee NY. Chemically robust succinimide-group-assisted irreversible bonding of poly(dimethylsiloxane)–thermoplastic microfluidic devices at room temperature. Analyst. 2020;145(21):6887–6894.
  • Castanheira A, dos Santos MB, Rodriguez-Lorenzo L, et al. Correction: a novel microfluidic system for the sensitive and cost-effective detection of okadaic acid in mussels. Analyst. 2021;146(24):7748–7749.
  • Sibaja B, Culbertson E, Marshall P, et al. Preparation of alginate–chitosan fibers with potential biomedical applications. Carbohydr Polym. 2015;134:598–608.
  • Lu JW, Zhu YL, Guo ZX, et al. Electrospinning of sodium alginate with poly(ethylene oxide). Polymer. 2006;47(23):8026–8031.
  • Namkaew J, Laowpanitchakorn P, Sawaddee N, et al. Carboxymethyl cellulose entrapped in a poly(vinyl) alcohol network: plant-based scaffolds for cartilage tissue engineering. Molecules. 2021;26(3):578.
  • Wu Z, Jiang Y, Li Z, et al. Bacterial cellulose nanofiber distribution on gelatin and silk fibroin scaffolds and the cell behavior. Cellulose. 2021;28(1):91–102.
  • Mu X, Agostinacchio F, Xiang N, et al. Recent advances in 3D printing with protein-based inks. Prog Polym Sci. 2021;115:19.
  • Chen YJ, Jia ZH, Shafiq M, et al. Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration. Colloid Surf B Biointerfaces. 2021;201:10.
  • Eivazzadeh-Keihan R, Radinekiyan F, Aliabadi HAM, et al. Chitosan hydrogel/silk fibroin/Mg(OH)(2) nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci Rep. 2021;11(1):13.
  • Fu CY, Chuang WT, Hsu SH. A biodegradable chitosan-polyurethane cryogel with switchable shape memory. ACS Appl Mater Interfaces. 2021;13(8):9702–9713.
  • San Choi J, Lee SJ, Christ GJ, et al. The influence of electrospun aligned poly(ε-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials. 2008;29(19):2899–2906.
  • Rekulapally R, Udayachandrika K, Hamlipur S, et al. Tissue engineering of collagen scaffolds crosslinked with plant based polysaccharides. Prog Biomater. 2021;10(1):29–41.
  • Lv X, Li Z, Chen S, et al. Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering. Biomaterials. 2016;84:99–110.
  • Suarato G, Contardi M, Perotto G, et al. From fabric to tissue: recovered wool keratin/polyvinylpyrrolidone biocomposite fibers as artificial scaffold platform. Mater Sci Eng C Mater Biol Appl. 2020;116:111151.
  • Zehnder T, Sarker B, Boccaccini AR, et al. Evaluation of an alginate–gelatine crosslinked hydrogel for bioplotting. Biofabrication. 2015;7(2):025001.
  • Bi H, Feng T, Li B, et al. In vitro and in vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing. Polymers. 2020;12(4):839.
  • Chen G, Sato T, Ohgushi H, et al. Culturing of skin fibroblasts in a thin PLGA–collagen hybrid mesh. Biomaterials. 2005;26(15):2559–2566.
  • Zhang B, Zhu M, Li Z, et al. Cellular fate of deformable needle-shaped PLGA-PEG fibers. Acta Biomater. 2020;112:182–189.
  • Croisier F, Atanasova G, Poumay Y, et al. Polysaccharide-coated PCL nanofibers for wound dressing applications. Adv Healthcare Mater. 2014;3(12):2032–2039.
  • Tokarev A, Asheghali D, Griffiths IM, et al. Touch- and brush-spinning of nanofibers. Adv Mater. 2015;27(41):6526–6532.
  • Gultekinoglu M, Orturk S, Chen BQ, et al. Preparation of poly(glycerol sebacate) fibers for tissue engineering applications. Eur Polym J. 2019;121:109297.
  • Robeson LM. Polymer blends: a comprehensive review. Munich: Hanser Gardner; 2007.
  • Namazi H. Polymers in our daily life. Bioimpacts. 2017;7(2):73–74.
  • Gu LS, Shan TT, Ma YX, et al. Novel biomedical applications of crosslinked collagen. Trends Biotechnol. 2019;37(5):464–491.
  • Song R, Murphy M, Li CS, et al. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Dev Ther. 2018;12:3117–3145.
  • Gasperini L, Mano JF, Reis RL. Natural polymers for the microencapsulation of cells. J R Soc Interface. 2014;11(100):20140817.
  • Bayram C, Jiang XY, Gultekinoglu M, et al. Biofabrication of gelatin tissue scaffolds with uniform pore size via microbubble assembly. Macromol Mater Eng. 2019;304(11):1970029.
  • Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurface Biotribology. 2015;1(3):161–176.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–1397.
  • Cameron RE, Kamvari-Moghaddam A. Synthetic bioresorbable polymers. In: Buchanan FJ, editor. Degradation rate of bioresorbable materials. Cambridge: Woodhead Publ; 2008. p. 43–66.
  • Amerongen M, Harmsen M, Petersen A, et al. The enzymatic degradation of scaffolds and their replacement by vascularized extracellular matrix in the murine myocardium. Biomaterials. 2006;27:2247–2257.
  • Nicolas J, Magli S, Rabbachin L, et al. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules. 2020;21(6):1968–1994.
  • Utracki LA, Wilkie CA. Polymer blends handbook. Dordrecht: Kluwer Academic Publishers; 2002.
  • Kim HJ, Peng XY, Shin YS, et al. Blend miscibility of poly(ethylene terephthalate) and aromatic polyesters from salicylic acid. J Phys Chem B. 2021;125(1):450–460.
  • Qian YF, Su Y, Li XQ, et al. Electrospinning of polymethyl methacrylate nanofibres in different solvents. Iran Polym J. 2010;19(2):123–129.
  • Abbott S. Chemical compatibility of poly(lactic acid): a practical framework using Hansen solubility parameters. In: Auras R, Lim L-T, Selke SEM, Tsuji H, editors. Poly(lactic acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons, Inc; 2010. p. 83–95.
  • Veleirinho B, Rei MF, Lopes-da-Silva JA. Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. J Polym Sci Part B Polym Phys. 2008;46(5):460–471.
  • Wu X, Wang L, Yu H, et al. Effect of solvent on morphology of electrospinning ethyl cellulose fibers. J Appl Polym Sci. 2005;97(3):1292–1297.
  • Oliveira J, Brichi GS, Marconcini JM, et al. Effect of solvent on the physical and morphological properties of poly(lactic acid) nanofibers obtained by solution blow spinning. J Eng Fibers Fabr. 2014;9(4):117–125.
  • Yanilmaz M. Effect of the solvent system on the morphology and performance of nylon 6 nanofibre membranes. Fibres Text East Eur. 2019;27(6):97–101.
  • Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int. 2004;53(11):1851–1859.
  • Casasola R, Thomas NL, Trybala A, et al. Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer. 2014;55:4728–4737.
  • Colmenares-Roldan GJ, Quintero-Martinez Y, Agudelo-Gomez LM, et al. Influence of the molecular weight of polymer, solvents and operational condition in the electrospinning of polycaprolactone. Rev Fac Ing Univ Antioquia. 2017;84:35–45.
  • Liechty WB, Kryscio DR, Slaughter BV, et al. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010;1:149–173.
  • Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–2663.
  • Kaplan JA, Liu R, Freedman JD, et al. Prevention of lung cancer recurrence using cisplatin-loaded superhydrophobic nanofiber meshes. Biomaterials. 2016;76:273–281.
  • Sharifi F, Sooriyarachchi AC, Altural H, et al. Fiber based approaches as medicine delivery systems. ACS Biomater Sci Eng. 2016;2(9):1411–1431.
  • Sebe I, Szabo P, Kallai-Szabo B, et al. Incorporating small molecules or biologics into nanofibers for optimized drug release: a review. Int J Pharm. 2015;494(1):516–530.
  • Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Controlled Release. 2015;220:584–591.
  • Balaji A, Vellayappan MV, John AA, et al. An insight on electrospun-nanofibers-inspired modern drug delivery system in the treatment of deadly cancers. RSC Adv. 2015;5(71):57984–58004.
  • Dubey P, Gopinath P. Fabrication of electrospun poly(ethylene oxide)–poly(capro lactone) composite nanofibers for co-delivery of niclosamide and silver nanoparticles exhibits enhanced anti-cancer effects in vitro. J Mat Chem B. 2016;4(4):726–742.
  • Wei JC, Hu J, Li M, et al. Multiple drug-loaded electrospun PLGA/gelatin composite nanofibers encapsulated with mesoporous ZnO nanospheres for potential postsurgical cancer treatment. RSC Adv. 2014;4(53):28011–28019.
  • Morgado PI, Aguiar-Ricardo A, Correia IJ. Asymmetric membranes as ideal wound dressings: an overview on production methods, structure, properties and performance relationship. J Membr Sci. 2015;490:139–151.
  • Zhou XJ, Chen L, Wang WZ, et al. Electrospun nanofibers incorporating self-decomposable silica nanoparticles as carriers for controlled delivery of anticancer drug. RSC Adv. 2015;5(81):65897–65904.
  • Yuan Y, Choi K, Choi SO, et al. Early stage release control of an anticancer drug by drug-polymer miscibility in a hydrophobic fiber-based drug delivery system. RSC Adv. 2018;8(35):19791–19803.
  • Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. J Controlled Release. 2012;161(2):351–362.
  • Li H, Hardy RJ, Gu X. Effect of drug solubility on polymer hydration and drug dissolution from polyethylene oxide (PEO) matrix tablets. AAPS PharmSciTech. 2008;9(2):437–443.
  • Schindler C, Williams BL, Patel HN, et al. Electrospun polycaprolactone/polyglyconate blends: miscibility, mechanical behavior, and degradation. Polymer. 2013;54(25):6824–6833.
  • Siafaka PI, Barmbalexis P, Bikiaris DN. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent. Eur J Pharm Sci. 2016;88:12–25.
  • Kim K, Luu YK, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Controlled Release. 2004;98(1):47–56.
  • Cordin M, Bechtold T, Pham T. Effect of fibre orientation on the mechanical properties of polypropylene–lyocell composites. Cellulose. 2018;25(12):7197–7210.
  • Cuvalci H, Erbay K, Ipek H. Investigation of the effect of glass fiber content on the mechanical properties of cast polyamide. Arab J Sci Eng. 2014;39(12):9049–9056.
  • Salman SD, Leman Z, Sultan MTH, et al. Influence of fiber content on mechanical and morphological properties of Woven Kenaf reinforced PVB film produced using a hot press technique. Int J Polym Sci. 2016;2016:7828451.
  • Zaman I, Ismail AE, Awang M. Influence of fiber volume fraction on the tensile properties and dynamic characteristics of coconut fiber reinforced composite. J Sci Technol. 2010;1:55–71.
  • Aydogdu MO, Altun E, Ahmed J, et al. Fiber forming capability of binary and ternary compositions in the polymer system: bacterial cellulose–polycaprolactone–polylactic acid. Polymers. 2019;11(7):1148.
  • Jasso-Gastinel CF, Soltero-Martinez JFA, Mendizabal E. Introduction: modifiable characteristics and applications. In: Carlos F. Jasso-Gastinel and José M. Kenny, editors. Modification of polymer properties. Norwich: William Andrew Inc; 2017. p. 1–21.
