1,731
Views
10
CrossRef citations to date
0
Altmetric
Full Critical Review

Fe-based metallic glass coatings by thermal spraying: a focused review on corrosion properties and related degradation mechanisms

ORCID Icon, ORCID Icon & ORCID Icon
Pages 404-485 | Received 29 Dec 2021, Accepted 16 May 2022, Published online: 10 Jun 2022

References

  • Ahmad Z. Principles of corrosion engineering and corrosion control. Elsevier; 2006. https://doi.org/10.1016/B978-0-7506-5924-6.X5000-4
  • Materials N, Board A, Sciences P. Assessment of corrosion education. 2009. https://doi.org/10.17226/12560
  • Bowman E, Jacobson G, Koch G, et al. International measures of prevention, application, and economics of corrosion technologies study. NACE Int. 2016:A-19.
  • Uhlig HH. The cost of corrosion to USA. Corrosion. 1950;6:29–33.
  • Bennett L. Economic effects of metallic corrosion in the United States: a report to the congress. United States: Department of Commerce, National Bureau of Standards; 1978.
  • Koch G, Brongers M, Thompson N, et al. Cost of corrosion in the United States. In M Kutz, editors. Handbook of environmental degradation of materials. Norwich, NY: William Andrew Publishing; 2005; p. 3–24.
  • Koch G, Brongers M, Thompson N, Virmani Y. Corrosion cost and preventive strategies in the United States, Publication no. FHWA-RD-01-156. Houston, United States: NACE International; 2002.
  • Zairyoto-Kankyo. Survey of corrosion cost in Japan. Corros Eng. 2001;50:490–512.
  • Boshoku-Gijutsu. Report on corrosion loss in Japan. Corros Eng. 1977;26:401–512.
  • Potter E. The corrosion scene in Australia, 1972.
  • Cherry BW, Skerry BS. Engineering. MUD of M. Corrosion in Australia : the report of the Australian National Centre for Corrosion Prevention and Control feasibility study, June 1983. Dept. of Materials Engineering, Monash University; 1983.
  • Hou B, Li X, Ma X, et al. The cost of corrosion in China. NPJ Mater Degrad. 2017;1. doi:10.1038/s41529-017-0005-2
  • Tems R, Al Zahrani AM. Cost of corrosion in oil production and refining. Saudi Aramco J Technol. 2006;2–14.
  • The Cost of Corrosion. Zerust® Corrosion Solutions. n.d. [cited July 20, 2021]. Available from: https://www.zerust.com/blog/2019/10/02/the-cost-of-corrosion/
  • The deadliest bridge disaster in US history was caused by a tiny crack just three millimeters deep, by Matt Reimann. Timeline. n.d. [cited July 20, 2021]. Available from: https://timeline.com/the-deadliest-bridge-disaster-in-us-history-was-caused-by-a-tiny-crack-just-3-millimeters-deep-ca5404c4dffa
  • What was Bhopal Gas Tragedy, Cause of Bhopal Gas Tragedy, Bhopal Gas Tragedy News. Business Standard. n.d. [cited July 20, 2021]. Available from: https://www.business-standard.com/about/what-is-bhopal-gas-tragedy
  • How heroic Aloha Airlines Flight 243 pilots managed to Land Boeing 737-297 that lost its roof at 24,000 feet n.d. [cited July 20, 2021]. Available from: https://fighterjetsworld.com/historic-aircraft-and-incident/aloha-airlines-flight-243-pilots-managed-to-land-boeing-737-297-that-lost-its-roof/13090/
  • Holy Shit, That’s interesting: holy shit, the Guadalajara Explosions! n.d. [cited July 20, 2021]. Available from: http://holyshitthatsinteresting.blogspot.com/2013/07/holy-shit-guadalajara-explosions.html
  • Learn from the past: Erika oil spill, Europe’s environmental disaster - SAFETY4SEA n.d. [cited July 20, 2021]. Available from: https://safety4sea.com/cm-learn-from-the-past-erika-oil-spill-europes-environmental-disaster/?__cf_chl_jschl_tk__=pmd_2f88b5e2670d9f7bce62a5766bde643b3d2c71eb-1626776179-0-gqNtZGzNAiKjcnBszQki
  • Gillard T. Natural gas pipeline rupture and fire. Loss Prev Bull. 2000;152:17–17. doi:10.1205/026095700522372
  • Duquette DJ, Schafrik RE, Tortorelli PF. Research opportunities in corrosion science. Washington, DC: National Academy of Sciences, The National Academies Press; 2011.