  • Hawkins WL. Polymer degradation. In: Harwood HJ, editor. Polymer degradation and stabilization. Berlin: Springer; 1984. p. 3–34.
  • Guillet J, Huber H, Scott J. Biodegradable polymers and plastics. Proceedings of the Second International Scientific Workshop on Biodegradable Polymers and Plastics, Montpellier, 1992. p. 55–70.
  • Barbeck M, Serra T, Booms P, et al. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components – guidance of the inflammatory response as basis for osteochondral regeneration. Bioact Mater. 2017;2(4):208–223.
  • Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv Drug Deliv Rev. 2016;107:367–392.
  • Wang Z, Wang Y, Ito Y, et al. A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Sci Rep. 2016;6(1):20770.
  • Sánchez-González S, Diban N, Urtiaga A. Hydrolytic degradation and mechanical stability of poly(ϵ-caprolactone)/reduced graphene oxide membranes as scaffolds for in vitro neural tissue regeneration. Membranes. 2018;8(1):12.
  • Kingston C, Zepp R, Andrady A, et al. Release characteristics of selected carbon nanotube polymer composites. Carbon. 2014;68:33–57.
  • Dong J, Liu J, Li X, et al. Relationship between the Young’s modulus and the crystallinity of cross-linked poly(ϵ-caprolactone) as an immobilization membrane for cancer radiotherapy. Glob Chall. 2020;4(8):2000008.
  • Humbert S, Lame O, Seguela R, et al. A re-examination of the elastic modulus dependence on crystallinity in semi-crystalline polymers. Polymer. 2011;52(21):4899–4909.
  • Mileva D, Zia Q, Androsch R. Tensile properties of random copolymers of propylene with ethylene and 1-butene: effect of crystallinity and crystal habit. Polym Bull. 2010;65(6):623–634.
  • Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett. 2019;17(2):849–865.
  • Lin W. Introduction: nanoparticles in medicine. Chem Rev. 2015;115(19):10407–10409.
  • Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545–2561.
  • Liu Y, Yang GZ, Baby T, et al. Stable polymer nanoparticles with exceptionally high drug loading by sequential nanoprecipitation. Angew Chem Int Ed. 2020;59(12):4720–4728.
  • Hornig S, Heinze T, Becer CR, et al. Synthetic polymeric nanoparticles by nanoprecipitation. J Mater Chem. 2009;19(23):3838–3840.
  • Gultekinoglu M, Jiang X, Bayram C, et al. Self-assembled micro-stripe patterning of sessile polymeric nanofluid droplets. J Colloid Interface Sci. 2020;561:470–480.
  • Zhao C, Melis S, Hughes EP, et al. Particle formation mechanisms in the nanoprecipitation of polystyrene. Langmuir. 2020;36(44):13210–13217.
  • Han FY, Liu Y, Kumar V, et al. Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation. Int J Pharm. 2020;581:7.
  • Baysal I, Ucar G, Gultekinoglu M, et al. Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J Neural Transm. 2017;124(1):33–45.
  • Eroglu I, Gultekinoglu M, Bayram C, et al. Gel network comprising UV crosslinked PLGA-b-PEG-MA nanoparticles for ibuprofen topical delivery. Pharm Dev Technol. 2019;24(9):1144–1154.
  • Kietzke T, Neher D, Kumke M, et al. Phase separation of binary blends in polymer nanoparticles. Small. 2007;3(6):1041–1048.
  • Hanumantharao SN, Rao S. Multi-functional electrospun nanofibers from polymer blends for scaffold tissue engineering. Fibers. 2019;7(7):66.
  • Prasad K, Bazaka O, Chua M, et al. Metallic biomaterials: current challenges and opportunities. Materials. 2017;10(8):884.
  • Chen L, Pan D, He HK. Morphology development of polymer blend fibers along spinning line. Fibers. 2019;7(4):35.
  • Luzi F, Torre L, Kenny JM, et al. Bio- and fossil-based polymeric blends and nanocomposites for packaging: structure–property relationship. Materials. 2019;12(3):471.
  • Martinova L, Lubasova D. Reasons for using polymer blends in the electrospinning process. International Conference on Nanotechnology – Research and Commercialization (ICONT), Malaysia, Jun 6–9. American Institute of Physics, 2011. p. 115–128.
  • Ramakrishna S, Fujihara K, Teo W-E, et al. Electrospun nanofibers: solving global issues. Mater Today. 2006;9(3):40–50.
  • Hsu CM, Shivkumar S. N,N-dimethylformamide additions to the solution for the electrospinning of poly(ε-caprolactone) nanofibers. Macromol Mater Eng. 2004;289(4):334–340.
  • Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–621.
  • Viry L, Moulton SE, Romeo T, et al. Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. J Mater Chem. 2012;22(22):11347–11353.
  • Gomes ME, Reis RL. Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 1 available systems and their properties. Int Mater Rev. 2004;49(5):261–273.
  • Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–347.
  • Zhang XW, Lu Y. Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost. Polym Rev. 2014;54(4):677–701.
  • Nagam Hanumantharao S, Rao S. Multi-functional electrospun nanofibers from polymer blends for scaffold tissue engineering. Fibers. 2019;7:66.
  • de Cassan D, Sydow S, Schmidt N, et al. Attachment of nanoparticulate drug-release systems on poly(ϵ-caprolactone) nanofibers via a graftpolymer as interlayer. Colloids Surf B. 2018;163:309–320.
  • Eriksen THB, Skovsen E, Fojan P. Release of antimicrobial peptides from electrospun nanofibres as a drug delivery system. J Biomed Nanotechnol. 2013;9(3):492–498.
  • Li H, Wang M, Williams GR, et al. Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials. RSC Adv. 2016;6(55):50267–50277.
  • Amariei G, Kokol V, Boltes K, et al. Incorporation of antimicrobial peptides on electrospun nanofibres for biomedical applications. RSC Adv. 2018;8(49):28013–28023.
  • Martins A, Reis RL, Neves NM. Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev. 2008;53(5):257–274.
  • Zafar M, Najeeb S, Khurshid Z, et al. Potential of electrospun nanofibers for biomedical and dental applications. Materials. 2016;9(2):73.
  • Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11(8):1165–1188.
  • Komur B, Bayrak F, Ekren N, et al. Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications. Biomed Eng Online. 2017;16(1):1–13.
  • Gizaw M, Thompson J, Faglie A, et al. Electrospun fibers as a dressing material for drug and biological agent delivery in wound healing applications. Bioengineering. 2018;5(1).
  • Khorshidi S, Solouk A, Mirzadeh H, et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med. 2016;10(9):715–738.
  • Chen X, Feng B, Zhu DQ, et al. Characteristics and toxicity assessment of electrospun gelatin/PCL nanofibrous scaffold loaded with graphene in vitro and in vivo. Int J Nanomed. 2019;14:3669–3678.
  • Hong J, Yeo M, Yang GH, et al. Cell-electrospinning and its application for tissue engineering. Int J Mol Sci. 2019;20(24):6208.
  • Xia L, Lu LL, Liang YX, et al. Fabrication of centrifugally spun prepared poly(lactic acid)/gelatin/ciprofloxacin nanofibers for antimicrobial wound dressing. RSC Adv. 2019;9(61):35328–35335.
  • Song JX, Guo J, Liu YF, et al. A comparative study on properties of cellulose/antarctic krill protein composite fiber by centrifugal spinning and wet spinning. Fiber Polym. 2019;20(8):1547–1554.
  • Zhang ZM, Duan YS, Xu Q, et al. A review on nanofiber fabrication with the effect of high-speed centrifugal force field. J Eng Fibers Fabr. 2019;14:11.
  • Amalorpava Mary L, Senthilram T, Suganya S, et al. Centrifugal spun ultrafine fibrous web as a potential drug delivery vehicle. Express Polym Lett. 2012.
  • Li Y, Chen F, Nie J, et al. Electrospun poly(lactic acid)/chitosan core–shell structure nanofibers from homogeneous solution. Carbohydr Polym. 2012;90(4):1445–1451.
  • Chen G, Shi T, Zhang X, et al. Polyacrylonitrile/polyethylene glycol phase-change material fibres prepared with hybrid polymer blends and nano-SiC fillers via centrifugal spinning. Polymer. 2020;186:122012.
  • Mahalingam S, Huo S, Homer-Vanniasinkam S, et al. Generation of core–sheath polymer nanofibers by pressurised gyration. Polymers. 2020;12(8):1709.
  • Heseltine PL, Ahmed J, Edirisinghe M. Developments in pressurized gyration for the mass production of polymeric fibers. Macromol Mater Eng. 2018;303(9):1800218.
  • Liu Y, Zhou S, Gao Y, et al. Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian J Pharm Sci. 2019;14(2):130–143.
  • Wang X, Ding B, Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today. 2013;16(6):229–241.
  • Khan PA, Sasikanth K, Nama S, et al. Nanofibers - a new trend in nano drug delivery systems. Pharm Innov J. 2013;2:118–127.
  • Brako F, Raimi-Abraham BT, Mahalingam S, et al. The development of progesterone-loaded nanofibers using pressurized gyration: a novel approach to vaginal delivery for the prevention of pre-term birth. Int J Pharm. 2018;540(1):31–39.
  • Mahalingam S, Bayram C, Gultekinoglu M, et al. Co-axial gyro-spinning of PCL/PVA/HA core-sheath fibrous scaffolds for bone tissue engineering. Macromol Biosci. 2021;21(10):2100177.
  • Khalil NM, do Nascimento TCF, Casa DM, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloid Surf B-Biointerfaces. 2013;101:353–360.
  • Parveen S, Sahoo SK. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol. 2011;670(2–3):372–383.
  • Mayol L, Serri C, Menale C, et al. Curcumin loaded PLGA–poloxamer blend nanoparticles induce cell cycle arrest in mesothelioma cells. Eur J Pharm Biopharm. 2015;93:37–45.
  • Hadjianfar M, Semnani D, Varshosaz J. Polycaprolactone/chitosan blend nanofibers loaded by 5-fluorouracil: an approach to anticancer drug delivery system. Polym Adv Technol. 2018;29(12):2972–2981.
  • Kharaghani D, Gitigard P, Ohtani H, et al. Design and characterization of dual drug delivery based on in-situ assembled PVA/PAN core-shell nanofibers for wound dressing application. Sci Rep. 2019;9(1):1–11.
  • Su Y, Su Q, Liu W, et al. Dual-drug encapsulation and release from core–shell nanofibers. J Biomater Sci Polym Ed. 2012;23(7):861–871.
  • Cao Y, Wang B, Wang Y, et al. Polymer-controlled core–shell nanoparticles: a novel strategy for sequential drug release. RSC Adv. 2014;4(57):30430–30439.
  • Silva DM, Liu R, Goncalves AF, et al. Design of polymeric core-shell carriers for combination therapies. J Colloid Interface Sci. 2021;587:499–509.
  • Gomes ME, Reis RL. Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 2 systems for temporary replacement and advanced tissue regeneration. Int Mater Rev. 2004;49(5):274–285.
  • Graziano A, Jaffer S, Sain M. Review on modification strategies of polyethylene/polypropylene immiscible thermoplastic polymer blends for enhancing their mechanical behavior. J Elastomers Plast. 2019;51(4):291–336.
  • Serafin A, Murphy C, Rubio MC, et al. Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;122:111927.
  • Dumont M, Villet R, Guirand M, et al. Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydr Polym. 2018;190:31–42.
  • Kundu J, Shim JH, Jang J, et al. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286–1297.
  • Cai Z, Kim J. Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose. 2010;17(1):83–91.
  • Noh YK, Da Costa AD, Park YS, et al. Fabrication of bacterial cellulose-collagen composite scaffolds and their osteogenic effect on human mesenchymal stem cells. Carbohydr Polym. 2019;219:210–218.
  • Fahimirad S, Abtahi H, Satei P, et al. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr Polym. 2021;259:117640.
  • Cooper A, Bhattarai N, Zhang M. Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym. 2011;85(1):149–156.
  • Jafari H, Hassanpour M, Akbari A, et al. Characterization of pH-sensitive chitosan/hydroxypropyl methylcellulose composite nanoparticles for delivery of melatonin in cancer therapy. Mater Lett. 2021;282:128818.
  • Stratesteffen H, Kopf M, Kreimendahl F, et al. GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Biofabrication. 2017;9(4):045002.
  • Moxon SR, Corbett NJ, Fisher K, et al. Blended alginate/collagen hydrogels promote neurogenesis and neuronal maturation. Mater Sci Eng C Mater Biol Appl. 2019;104:109904.
  • Wang YH, Ma M, Wang JN, et al. Development of a photo-crosslinking, biodegradable GelMA/PEGDA hydrogel for guided bone regeneration materials. Materials. 2018;11(8):12.
  • Vatankhah E, Prabhakaran MP, Jin G, et al. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J Biomater Appl. 2014;28(6):909–921.
  • Zhou J, Cao C, Ma X, et al. Electrospinning of silk fibroin and collagen for vascular tissue engineering. Int J Biol Macromol. 2010;47(4):514–519.
  • Zhou Y, Yang H, Liu X, et al. Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Int J Biol Macromol. 2013;53:88–92.
  • Kundu J, Poole-Warren LA, Martens P, et al. Silk fibroin/poly(vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs. Acta Biomater. 2012;8(5):1720–1729.
  • Sanhueza C, Hermosilla J, Bugallo-Casal A, et al. One-step electrospun scaffold of dual-sized gelatin/poly-3-hydroxybutyrate nano/microfibers for skin regeneration in diabetic wound. Mater Sci Eng C Mater Biol Appl. 2021;119:111602.
  • Azuraini MJ, Huong KH, Khalil H, et al. Fabrication and characterization of P(3HB-co-4HB)/gelatine biomimetic nanofibrous scaffold for tissue engineering application. J Polym Res. 2019;26(11):12.
  • Mendibil X, González-Pérez F, Bazan X, et al. Bioresorbable and mechanically optimized nerve guidance conduit based on a naturally derived medium chain length polyhydroxyalkanoate and poly(ϵ-caprolactone) blend. ACS Biomater Sci Eng. 2021;7(2):672–689.
  • Salehi S, Bahners T, Gutmann JS, et al. Characterization of structural, mechanical and nano-mechanical properties of electrospun PGS/PCL fibers. RSC Adv. 2014;4(33):16951–16957.
  • She YL, Fan ZW, Wang L, et al. 3D Printed biomimetic PCL scaffold as framework interspersed with collagen for long segment tracheal replacement. Front Cell Dev Biol. 2021;9:14.
  • Ekaputra AK, Prestwich GD, Cool SM, et al. The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (ε-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials. 2011;32(32):8108–8117.
  • Evrova O, Hosseini V, Milleret V, et al. Hybrid randomly electrospun poly(lactic-co-glycolic acid):poly(ethylene oxide) (PLGA:PEO) fibrous scaffolds enhancing myoblast differentiation and alignment. ACS Appl Mater Interfaces. 2016;8(46):31574–31586.
  • Xu Y, Zou L, Lu H, et al. Preparation and characterization of electrospun PHBV/PEO mats: The role of solvent and PEO component. J Mater Sci. 2016;51.
  • Banerjee SR, Foss CA, Horhota A, et al. 111In- and IRDye800CW-labeled PLA–PEG nanoparticle for imaging prostate-specific membrane antigen-expressing tissues. Biomacromolecules. 2017;18(1):201–209.
  • Musumeci T, Ventura CA, Giannone I, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325(1):172–179.
  • Shin YC, Shin DM, Lee EJ, et al. Hyaluronic acid/PLGA core/shell fiber matrices loaded with EGCG beneficial to diabetic wound healing. Adv Healthc Mater. 2016;5(23):3035–3045.
  • Rebia RA, Rozet S, Tamada Y, et al. Biodegradable PHBH/PVA blend nanofibers: fabrication, characterization, in vitro degradation, and in vitro biocompatibility. Polym Degrad Stab. 2018;154:124–136.
  • Altaf F, Niazi MBK, Jahan Z, et al. Synthesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications. J Polym Environ. 2021;29(1):156–174.
  • Kanca Y, Milner P, Dini D, et al. Tribological properties of PVA/PVP blend hydrogels against articular cartilage. J Mech Behav Biomed Mater. 2018;78:36–45.
  • Mishra R, Varshney R, Das N, et al. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur Polym J. 2019;119:155–168.
  • Li K, Wang DZ, Zhao KP, et al. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture. Talanta. 2020;211:11.
  • Kim HS, Lee CG, Lee EY. Alginate lyase: structure, property, and application. Biotechnol Bioprocess Eng. 2011;16(5):843–851.
  • Haug A, Larsen B. Biosynthesis of alginate. Carbohydr Res. 1971;17(2):297–308.
  • Smidsrød O, Glover RM, Whittington SG. The relative extension of alginates having different chemical composition. Carbohydr Res. 1973;27(1):107–118.
  • Evans LR, Linker A. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol. 1973;116(2):915–924.
  • Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–126.
  • Jain D, Bar-Shalom D. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm. 2014;40(12):1576–1584.
  • Bouhadir KH, Lee KY, Alsberg E, et al. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog. 2001;17(5):945–950.
  • Raus RA, Nawawi W, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci. 2021;16(3):280–306.
  • Kong HJ, Kaigler D, Kim K, et al. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules. 2004;5(5):1720–1727.
  • Schipani R, Scheurer S, Florentin R, et al. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Biofabrication. 2020;12(3):035011.
  • Gong XY, Dang GY, Guo J, et al. A sodium alginate/feather keratin composite fiber with skin-core structure as the carrier for sustained drug release. Int J Biol Macromol. 2020;155:386–392.
  • Ji MZ, Chen H, Yan YG, et al. Effects of tricalcium silicate/sodium alginate/calcium sulfate hemihydrate composite cements on osteogenic performances in vitro and in vivo. J Biomater Appl. 2020;34(10):1422–1436.
  • Choe G, Oh S, Seok JM, et al. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Nanoscale. 2019;11(48):23275–23285.
  • Del Bakhshayesh AR, Annabi N, Khalilov R, et al. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cell Nanomed Biotechnol. 2018;46(4):691–705.
  • Nawaz S, Khan S, Farooq U, et al. Biocompatible hydrogels for the controlled delivery of anti-hypertensive agent: development, characterization and in vitro evaluation. Des Monomers Polym. 2018;21(1):18–32.
  • Labowska MB, Cierluk K, Jankowska AM, et al. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials. 2021;14(4):858.
  • Su K, Wang C. Recent advances in the use of gelatin in biomedical research. Biotechnol Lett. 2015;37(11):2139–2145.
  • Thakur G, Rouseau D, Rafanan R. Gelatin-based matrices for drug delivery applications. In: Boran G, editor. Gelatin: production, applications and health implications. 2013. p. 49–70.
  • Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release. 2013;172(3):1075–1091.
  • Ndlovu SP, Ngece K, Alven S, et al. Gelatin-based hybrid scaffolds: promising wound dressings. Polymers. 2021;13(17):2959.
  • Bello AB, Kim D, Kim D, et al. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev. 2020;26(2):164–180.
  • Echave MC, Hernáez-Moya R, Iturriaga L, et al. Recent advances in gelatin-based therapeutics. Expert Opin Biol Ther. 2019;19(8):773–779.
  • Li JH, Wu CT, Chu PK, et al. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep. 2020;140:76.
  • Sun M, Sun X, Wang Z, et al. Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers. 2018;10(11):1290.
  • Boccafoschi F, Ramella M, Fusaro L, et al. Biological grafts: surgical use and vascular tissue engineering options for peripheral vascular implants. Amsterdam: Elsevier Science Bv; 2019. p. 310–321.
  • Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26(15):2455–2465.
  • Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials. 2005;26(18):3941–3951.
  • Grigore A, Sarker B, Fabry B, et al. Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels. Tissue Eng Part A. 2014;20(15–16):2140–2150.
  • Dranseikiene D, Schrufer S, Schubert DW, et al. Cell-laden alginate dialdehyde–gelatin hydrogels formed in 3D printed sacrificial gel. J Mater Sci Mater Med. 2020;31(3):5.
  • Nguyen TP, Lee BT. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration. J Biomater Appl. 2012;27(3):311–321.
  • Yuan L, Wu Y, Fang J, et al. Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive. Artif Cell Nanomed Biotechnol. 2017;45(1):76–83.
  • Sarker B, Papageorgiou DG, Silva R, et al. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mat Chem B. 2014;2(11):1470–1482.
  • Ruther F, Distler T, Boccaccini AR, et al. Biofabrication of vessel-like structures with alginate di-aldehyde – gelatin (ADA-GEL) bioink. J Mater Sci Mater Med. 2019;30(1):8.
  • Aranaz I, Alcantara AR, Civera MC, et al. Chitosan: an overview of its properties and applications. Polymers. 2021;13(19):3256.
  • Li Q, Dunn ET, Grandmaison EW, et al. Applications and properties of chitosan. J Bioact Compat Polym. 1992;7(4):370–397.
  • Islam S, Bhuiyan MAR, Islam MN. Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ. 2017;25(3):854–866.
  • Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49(4):780–792.
  • Sudarshan NR, Hoover DG, Knorr D. Antibacterial action of chitosan. Food Biotechnol. 1992;6(3):257–272.
  • Ong SY, Wu J, Moochhala SM, et al. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29(32):4323–4332.
  • Dai TH, Tanaka M, Huang YY, et al. Corrigendum. Expert Rev Anti-Infect Ther. 2013;11(8):866–866.
  • Aranaz I, Mengíbar M, Harris R, et al. Functional characterization of Chitin and Chitosan. Curr Chem Biol. 2009;3:203–230.
  • Lehr CM, Bouwstra JA, Schacht EH, et al. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm. 1992;78(1):43–48.
  • Yang J, Tian F, Wang Z, et al. Effect of chitosan molecular weight and deacetylation degree on hemostasis. J Biomed Mater Res B Appl Biomater. 2008;84B(1):131–137.
  • Bhuiyan MAR, Hossain MA, Zakaria M, et al. Chitosan coated cotton fiber: physical and antimicrobial properties for apparel use. J Polym Environ. 2017;25(2):334–342.
  • Chou CK, Chen SM, Li YC, et al. Low-molecular-weight chitosan scavenges methylglyoxal and N ϵ-(carboxyethyl)lysine, the major factors contributing to the pathogenesis of nephropathy. Springerplus. 2015;4:312.