  • Wessling B. Effective corrosion protection with the organic metal polyaniline: basic principles and recent progress. ACS Symp Ser. 2003:34–73. doi:10.1021/bk-2003-0843.ch003
  • Montemor MF. Functional and smart coatings for corrosion protection: a review of recent advances. Surf Coatings Technol. 2014;258:17–37. doi:10.1016/j.surfcoat.2014.06.031
  • Presuel-Moreno F, Jakab MA, Tailleart N, et al. Corrosion-resistant metallic coatings. Mater Today. 2008;11:14–23. doi:10.1016/S1369-7021(08)70203-7
  • Hu RG, Zhang S, Bu JF, et al. Recent progress in corrosion protection of magnesium alloys by organic coatings. Prog Org Coatings. 2012;73:129–141. doi:10.1016/j.porgcoat.2011.10.011
  • Asmatulu R. Nanocoatings for corrosion protection of aerospace alloys. Woodhead Publishing; 2012. https://doi.org/10.1533/9780857095800.2.357
  • Zeng Z, Wang L, Liang A, et al. Tribological and electrochemical behavior of thick Cr–C alloy coatings electrodeposited in trivalent chromium bath as an alternative to conventional Cr coatings. Electrochim Acta. 2006;52:1366–1373. doi:10.1016/j.electacta.2006.07.038
  • The advantages and disadvantages of galvanized steel. IQS Newsroom n.d. https://blog.iqsdirectory.com/the-advantages-and-disadvantages-of-galvanized-steel/ (accessed April 16, 2022).
  • Keong KG, Sha W. Crystallisation and phase transformation behaviour of electroless nickel-phosphorus deposits and their engineering properties. Surface Eng. 2013;18:329–343. doi:10.1179/026708402225010010
  • What is anodising? - advantages & disadvantages. PHOS n.d. [cited April 16, 2022]. Available from: https://www.phos.co.uk/finishes/anodising
  • Gao M, Lu W, Yang B, et al. High corrosion and wear resistance of Al-based amorphous metallic coating synthesized by HVAF spraying. J Alloys Compd. 2018;735:1363–1373. doi:10.1016/j.jallcom.2017.11.274
  • Cheng J, Feng Y, Yan C, et al. Development and characterization of Al-based amorphous coating. JOM. 2020;72:745–753. doi:10.1007/s11837-019-03966-y
  • Wang AP, Wang ZM, Zhang J, et al. Deposition of HVAF-sprayed Ni-based amorphous metallic coatings. J Alloys Compd. 2007;440:225–228. doi:10.1016/j.jallcom.2006.09.003
  • Yoo YH, Lee SH, Kim JSGS, et al. Effect of heat treatment on the corrosion resistance of Ni-based and Cu-based amorphous alloy coatings. J Alloys Compd. 2008;461:304–311. doi:10.1016/J.JALLCOM.2007.06.118
  • Kim J, Kang K, Yoon S, et al. Enhancement of metallic glass properties of Cu-based BMG coating by shroud plasma spraying. Surf Coatings Technol. 2011;205:3020–3026. doi:10.1016/j.surfcoat.2010.11.012
  • Wang Z, Ma L, Han B, et al. Influence of parameters on the cold spraying FeCoCrMoBCY amorphous coatings. Surf Eng. 2021;37:545–557. doi:10.1080/02670844.2020.1805716
  • Liang D, Ma J, Cai Y, et al. Characterization and elevated-temperature tribological performance of AC–HVAF-sprayed Fe-based amorphous coating. Surf Coatings Technol. 2020;387:125535. doi:10.1016/j.surfcoat.2020.125535
  • Klement W, Willens RH, Duwez P. Non-crystalline structure in solidified gold–silicon alloys. Nature. 1960;187:869–870. doi:10.1038/187869b0
  • Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279–306. doi:10.1016/S1359-6454(99)00300-6
  • Suryanarayana C, Inoue A. Iron-based bulk metallic glasses. Int Mater Rev. 2013;58:131–166. doi:10.1179/1743280412Y.0000000007
  • Li HX, Lu ZC, Wang SL, et al. Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications. Prog Mater Sci. 2019;103:235–318. doi:10.1016/j.pmatsci.2019.01.003
  • Duwez P, Lin SCH. Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys. J Appl Phys. 2004;38:4096. doi:10.1063/1.1709084
  • Naka M. Corroison resistivity of amorphous iron alloys containing chromium. J Japan Inst Met. 1974;38:835–841.