  • Lee BR, Lee KH, Kang E, et al. Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers. Biomicrofluidics. 2011;5(2):9.
  • Yang J, Goto M, Ise H, et al. Galactosylated alginate as a scaffold for hepatocytes entrapment. Biomaterials. 2002;23(2):471–479.
  • Lee M, Li WM, Siu RK, et al. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials. 2009;30(30):6094–6101.
  • Weng L, Romanov A, Rooney J, et al. Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran. Biomaterials. 2008;29(29):3905–3913.
  • Francesko A, Tzanov T. Chitin, chitosan and derivatives for wound healing and tissue engineering. In: Nyanhongo GS, Steiner W, Gübitz G, editors. Biofunctionalization of polymers and their applications. Berlin: Springer-Verlag Berlin; 2011. p. 1–27.
  • Perez RA, Kim M, Kim TH, et al. Utilizing core–shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering. Tissue Eng Part A. 2014;20(1–2):103–114.
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer – polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–1256.
  • Hassanajili S, Karami-Pour A, Oryan A, et al. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;104:109960.
  • Felice B, Sanchez MA, Socci MC, et al. Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2018;93:724–738.
  • Ristovski N, Bock N, Liao S, et al. Improved fabrication of melt electrospun tissue engineering scaffolds using direct writing and advanced electric field control. Biointerphases. 2015;10(1):011006.
  • Roder A, Garcia-Gareta E, Theodoropoulos C, et al. An assessment of cell culture plate surface chemistry for in vitro studies of tissue engineering scaffolds. J Funct Biomater. 2015;6(4):1054–1063.
  • Paxton NC, Ren JY, Ainsworth MJ, et al. Rheological characterization of biomaterials directs additive manufacturing of strontium-substituted bioactive glass/polycaprolactone microfibers. Macromol Rapid Commun. 2019;40(11):1900019.
  • Ren J, Kohli N, Sharma V, et al. Poly-ϵ-caprolactone/fibrin-alginate scaffold: a new pro-angiogenic composite biomaterial for the treatment of bone defects. Polymers. 2021;13:3399.
  • Recek N, Resnik M, Motaln H, et al. Cell adhesion on polycaprolactone modified by plasma treatment. Int J Polym Sci. 2016;2016:1–9.
  • French AD. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose. 2017;24(11):4605–4609.
  • Seddiqi H, Oliaei E, Honarkar H, et al. Cellulose and its derivatives: towards biomedical applications. Cellulose. 2021;28(4):1893–1931.
  • Barikani M, Oliaei E, Seddiqi H, et al. Preparation and application of chitin and its derivatives: a review. Iran Polym J. 2014;23(4):307–326.
  • Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40(7):3941–3994.
  • Sultan S, Mathew AP. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale. 2018;10(9):4421–4431.
  • Fidale LC, Heinze T, El Seoud OA. Perichromism: a powerful tool for probing the properties of cellulose and its derivatives. Carbohydr Polym. 2013;93(1):129–134.
  • Ansari F, Sjostedt A, Larsson PT, et al. Hierarchical wood cellulose fiber/epoxy biocomposites – materials design of fiber porosity and nanostructure. Compos Part A Appl Sci Manuf. 2015;74:60–68.
  • Dumitriu C, Voicu SI, Muhulet A, et al. Production and characterization of cellulose acetate – titanium dioxide nanotubes membrane fraxiparinized through polydopamine for clinical applications. Carbohydr Polym. 2018;181:215–223.
  • Tilki T, Yavuz M, Karabacak Ç, et al. Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions. Carbohydr Res. 2010;345(5):672–679.
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–4351.
  • Mandal A, Clegg J, Anselmo A, et al. Hydrogels in the clinic. Hydrogels in the clinic. Bioeng Transl Med. 2020;5.
  • Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: perspectives and challenges. Biotechnol Adv. 2019;37(1):109–131.
  • Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for cartilage regeneration, from polysaccharides to hybrids. Polymers. 2017;9(12):671.
  • Stocco E, Barbon S, Dalzoppo D, et al. Tailored PVA/ECM scaffolds for cartilage regeneration. Biomed Res Int. 2014;2014:12.
  • Stocco E, Barbon S, Radossi P, et al. Autologous chondrocytes as a novel source for neo-chondrogenesis in haemophiliacs. Cell Tissue Res. 2016;366(1):51–61.
  • Alhosseini SN, Moztarzadeh F, Kargozar S, et al. Development of polyvinyl alcohol fibrous biodegradable scaffolds for nerve tissue engineering applications: in vitro study. Int J Polym Mater Polym Biomat. 2015;64(9):474–480.
  • Kim HD, Lee Y, Kim Y, et al. A review of multiscale computational methods in polymeric materials. Polymers. 2017;9(12):16.
  • Teodorescu M, Bercea M, Morariu S. Biomaterials of poly(vinyl alcohol) and natural polymers. Polym Rev. 2018;58(2):247–287.
  • Khalid A, Ullah H, Ul-Islam M, et al. Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv. 2017;7(75):47662–47668.
  • Li Y, Jiang H, Zheng WF, et al. Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. J Mat Chem B. 2015;3(17):3498–3507.
  • Hu Y, Catchmark JM, Zhu YJ, et al. Engineering of porous bacterial cellulose toward human fibroblasts ingrowth for tissue engineering. J Mater Res. 2014;29(22):2682–2693.
  • Klemm D, Schumann D, Udhardt U, et al. Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci. 2001;26(9):1561–1603.
  • Czaja W, Krystynowicz A, Bielecki S, et al. Microbial cellulose – the natural power to heal wounds. Biomaterials. 2006;27(2):145–151.
  • Portela R, Leal CR, Almeida PL, et al. Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol. 2019;12(4):586–610.
  • Rodriguez MIA, Barroso LGR, Sanchez ML. Collagen: a review on its sources and potential cosmetic applications. J Cosmet Dermatol. 2018;17(1):20–26.
  • Li YB, Liu YZ, Li RH, et al. Collagen-based biomaterials for bone tissue engineering. Mater Des. 2021;210:23.
  • Nakayama A, Kakugo A, Gong JP, et al. High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater. 2004;14(11):1124–1128.
  • Zaborowska M, Bodin A, Backdahl H, et al. Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater. 2010;6(7):2540–2547.
  • Yamanaka S, Watanabe K, Kitamura N, et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci. 1989;24(9):3141–3145.
  • Helenius G, Backdahl H, Bodin A, et al. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res Part A. 2006;76A(2):431–438.
  • Torres FG, Commeaux S, Troncoso OP. Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater. 2012;3(4):864–878.
  • Noh YK, Dos Santos Da Costa A, Park YS, et al. Fabrication of bacterial cellulose-collagen composite scaffolds and their osteogenic effect on human mesenchymal stem cells. Carbohydr Polym. 2019;219:210–218.
  • Bagheri-Khoulenjani S, Taghizadeh SM, Mirzadeh H. An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydr Polym. 2009;78(4):773–778.
  • Vårum KM, Myhr MM, Hjerde RJ, et al. In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res. 1997;299(1–2):99–101.
  • VandeVord PJ, Matthew HW, DeSilva SP, et al. Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res. 2002;59(3):585–590.
  • Sashiwa H, Aiba SI. Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci. 2004;29(9):887–908.
  • Bhattarai N, Li Z, Gunn J, et al. Natural-synthetic polyblend nanofibers for biomedical applications. Adv Mater. 2009;21(27):2792–2797.
  • Jana S, Leung M, Chang JL, et al. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation. Biofabrication. 2014;6(3):035012.
  • Shalumon KT, Anulekha KH, Chennazhi KP, et al. Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering. Int J Biol Macromol. 2011;48(4):571–576.
  • Zhou M, Qiao W, Liu Z, et al. Development and in vivo evaluation of small-diameter vascular grafts engineered by outgrowth endothelial cells and electrospun chitosan/poly(ε-caprolactone) nanofibrous scaffolds. Tissue Eng Part A. 2013;20.
  • Chen SH, Chen CH, Fong YT, et al. Prevention of peritendinous adhesions with electrospun chitosan-grafted polycaprolactone nanofibrous membranes. Acta Biomater. 2014;10(12):4971–4982.
  • Liu H, Peng H, Wu Y, et al. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials. 2013;34(18):4404–4417.
  • Wedmore I, McManus JG, Pusateri AE, et al. A special report on the chitosan-based hemostatic dressing: experience in current combat operations. J Trauma. 2006;60(3):655–658.
  • Şenel S, McClure SJ. Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev. 2004;56(10):1467–1480.
  • Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev. 2001;52(2):105–115.
  • Levengood SL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B. 2014;2(21):3161–3184.
  • Croisier F, Atanasova G, Poumay Y, et al. Polysaccharide-coated PCL nanofibers for wound dressing applications. Adv Healthc Mater. 2014;3(12):2032–2039.
  • Bhattarai N, Li ZS, Gunn J, et al. Natural-synthetic polyblend nanofibers for biomedical applications. Adv Mater. 2009;21(27):2792–2797.
  • Levengood SL, Erickson AE, Chang FC, et al. Chitosan–poly(caprolactone) nanofibers for skin repair. J Mat Chem B. 2017;5(9):1822–1833.
  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29(34):4532–4539.
  • Jiang X, Lim SH, Mao HQ, et al. Current applications and future perspectives of artificial nerve conduits. Exp Neurol. 2010;223(1):86–101.
  • Valmikinathan CM, Defroda S, Yu X. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor. Biomacromolecules. 2009;10(5):1084–1089.
  • Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, et al. Recent progress in optical and electrochemical biosensors for sensing of clostridium botulinum neurotoxin. TrAC Trends Anal Chem. 2018;103:184–197.
  • Mohammadinejad A, Oskuee RK, Eivazzadeh-Keihan R, et al. Development of biosensors for detection of alphafetoprotein: as a major biomarker for hepatocellular carcinoma. TrAC Trends Anal Chem. 2020;130(23).
  • Eivazzadeh-Keihan R, Maleki A, de la Guardia M, et al. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res. 2019;18:185–201.
  • Cheung RCF, Ng TB, Wong JH, et al. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13(8):5156–5186.
  • Zhou ZK, Lin SQ, Yue TL, et al. Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles. J Food Eng. 2014;126:133–141.
  • Arteche Pujana M, Pérez-Álvarez L, Cesteros Iturbe LC, et al. Biodegradable chitosan nanogels crosslinked with genipin. Carbohydr Polym. 2013;94(2):836–842.
  • Wang YM, Wang J, Yuan ZY, et al. Chitosan cross-linked poly(acrylic acid) hydrogels: drug release control and mechanism. Colloid Surf B Biointerfaces. 2017;152:252–259.
  • Zeng M, Yuan X, Yang Z, et al. Novel macroporous palladium cation crosslinked chitosan membranes for heterogeneous catalysis application. Int J Biol Macromol. 2014;68:189–197.
  • Depan D, Singh R. Surface modification of chitosan and its implications in tissue engineering and drug delivery. In: Surface modification of biopolymers. New York (NY): Wiley; 2015. p. 20–44.
  • Gu Y, Zhu J, Xue C, et al. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials. 2014;35(7):2253–2263.
  • Ju HW, Lee OJ, Lee JM, et al. Wound healing effect of electrospun silk fibroin nanomatrix in burn-model. Int J Biol Macromol. 2016;85:29–39.
  • Sakabe H, Ito H, Miyamoto T, et al. In vivo blood compatibility of regenerated silk fibroin. Sen’i Gakkaishi. 1989;45(11):487–490.
  • Santin M, Motta A, Freddi G, et al. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res. 1999;46(3):382–389.
  • Guang SY, An Y, Ke FY, et al. Chitosan/silk fibroin composite scaffolds for wound dressing. J Appl Polym Sci. 2015;132(35):7.
  • Keirouz A, Zakharova M, Kwon J, et al. High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2020;112:110939.
  • Ribeiro VP, Pina S, Oliveira JM, et al. Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration. In: Oliveira JM, Pina S, Reis RL, et al., editors. Osteochondral tissue engineering: nanotechnology, scaffolding-related developments and translation. Cham: Springer International Publishing; 2018. p. 305–325.
  • Nguyen TP, Nguyen QV, Nguyen VH, et al. Silk fibroin-based biomaterials for biomedical applications: a review. Polymers. 2019;11(12):1933.
  • Balan KK, Sundaramoorthy S. Hydroentangled nonwoven eri silk fibroin scaffold for tissue engineering applications. J Ind Text. 2019;48(8):1291–1309.
  • Selvaraj S, Fathima NN. Fenugreek incorporated silk fibroin nanofibers – a potential antioxidant scaffold for enhanced wound healing. ACS Appl Mater Interfaces. 2017;9(7):5916–5926.
  • Cengiz IF, Pereira H, Espregueira-Mendes J, et al. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation. J Mater Sci Mater Med. 2019;30(6):17.
  • Cui BL, Zhang CC, Gan B, et al. Collagen-tussah silk fibroin hybrid scaffolds loaded with bone mesenchymal stem cells promote skin wound repair in rats. Mater Sci Eng C Mater Biol Appl. 2020;109:16.
  • Jayakumar R, Prabaharan M, Sudheesh Kumar PT, et al. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011;29(3):322–337.
  • Cai ZX, Mo XM, Zhang KH, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci. 2010;11(9):3529–3539.
  • Ahmadi Z, Saber M, Akbari A, et al. Encapsulation of Satureja hortensis L. (Lamiaceae) in chitosan/TPP nanoparticles with enhanced acaricide activity against Tetranychus urticae Koch (Acari: Tetranychidae). Ecotoxicol Environ Saf. 2018;161:111–119.
  • Işıklan N, Erol ÜH. Design and evaluation of temperature-responsive chitosan/hydroxypropyl cellulose blend nanospheres for sustainable flurbiprofen release. Int J Biol Macromol. 2020;159:751–762.
  • Raghav N, Sharma M, Kennedy J. Nanocellulose: a mini-review on types and use in drug delivery systems. Carbohydr Polym Technol Appl. 2021;2:100031.
  • Seddiqi H, Oliaei E, Honarkar H, et al. Cellulose and its derivatives: towards biomedical applications. Cellulose. 2021;28(4):1893–1931.
  • Friess W. Collagen – biomaterial for drug delivery. Eur J Pharm Biopharm. 1998;45(2):113–136.
  • Ricard-Blum S, Ville G. Collagen cross-linking. Int J Biochem. 1989;21(11):1185–1189.
  • Tan G, Zhou L, Ning C, et al. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels. Appl Surf Sci. 2013;279:293–299.
  • Drzewiecki KE, Parmar AS, Gaudet ID, et al. Methacrylation induces rapid, temperature-dependent, reversible self-assembly of type-I collagen. Langmuir. 2014;30(37):11204–11211.
  • Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221(1):1–22.
  • Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev. 2014;20(6):683–696.
  • Hoch E, Schuh C, Hirth T, et al. Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation. J Mater Sci Mater Med. 2012;23(11):2607–2617.
  • Van Den Bulcke AI, Bogdanov B, De Rooze N, et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules. 2000;1(1):31–38.
  • Chen YC, Lin RZ, Qi H, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater. 2012;22(10):2027–2039.
  • Hassanzadeh P, Kazemzadeh-Narbat M, Rosenzweig R, et al. Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA). J Mat Chem B. 2016;4(15):2539–2543.
  • Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–271.
  • Schuurman W, Levett PA, Pot MW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci. 2013;13(5):551–561.
  • Jeon O, Wolfson DW, Alsberg E. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for directing encapsulated stem cell fate. Adv Mater. 2015;27(13):2216–2223.
  • Young S, Wong M, Tabata Y, et al. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109(1–3):256–274.
  • Ludwig PE, Huff TJ, Zuniga JM. The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. J Tissue Eng. 2018;9:10.
  • Kuo YC, Wang CC. Guided differentiation of induced pluripotent stem cells into neuronal lineage in alginate–chitosan–gelatin hydrogels with surface neuron growth factor. Colloid Surf B Biointerfaces. 2013;104:194–199.
  • Bozza A, Coates EE, Incitti T, et al. Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials. 2014;35(16):4636–4645.
  • Frampton JP, Hynd MR, Shuler ML, et al. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture. Biomed Mater. 2011;6(1):015002.
  • Prang P, Müller R, Eljaouhari A, et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials. 2006;27(19):3560–3569.
  • Matyash M, Despang F, Mandal R, et al. Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress. Tissue Eng Part A. 2012;18(1–2):55–66.
  • Heino J. Cellular signaling by collagen-binding integrins. Adv Exp Med Biol. 2014;819:143–155.
  • Jokinen J, Dadu E, Nykvist P, et al. Integrin-mediated cell adhesion to type I collagen fibrils. J Biol Chem. 2004;279(30):31956–31963.
  • Holder AJ, Badiei N, Hawkins K, et al. Control of collagen gel mechanical properties through manipulation of gelation conditions near the sol–gel transition. Soft Matter. 2018;14(4):574–580.
  • Velegol D, Lanni F. Cell traction forces on soft biomaterials. I. Microrheology of type I collagen gels. Biophys J. 2001;81(3):1786–1792.
  • Baniasadi M, Minary-Jolandan M. Alginate-collagen fibril composite hydrogel. Materials. 2015;8(2):799–814.
  • Yu T, Wang WB, Nassiri S, et al. Temporal and spatial distribution of macrophage phenotype markers in the foreign body response to glutaraldehyde-crosslinked gelatin hydrogels. J Biomater Sci Polym Ed. 2016;27(8):721–742.
  • Vijayakumar V, Subramanian K. Diisocyanate mediated polyether modified gelatin drug carrier for controlled release. Saudi Pharm J. 2014;22(1):43–51.
  • Subramanian K, Vijayakumar V. Evaluation of isophorone diisocyanate crosslinked gelatin as a carrier for controlled delivery of drugs. Polym Bull. 2013;70(3):733–753.
  • Powell HM, Boyce ST. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal–epidermal skin substitutes. J Biomed Mater Res Part A. 2008;84A(4):1078–1086.
  • Czaja WK, Young DJ, Kawecki M, et al. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007;8(1):1–12.
  • Qi HX, Hu P, Xu J, et al. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules. 2006;7(8):2327–2330.
  • Lee KY, Jeong L, Kang YO, et al. Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev. 2009;61(12):1020–1032.
  • Tsioptsias C, Sakellariou KG, Tsivintzelis I, et al. Preparation and characterization of cellulose acetate–Fe2O3 composite nanofibrous materials. Carbohydr Polym. 2010;81(4):925–930.
  • Murphy CM, O’Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr. 2010;4(3):377–381.
  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29(34):4532–4539.
  • Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32(8–9):991–1007.
  • Foo CWP, Kaplan DL. Genetic engineering of fibrous proteins: spider dragline silk and collagen. Adv Drug Deliv Rev. 2002;54(8):1131–1143.
  • Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–416.
  • Arai T, Freddi G, Innocenti R, et al. Biodegradation of Bombyx mori silk fibroin fibers and films. J Appl Polym Sci. 2004;91(4):2383–2390.
  • Fuchs S, Motta A, Migliaresi C, et al. Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials. 2006;27(31):5399–5408.
  • Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials. 2005;26(17):3385–3393.
  • Hu K, Lv Q, Cui FZ, et al. Biocompatible fibroin blended films with recombinant human-like collagen for hepatic tissue engineering. J Bioact Compat Polym. 2006;21(1):23–37.
  • Kim UJ, Park J, Kim HJ, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26(15):2775–2785.
  • Li CM, Vepari C, Jin HJ, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006;27(16):3115–3124.
  • Minoura N, Aiba S, Gotoh Y, et al. Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res. 1995;29(10):1215–1221.
  • Motta A, Migliaresi C, Faccioni F, et al. Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. J Biomater Sci Polym Ed. 2004;15(7):851–864.
  • Vepari CP, Kaplan DL. Covalently immobilized enzyme gradients within three-dimensional porous scaffolds. Biotechnol Bioeng. 2006;93(6):1130–1137.
  • Arai T, Freddi G, Colonna GM, et al. Absorption of metal cations by modifiedB. Mori silk and preparation of fabrics with antimicrobial activity. J Appl Polym Sci. 2001;80(2):297–303.
  • Moy RL, Lee A, Zalka A. Commonly used suture materials in skin surgery. Am Fam Physician. 1991;44(6):2123–2128.
  • Grabska-Zielińska S, Sionkowska A. How to improve physico-chemical properties of silk fibroin materials for biomedical applications? Blending and cross-linking of silk fibroin – a review. Materials. 2021;14(6):1510.
  • Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science. 2010;329(5991):528–531.
  • Bryant SJ, Davis-Arehart KA, Luo N, et al. Synthesis and characterization of photopolymerized multifunctional hydrogels: water-soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation. Macromolecules. 2004;37(18):6726–6733.
  • Martens P, Holland T, Anseth KS. Synthesis and characterization of degradable hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer. 2002;43(23):6093–6100.
  • Martens P, Blundo J, Nilasaroya A, et al. Effect of poly(vinyl alcohol) macromer chemistry and chain interactions on hydrogel mechanical properties. Chem Mater. 2007;19(10):2641–2648.
  • Martens P, Anseth KS. Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer. 2000;41(21):7715–7722.
  • Mawad D, Poole-Warren LA, Martens P, et al. Synthesis and characterization of radiopaque iodine-containing degradable PVA hydrogels. Biomacromolecules. 2008;9(1):263–268.
  • Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24(13):2339–2349.
  • No HK, Park NY, Lee SH, et al. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol. 2002;74(1–2):65–72.
  • Giménez V, Mantecón A, Cádiz V. Modification of poly(vinyl alcohol) with acid chlorides and crosslinking with difunctional hardeners. J Polym Sci Part A Polym Chem. 1996;34(6):925–934.
  • Basnett P, Matharu RK, Taylor CS, et al. Harnessing polyhydroxyalkanoates and pressurized gyration for hard and soft tissue engineering. ACS Appl Mater Interfaces. 2021;13(28):32624–32639.
  • Koller M, Maršálek L, de Sousa Dias MM, et al. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 2017;37:24–38.
  • Daranarong D, Chan RT, Wanandy NS, et al. Electrospun polyhydroxybutyrate and poly(L-lactide-co-ϵ-caprolactone) composites as nanofibrous scaffolds. Biomed Res Int. 2014;2014:741408.
  • Williams S, Martin D. Applications of polyhydroxyalkanoates (PHA) in medicine and pharmacy. 2005.
  • Hazer DB, Kılıçay E, Hazer B. Poly(3-hydroxyalkanoate)s: diversification and biomedical applications. Mater Sci Eng C. 2012;32(4):637–647.
  • Sangsanoh P, Israsena N, Suwantong O, et al. Effect of the surface topography and chemistry of poly(3-hydroxybutyrate) substrates on cellular behavior of the murine neuroblastoma Neuro2a cell line. Polym Bull. 2017;74(10):4101–4118.
  • Goonoo N, Bhaw-Luximon A, Passanha P, et al. Third generation poly(hydroxyacid) composite scaffolds for tissue engineering. J Biomed Mater Res B Appl Biomater. 2017;105(6):1667–1684.
  • Ke Y, Zhang XY, Ramakrishna S, et al. Reactive blends based on polyhydroxyalkanoates: preparation and biomedical application. Mater Sci Eng C. 2017;70:1107–1119.
  • Levine AC, Sparano A, Twigg FF, et al. Influence of cross-linking on the physical properties and cytotoxicity of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. ACS Biomater Sci Eng. 2015;1(7):567–576.
  • Ye C, Hu P, Ma MX, et al. PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials. 2009;30(26):4401–4406.
  • Bian YZ, Wang Y, Aibaidoula G, et al. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials. 2009;30(2):217–225.
  • Qu XH, Wu Q, Liang J, et al. Effect of 3-hydroxyhexanoate content in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of smooth muscle cells. Biomaterials. 2006;27(15):2944–2950.
  • Qu XH, Wu Q, Chen GQ. In vitro study on hemocompatibility and cytocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Biomater Sci Polym Ed. 2006;17(10):1107–1121.
  • Cool SM, Kenny B, Wu A, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration: in vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage proinflammatory response. J Biomed Mater Res Part A. 2007;82A(3):599–610.
  • Wang Y, Bian YZ, Wu Q, et al. Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials. 2008;29(19):2858–2868.
  • Wang YW, Wu Q, Chen JC, et al. Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction. Biomaterials. 2005;26(8):899–904.
  • Mosahebi A, Fuller P, Wiberg M, et al. Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol. 2002;173(2):213–223.
  • Volova T, Goncharov D, Sukovatyi A, et al. Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties. J Biomater Sci Polym Ed. 2014;25(4):370–393.
  • Mottin AC, Ayres E, Orefice RL, et al. What changes in Poly(3-Hydroxybutyrate) (PHB) when processed as electrospun nanofibers or thermo-compression molded film?. Mater Res Ibero Am J Mater. 2016;19(1):57–66.
  • Sanhueza C, Acevedo F, Rocha S, et al. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int J Biol Macromol. 2019;124:102–110.
  • Sanhueza C, Diaz-Rodriguez P, Villegas P, et al. Influence of the carbon source on the properties of poly-(3)-hydroxybutyrate produced by Paraburkholderia xenovorans LB400 and its electrospun fibers. Int J Biol Macromol. 2020;152:11–20.
  • Ray S, Kalia VC. Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol. 2017;57(3):261–269.
  • Nagiah N, Madhavi L, Anitha R, et al. Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration. Mater Sci Eng C Mater Biol Appl. 2013;33(7):4444–4452.
  • Asran AS, Razghandi K, Aggarwal N, et al. Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromolecules. 2010;11(12):3413–3421.
  • Amini F, Semnani D, Karbasi S, et al. A novel bilayer drug-loaded wound dressing of PVDF and PHB/chitosan nanofibers applicable for post-surgical ulcers. Int J Polym Mater Polym Biomat. 2019;68(13):772–777.
  • Naghashzargar E, Fare S, Catto V, et al. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering. J Appl Biomater Funct Mater. 2015;13(2):E156–E168.
  • Sadeghi D, Karbasi S, Razavi S, et al. Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering. J Appl Polym Sci. 2016;133(47):9.
  • Mirmusavi MH, Zadehnajar P, Semnani D, et al. Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications. Int J Biol Macromol. 2019;132:822–835.
  • Heydari P, Varshosaz J, Kharazi AZ, et al. Preparation and evaluation of poly glycerol sebacate/poly hydroxy butyrate core-shell electrospun nanofibers with sequentially release of ciprofloxacin and simvastatin in wound dressings. Polym Adv Technol. 2018;29(6):1795–1803.
  • Zhang YZ, Venugopal J, Huang ZM, et al. Crosslinking of the electrospun gelatin nanofibers. Polymer. 2006;47(8):2911–2917.
  • Nelson T, Kaufman E, Kline J, et al. The extraneural distribution of γ-hydroxybutyrate. J Neurochem. 1981;37(5):1345–1348.
  • Lee YF, Sridewi N, Ramanathan S, et al. The influence of electrospinning parameters and drug loading on polyhydroxyalkanoate (PHA) nanofibers for drug delivery. Int J Biotechnol Wellness Ind. 2016;4:103–113.
  • Vigneswari S, Murugaiyah V, Kaur G, et al. Simultaneous dual syringe electrospinning system using benign solvent to fabricate nanofibrous P(3HB-co-4HB)/collagen peptides construct as potential leave-on wound dressing. Mater Sci Eng C Mater Biol Appl. 2016;66:147–155.
  • Ma K, Huang D, Cai J, et al. Surface functionalization with strontium-containing nanocomposite coatings via EPD. Colloids Surf B. 2016;146:97–106.
  • Alipal J, Pu’ad N, Lee TC, et al. A review of gelatin: properties, sources, process, applications, and commercialisation. 5th International Conference of Chemical Engineering and Industrial Biotechnology (ICCEIB), Aug 9–11. Kuala Lumpur: Elsevier; 2020, p. 240–250.
  • Zhang Z, Ortiz O, Goyal R, et al. Chapter 23 – biodegradable polymers. In: Lanza R, Langer R, Vacanti J, editors. Principles of tissue engineering. 4th ed. Boston, MA: Academic Press; 2014. p. 441–473.
  • Guo T, Zhang N, Huang J, et al. A facile fabrication of core–shell sodium alginate/gelatin beads for drug delivery systems. Polym Bull. 2019;76(1):87–102.
  • Bello AB, Kim D, Kim D, et al. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev. 2020;26(2):164–180.
  • Yang Z, Hemar Y, Hilliou L, et al. Nonlinear behavior of gelatin networks reveals a hierarchical structure. Biomacromolecules. 2016;17(2):590–600.
  • Zhang Y, Ouyang H, Lim CT, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005;72B(1):156–165.
  • Puppi D, Pirosa A, Lupi G, et al. Design and fabrication of novel polymeric biodegradable stents for small caliber blood vessels by computer-aided wet-spinning. Biomed Mater. 2017;12(3):035011.
  • Rydz J, Sikorska W, Kyulavska M, et al. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci. 2015;16(1):564–596.
  • Deb P, Deoghare AB, Borah A, et al. Scaffold development using biomaterials: a review. Mater Today Proc. 2018;5(5, Part 2):12909–12919.
  • Bagdadi A, Safari M, Dubey P, et al. Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. J Tissue Eng Regen Med. 2016;12.
  • Arslantunali D, Dursun T, Yucel D, et al. Peripheral nerve conduits: technology update. Med Devices. 2014;7:405–424.
  • Mathuriya AS, Yakhmi JV. Polyhydroxyalkanoates: biodegradable plastics and their applications. In: Martínez LMT, Kharissova OV, Kharisov BI, editors. Handbook of ecomaterials. Cham: Springer International Publishing; 2019. p. 2873–2900.
  • Hazer DB, Bal E, Nurlu G, et al. In vivo application of poly-3-hydroxyoctanoate as peripheral nerve graft. J Zhejiang Univ Sci B. 2013;14(11):993–1003.
  • Mozejko-Ciesielska J, Szacherska K, Marciniak P. Pseudomonas species as producers of eco-friendly polyhydroxyalkanoates. J Polym Environ. 2019;27(6):1151–1166.
  • Zhang J, Shishatskaya EI, Volova TG, et al. Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater Sci Eng C. 2018;86:144–150.
  • Możejko-Ciesielska J, Kiewisz R. Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res. 2016;192:271–282.
  • Pawelec KM, Hix J, Shapiro EM, et al. The mechanics of scaling-up multichannel scaffold technology for clinical nerve repair. J Mech Behav Biomed Mater. 2019;91:247–254.
  • Jafari M, Paknejad Z, Rad MR, et al. Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater. 2017;105(2):431–459.
  • Manavitehrani I, Fathi A, Badr H, et al. Biomedical applications of biodegradable polyesters. Polymers. 2016;8(1):20.
  • Lizarraga-Valderrama LR, Nigmatullin R, Taylor C, et al. Nerve tissue engineering using blends of poly(3-hydroxyalkanoates) for peripheral nerve regeneration. Eng Life Sci. 2015;15(6):612–621.
  • Basnett P, Nigmatullin R, Lukasiewicz B, et al. Polyhydroxyalkanoates: a family of natural polymers, for medical implant development and disease modelling. Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium, Seattle. 2019. p. 760.
  • Charuchinda A, Molloy R, Siripitayananon J, et al. Factors influencing the small-scale melt spinning of poly(ϵ-caprolactone) monofilament fibres. Polym Int. 2003;52(7):1175–1181.
  • Cipitria A, Skelton A, Dargaville TR, et al. Design, fabrication and characterization of PCL electrospun scaffolds – a review. J Mater Chem. 2011;21(26):9419–9453.
  • Azimi B, Nourpanah P, Rabiee M, et al. Poly (∊-caprolactone) fiber: an overview. J Eng Fibers Fabr. 2014;9(3):74–90.
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer – polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–1256.
  • Abedalwafa M, Wang FJ, Wang L, et al. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Rev Adv Mater Sci. 2013;34(2):123–140.
  • Gao J, Crapo P, Nerem R, et al. Co-expression of elastin and collagen leads to highly compliant engineered blood vessels. J Biomed Mater Res Part A. 2008;85A(4):1120–1128.
  • Redenti S, Neeley WL, Rompani S, et al. Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials. 2009;30(20):3405–3414.
  • Sundback CA, Shyu JY, Wang Y, et al. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials. 2005;26(27):5454–5464.
  • Wang Y, Ameer GA, Sheppard BJ, et al. A tough biodegradable elastomer. Nat Biotechnol. 2002;20(6):602–606.
  • Lee EJ, Vunjak-Novakovic G, Wang Y, et al. A biocompatible endothelial cell delivery system for in vitro tissue engineering. Cell Transplant. 2009;18(7):731–743.
  • Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online. 2019;18(1):24.
  • Owczarzy A, Kurasiński R, Kulig K, et al. Collagen - structure, properties and application. Eng Biomater. 2020;156:17–23.
  • Birk DE, Bruckner P. Collagen suprastructures. In: Brinckmann J, Notbohm H, Müller PK, editors. Collagen: primer in structure, processing and assembly. Berlin: Springer; 2005. p. 185–205.
  • Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(d,l-lactic-co-glycolic acid) meshes. Biomaterials. 2006;27(33):5681–5688.
  • Li WJ, Danielson KG, Alexander PG, et al. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A. 2003;67(4):1105–1114.
  • Carampin P, Conconi MT, Lora S, et al. Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation. J Biomed Mater Res Part A. 2007;80A(3):661–668.
  • Badami AS, Kreke MR, Thompson MS, et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials. 2006;27(4):596–606.
  • He W, Ma Z, Yong T, et al. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials. 2005;26(36):7606–7615.
  • Jin H-J, Chen J, Karageorgiou V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials. 2004;25(6):1039–1047.
  • Min BM, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25(7–8):1289–1297.
  • Mo XM, Xu CY, Kotaki M, et al. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004;25(10):1883–1890.
  • Shin HJ, Lee CH, Cho IH, et al. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed. 2006;17(1–2):103–119.
  • Venugopal JR, Zhang Y, Ramakrishna S. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs. 2006;30(6):440–446.
  • Jeong SI, Lee AY, Lee YM, et al. Electrospun gelatin/poly(L-lactide-co-ϵ-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. J Biomater Sci Polym Ed. 2008;19(3):339–357.
  • Yang XB, Roach HI, Clarke NMP, et al. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone. 2001;29(6):523–531.
  • Li M, Mondrinos MJ, Chen X, et al. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res Part A. 2006;79A(4):963–973.
  • Li M, Mondrinos MJ, Chen X, et al. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res A. 2006;79A(4):963–973.
  • Jeong SI, Lee AY, Lee YM, et al. Electrospun gelatin/poly(L-lactide-co-ϵ-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. J Biomater Sci Polym Ed. 2008;19(3):339–357.
  • Yang XB, Roach HI, Clarke NM, et al. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone. 2001;29(6):523–531.
  • Ekaputra AK, Zhou Y, Cool SM, et al. Composite electrospun scaffolds for engineering tubular bone grafts. Tissue Eng Part A. 2009;15(12):3779–3788.
  • Ghorbani F, Moradi L, Shadmehr MB, et al. In-vivo characterization of a 3D hybrid scaffold based on PCL/decellularized aorta for tracheal tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;81:74–83.
  • Gao M, Zhang H, Dong W, et al. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair. Sci Rep. 2017;7(1):5246.
  • Townsend JM, Ott LM, Salash JR, et al. Reinforced electrospun polycaprolactone nanofibers for tracheal repair in an in vivo ovine model. Tissue Eng Part A. 2018;24(17–18):1301–1308.
  • Li Y, Li Q, Li H, et al. An effective dual-factor modified 3D-printed PCL scaffold for bone defect repair. J Biomed Mater Res B Appl Biomater. 2020;108(5):2167–2179.
  • Ke DX, Yi HL, Est-Witte S, et al. Bioprinted trachea constructs with patient-matched design, mechanical and biological properties. Biofabrication. 2020;12(1):11.
  • Xia D, Jin D, Wang Q, et al. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair in a goat model. J Tissue Eng Regen Med. 2019;13(4):694–703.
  • Omori K, Nakamura T, Kanemaru S, et al. In situ tissue engineering of the cricoid and trachea in a canine model. Ann Otol Rhinol Laryngol. 2008;117(8):609–613.
  • Xu Y, Li Y, Liu Y, et al. Surface modification of decellularized trachea matrix with collagen and laser micropore technique to promote cartilage regeneration. Am J Transl Res. 2019;11(9):5390–5403.
  • Lin LQ, Xu YW, Li YQ, et al. Nanofibrous Wharton's jelly scaffold in combination with adipose-derived stem cells for cartilage engineering. Mater Des. 2020;186:10.
  • Kianfar P, Vitale A, Dalle Vacche S, et al. Enhancing properties and water resistance of PEO-based electrospun nanofibrous membranes by photo-crosslinking. J Mater Sci. 2021;56(2):1879–1896.
  • Zarrintaj P, Saeb MR, Jafari SH, et al. Chapter 18 – application of compatibilized polymer blends in biomedical fields. In: Ajitha AR, Thomas S, editors. Compatibilization of polymer blends. Elsevier; 2020. p. 511–537.
  • Xu F, Gough I, Dorogin DJ, et al. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning. Acta Biomater. 2020;104:135–146.
  • Rajam S, Ho CC. Graft coupling of PEO to mixed cellulose esters microfiltration membranes by UV irradiation. J Membr Sci. 2006;281(1–2):211–218.
  • Aqil A, Vasseur S, Duguet E, et al. PEO coated magnetic nanoparticles for biomedical application. Eur Polym J. 2008;44(10):3191–3199.
  • Fusco S, Borzacchiello A, Netti PA. Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications. J Bioact Compat Polym. 2006;21(2):149–164.
  • Papagiannopoulos A, Vlassi E, Pispas S, et al. Polyethylene oxide hydrogels crosslinked by peroxide for the controlled release of proteins. Macromol. 2021;1(1):37–48.
  • Gentile P, Chiono V, Carmagnola I, et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–3659.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Controlled Release. 2012;161(2):505–522.
  • Yoon YI, Park KE, Lee SJ, et al. Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer. Biomed Res Int. 2013;2013:10.
  • Wang BY, Fu SZ, Ni PY, et al. Electrospun polylactide/poly(ethylene glycol) hybrid fibrous scaffolds for tissue engineering. J Biomed Mater Res Part A. 2012;100A(2):441–449.
  • Wang H, Feng Y, Zhao H, et al. A potential nonthrombogenic small-diameter vascular scaffold with polyurethane/poly(ethylene glycol) hybrid materials by electrospinning technique. J Nanosci Nanotechnol. 2013;13(2):1578–1582.
  • Li X, Liu KL, Wang M, et al. Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Acta Biomater. 2009;5(6):2002–2012.
  • Rivera-Briso AL, Serrano-Aroca A. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications. Polymers. 2018;10(7):28.
  • Bossu J, Angellier-Coussy H, Totee C, et al. Effect of the molecular structure of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-3HV)) produced from mixed bacterial cultures on its crystallization and mechanical properties. Biomacromolecules. 2020;21(12):4709–4723.
  • Xu YJ, Zou LM, Lu HW, et al. Preparation and characterization of electrospun PHBV/PEO mats: the role of solvent and PEO component. J Mater Sci. 2016;51(12):5695–5711.
  • Pillai AB, Kumar AJ, Kumarapillai H. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in Bacillus aryabhattai and cytotoxicity evaluation of PHBV/poly(ethylene glycol) blends. 3 Biotech. 2020;10(2):10.
  • Bonartsev AP, Bonartseva GA, Reshetov IV, et al. Application of polyhydroxyalkanoates in medicine and the biological activity of natural poly(3-hydroxybutyrate). Acta Naturae. 2019;11(2):4–16.
  • Sendil D, Gürsel I, Wise DL, et al. Antibiotic release from biodegradable PHBV microparticles. J Control Release. 1999;59(2):207–217.
  • Dai ZW, Zou XH, Chen GQ. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials. 2009;30(17):3075–3083.
  • Hogge J, Krasner D, Nguyen H, et al. The potential benefits of advanced therapeutic modalities in the treatment of diabetic foot wounds. J Am Podiatr Med Assoc. 2000;90(2):57–65.
  • Muzzarelli RAA. Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drugs. 2011;9(9):1510–1533.
  • van der Veen VC, van der Wal MB, van Leeuwen MC, et al. Biological background of dermal substitutes. Burns. 2010;36(3):305–321.
  • Nangia A, Gambhir R, Maibach H. Factors influencing the performance of temporary skin substitutes. Clin Mater. 1991;7(1):3–13.
  • Siraj S, Sudhakar P, Mallikarjuna B, et al. Factors influencing the performance of temporary skin substitutes. Int J Pharm Sci Rev Res. 2014;25(2):103–109.
  • Bianco A, Calderone M, Cacciotti I. Electrospun PHBV/PEO co-solution blends: microstructure, thermal and mechanical properties. Mater Sci Eng C Mater Biol Appl. 2013;33(3):1067–1077.
  • Tan SM, Ismail J, Kummerlowe C, et al. Crystallization and melting behavior of blends comprising poly(3-hydroxy butyrate-co-3-hydroxy valerate) and poly(ethylene oxide). J Appl Polym Sci. 2006;101(5):2776–2783.
  • Gumus S, Ozkoc G, Aytac A. Plasticized and unplasticized PLA/organoclay nanocomposites: short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior. J Appl Polym Sci. 2012;123(5):2837–2848.
  • Pluta M, Paul MA, Alexandre M, et al. Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo-modification on the physico-chemical properties. J Polym Sci Part B Polym Phys. 2006;44(2):299–311.
  • Sungsanit K, Kao N, Bhattacharya SN. Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym Eng Sci. 2012;52(1):108–116.
  • Hu Y, Hu YS, Topolkaraev V, et al. Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer. 2003;44(19):5681–5689.
  • Gui Z, Xu Y, Gao Y, et al. Novel polyethylene glycol-based polyester-toughened polylactide. Mater Lett. 2012;71:63–65.
  • Baiardo M, Frisoni G, Scandola M, et al. Thermal and mechanical properties of plasticized poly(L-lactic acid). J Appl Polym Sci. 2003;90(7):1731–1738.
  • Hrkach J, Von Hoff D, Ali MM, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4(128):11.
  • Von Hoff DD, Mita MM, Ramanathan RK, et al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res. 2016;22(13):3157–3163.
  • Lopes MS, Jardini AL, Maciel R. Poly (lactic acid) production for tissue engineering applications. 20th International Congress of Chemical and Process Engineering CHISA, Aug 25–29. Prague: Elsevier Science; 2012. p. 1402–1413.
  • Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 2019;127(6):1612–1626.
  • Gangapurwala G, Vollrath A, De San Luis A, et al. PLA/PLGA-based drug delivery systems produced with supercritical CO2 – a green future for particle formulation? Pharmaceutics. 2020;12(11):1118.
  • Shkodra-Pula B, Grune C, Traege A, et al. Effect of surfactant on the size and stability of PLGA nanoparticles encapsulating a protein kinase C inhibitor. Int J Pharm. 2019;566:756–764.
  • Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm. 2002;233(1):51–59.
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–651.
  • Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Controlled Release. 2003;86(1):33–48.
  • Swider E, Koshkina O, Tel J, et al. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater. 2018;73:38–51.
  • Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004;4(1):35–51.
  • Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Controlled Release. 2005;102(2):313–332.
  • Reinhold SE, Schwendeman SP. Effect of polymer porosity on aqueous self-healing encapsulation of proteins in PLGA microspheres. Macromol Biosci. 2013;13(12):1700–1710.
  • Rhee YS, Park CW, Mansour H. Sustained-release injectable drug delivery systems. An invited paper. Pharm Technol Special Issue Drug Delivery. 2010:6–13.
  • Tiwari S, Verma P. Microencapsulation technique by solvent evaporation method (study of effect of process variables). Int J Phar Life Sci. 2011;2:998–1005.
  • Maruyama K, Asai J, Ii M, et al. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol. 2007;170(4):1178–1191.
  • Hinchliffe RJ, Valk GD, Apelqvist J, et al. A systematic review of the effectiveness of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metab Res Rev. 2008;24:S119–S144.
  • Moura LIF, Dias AMA, Carvalho E, et al. Recent advances on the development of wound dressings for diabetic foot ulcer treatment – a review. Acta Biomater. 2013;9(7):7093–7114.
  • Gooyit M, Peng Z, Wolter WR, et al. A chemical biological strategy to facilitate diabetic wound healing. ACS Chem Biol. 2014;9(1):105–110.
  • Philandrianos C, Andrac-Meyer L, Mordon S, et al. Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns. 2012;38(6):820–829.
  • Chattopadhyay S, Raines RT. Collagen-based biomaterials for wound healing. Biopolymers. 2014;101(8):821–833.
  • Yang E, Qin X, Wang S. Electrospun crosslinked polyvinyl alcohol membrane. Mater Lett. 2008;62(20):3555–3557.
  • Gong XH, Tang CY, Pan L, et al. Characterization of poly(vinyl alcohol) (PVA)/ZnO nanocomposites prepared by a one-pot method. Compos Part B Eng. 2014;60:144–149.
  • DeMerlis CC, Schoneker DR. Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol. 2003;41(3):319–326.
  • Gong L, Chase DB, Noda I, et al. Discovery of β-form crystal structure in electrospun poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBHx) nanofibers: from fiber mats to single fibers. Macromolecules. 2015;48(17):6197–6205.
  • Cheng ML, Chen PY, Lan CH, et al. Structure, mechanical properties and degradation behaviors of the electrospun fibrous blends of PHBHHx/PDLLA. Polymer. 2011;52(6):1391–1401.
  • Hosoda N, Tsujimoto T, Uyama H. Green composite of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with porous cellulose. ACS Sustain Chem Eng. 2014;2(2):248–253.
  • Wang J, Ye L. Structure and properties of polyvinyl alcohol/polyurethane blends. Compos B Eng. 2015;69:389–396.
  • Gaaz TS, Sulong AB, Akhtar MN, et al. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules. 2015;20(12):22833–22847.
  • Dippold D, Tallawi M, Tansaz S, et al. Novel electrospun poly(glycerol sebacate)–zein fiber mats as candidate materials for cardiac tissue engineering. Eur Polym J. 2016;75:504–513.
  • Hu J, Kai D, Ye H, et al. Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering. Mater Sci Eng C. 2017;70:1089–1094.
  • Motlagh D, Yang J, Lui KY, et al. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials. 2006;27(24):4315–4324.
  • Pashneh-Tala S, Owen R, Bahmaee H, et al. Synthesis, characterization and 3D micro-structuring via 2-photon polymerization of poly(glycerol sebacate)-methacrylate – an elastomeric degradable polymer. Front Phys. 2018;6:17.
  • Chen QZ, Ishii H, Thouas GA, et al. An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials. 2010;31(14):3885–3893.
  • Frydrych M, Román S, MacNeil S, et al. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Acta Biomater. 2015;18:40–49.
  • Li Y, Cook WD, Moorhoff C, et al. Synthesis, characterization and properties of biocompatible poly(glycerol sebacate) pre-polymer and gel. Polym Int. 2013;62(4):534–547.
  • Chen QZ, Bismarck A, Hansen U, et al. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials. 2008;29(1):47–57.
  • Nijst CLE, Bruggeman JP, Karp JM, et al. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules. 2007;8(10):3067–3073.
  • Frydrych M, Chen BQ. Large three-dimensional poly(glycerol sebacate)-based scaffolds – a freeze-drying preparation approach. J Mat Chem B. 2013;1(48):6650–6661.
  • Jeffries EM, Allen RA, Gao J, et al. Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Acta Biomater. 2015;18:30–39.
  • Khosravi R, Best CA, Allen RA, et al. Long-term functional efficacy of a novel electrospun poly(glycerol sebacate)-based arterial graft in mice. Ann Biomed Eng. 2016;44(8):2402–2416.
  • Zarski A, Bajer K, Kapuśniak J. Review of the most important methods of improving the processing properties of starch toward non-food applications. Polymers. 2021;13(5):832.
  • Bursali EA, Coskun S, Kizil M, et al. Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels. Carbohydr Polym. 2011;83(3):1377–1383.
  • Pal K, Banthia A, Majumdar DK. Preparation of transparent starch based hydrogel membrane with potential application as wound dressing. Trends Biomat Artif Organs. 2006;20:59–67.
  • Kariduraganavar MY, Kittur AA, Kamble RR. Chapter 1 – polymer synthesis and processing. In: Laurencin CT, Kumbar S, Deng M, editors. Natural and synthetic biomedical polymers. Oxford: Elsevier; 2014. p. 1–31.
  • Kurakula M, Rao G. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): as excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Deliv Sci Technol. 2020;60:102046.
  • Bühler V. Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone, and copovidone. Berlin: Springer; 2005.
  • Voronova M, Rubleva N, Kochkina N, et al. Preparation and characterization of polyvinylpyrrolidone/cellulose nanocrystals composites. Nanomaterials. 2018;8(12):1011.
  • Kathe K, Kathpalia H. Film forming systems for topical and transdermal drug delivery. Asian J Pharm Sci. 2017;12(6):487–497.
  • Mondal D, Mollick MMR, Bhowmick B, et al. Effect of poly(vinyl pyrrolidone) on the morphology and physical properties of poly(vinyl alcohol)/sodium montmorillonite nanocomposite films. Prog Nat Sci Mater Int. 2013;23(6):579–587.
  • Maciejewska BM, Wychowaniec JK, Woźniak-Budych M, et al. UV cross-linked polyvinylpyrrolidone electrospun fibres as antibacterial surfaces. Sci Technol Adv Mater. 2019;20(1):979–991.
  • Teodorescu M, Bercea M. Poly(vinylpyrrolidone) – a versatile polymer for biomedical and beyond medical applications. Polym Plast Technol Eng. 2015;54(9):923–943.
  • Zhi X, Fang H, Bao C, et al. The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials. 2013;34(21):5254–5261.
  • Hayama M, Yamamoto K-I, Kohori F, et al. How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility? J Membr Sci. 2004;234(1):41–49.
  • Bolong N, Ismail AF, Salim MR. Spinning effect of polyethersulfone hollow fiber membrane prepared by water or polyvinylpyrrolidone in ternary formulation. 7th International Conference on Membrane Science and Technology (MST) – Sustainable Technology for Energy, Water, and Environment, May 13–15. Kuala Lumpur: John Wiley & Sons; 2009. p. 3–10.
  • Kadajji VG, Betageri GV. Water soluble polymers for pharmaceutical applications. Polymers. 2011;3(4):1972–2009.
  • Stammen JA, Williams S, Ku DN, et al. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials. 2001;22(8):799–806.
  • Maher SA, Doty SB, Torzilli PA, et al. Nondegradable hydrogels for the treatment of focal cartilage defects. J Biomed Mater Res Part A. 2007;83A(1):145–155.
  • Bichara DA, Bodugoz-Sentruk H, Ling D, et al. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel. Biomed Mater. 2014;9(4):045012.
  • Mow VC, Ratcliffe A, Robin Poole A. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13(2):67–97.
  • Shi Y, Xiong D. Microstructure and friction properties of PVA/PVP hydrogels for articular cartilage repair as function of polymerization degree and polymer concentration. Wear. 2013;305(1):280–285.
  • Gonzalez JS, Alvarez VA. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed Mater. 2014;34:47–56.
  • Pan Y, Xiong D. Friction properties of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel composites as an articular cartilage. Wear. 2009;266(7):699–703.
  • Pan YS, Xiong DS, Ma RY. A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear. 2007;262(7–8):1021–1025.
  • Li F, Su Y, Wang J, et al. Influence of dynamic load on friction behavior of human articular cartilage, stainless steel and polyvinyl alcohol hydrogel as artificial cartilage. J Mater Sci Mater Med. 2010;21(1):147–154.
  • Lilleby Helberg RM, Dai Z, Ansaloni L, et al. PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: synergistic enhancement of CO2 separation performance. Green Energy Environ. 2020;5(1):59–68.
  • Joshi A, Fussell G, Thomas J, et al. Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials. 2006;27(2):176–184.
  • Thomas J, Lowman A, Marcolongo M. Novel associated hydrogels for nucleus pulposus replacement. J Biomed Mater Res A. 2003;67A:1329–1337.
  • Holloway JL, Lowman AM, Palmese GR. Aging behavior of PVA hydrogels for soft tissue applications after in vitro swelling using osmotic pressure solutions. Acta Biomater. 2013;9(2):5013–5021.
  • Holloway JL, Lowman AM, Palmese GR. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater. 2010;6(12):4716–4724.
  • Wan WK, Campbell G, Zhang ZF, et al. Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. J Biomed Mater Res. 2002;63(6):854–861.
  • Lozinsky V, Damshkaln L, Shaskolskiy B, et al. Study of cryostructuring of polymer systems: 27. Physicochemical properties of poly(vinyl alcohol) cryogels and specific features of their macroporous morphology. Colloid J. 2007;69:747–764.
  • Nasouri K, Shoushtari AM, Mojtahedi MRM. Effects of polymer/solvent systems on electrospun polyvinylpyrrolidone nanofiber morphology and diameter. Polymer Science Series A. 2015;57(6):747–755.
  • Feng Y, Wang K, Yao J, et al. Effect of the addition of polyvinylpyrrolidone as a pore-former on microstructure and mechanical strength of porous alumina ceramics. Ceram Int. 2013;39(7):7551–7556.
  • Dreesmann L, Ahlers M, Schlosshauer B. The pro-angiogenic characteristics of a cross-linked gelatin matrix. Biomaterials. 2007;28(36):5536–5543.
  • Shen ZS, Cui X, Hou RX, et al. Tough biodegradable chitosan–gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering. RSC Adv. 2015;5(69):55640–55647.
  • Bosworth LA, Downes S. Physicochemical characterisation of degrading polycaprolactone scaffolds. Polym Degrad Stab. 2010;95(12):2269–2276.
  • Sekosan G, Vasanthan N. Morphological changes of annealed poly-ϵ-caprolactone by enzymatic degradation with lipase. J Polym Sci Part B Polym Phys. 2010;48(2):202–211.
  • Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006;31(6):576–602.
  • García Cruz DM, Coutinho DF, Mano JF, et al. Physical interactions in macroporous scaffolds based on poly(ε-caprolactone)/chitosan semi-interpenetrating polymer networks. Polymer. 2009;50(9):2058–2064.
  • Kim G, Park J, Park S. Surface-treated and multilayered poly(ε-caprolactone) nanofiber webs exhibiting enhanced hydrophilicity. J Polym Sci Part B Polym Phys. 2007;45(15):2038–2045.
  • Xu F, Cui FZ, Jiao YP, et al. Improvement of cytocompatibility of electrospinning PLLA microfibers by blending PVP. J Mater Sci Mater Med. 2009;20(6):1331–1338.
  • Felfel RM, Poocza L, Gimeno-Fabra M, et al. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomed Mater. 2016;11(1):015011.
  • Zhang K, Fu Q, Yoo J, et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 2017;50:154–164.
  • Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing. Materials. 2017;10(2):12.
  • Chaudhuri B, Mondal B, Ray SK, et al. A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application. Colloid Surf B Biointerfaces. 2016;143:71–80.
  • Yang Q, Li Z, Hong Y, et al. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. J Polym Sci Part B Polym Phys. 2004;42(20):3721–3726.
  • Kim GM, Le KHT, Giannitelli SM, et al. Electrospinning of PCL/PVP blends for tissue engineering scaffolds. J Mater Sci Mater Med. 2013;24(6):1425–1442.
  • Yao Q, Cosme JGL, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115–127.