  • Naka M, Hashimoto K, Masumoto T. High corrosion resistance of Cr-bearing amorphous Fe alloys in neutral and acidic solutions containing chloride. Corrosion. 1975;32(4):146–152.
  • Masumoto T, Hashimoto K. Chemical properties of amorphous metals. Annu Rev Mater Sci. 1978;8:215–233. doi:10.1146/annurev.ms.08.080178.001243
  • Hashimoto K, Osada K, Metals O. Characteristics of passivity of extremely corrosion-resistant amorphous iron alloys. Corros Sci. 1976;16:71–76.
  • Hashimoto K, Masumoto T. Extremely high corrosion-resistance of chromium-containing amorphous iron-alloys. Mater Sci Eng. 1976;23:285–288.
  • Asami K, Naka M, Hashimoto K, et al. Effect of molybdenum on the anodic behavior of amorphous Fe–Cr–Mo–B alloys in hydrochloric acid. J Electrochem Soc Electrochem Sci Technol. 1980;127:2130–2138.
  • Naka M, Hashimoto K, Masumoto T. Effect of heat treatment on corrosion behavior of amorphous Fe–Cr–P–C and Fe–Ni–Cr–P–B alloys in 1N HCI. Corrosion. 1980;36:679–686.
  • Asami K, Hashimoto K, Masumoto T, et al. ESCA study of the passive film on an extremely corrosion-resistant amorphous iron alloy. Corros Sci. 1976;16:909–914. doi:10.1016/S0010-938X(76)80010-8
  • Hashimoto K. 2002 W.R. Whitney award lecture: In pursuit of new corrosion-resistant alloys. Corrosion. 2002;58:715–722. doi:10.5006/1.3277653
  • Asami K, Hashimoto K, Shimodaira S. XPS determination of compositions of alloy surfaces and surface oxides on mechanically polished iron-chromium alloys. Corros Sci. 1977;17:713–723. doi:10.1016/0010-938X(77)90067-1
  • Asami K, Hashimoto K, Shimodaira S. An XPS study of the passivity of a series of iron-chromium alloys in sulphuric acid. Corros Sci. 1978;18:151–160. doi:10.1016/S0010-938X(78)80085-7
  • Kobayashi K, Hashimoto K, Masumoto T. Spontaneously passivating amorphous Fe–Cr–Mo–metalloid alloys in 6 N HCl at room temperature and 80°C. Sci Reports Res Instit Tohoku Univ Ser A Phys Chem Metall. 1980;29:284–295.
  • Habazaki H, Kawashima A, Asami K, et al. The corrosion behavior of amorphous Fe–Cr–Mo–P–C and Fe–Cr–W–P–C alloys in 6 M HCl solution. Corros Sci. 1992;33:225–236. doi:10.1016/0010-938X(92)90147-U
  • Tan MW, Akiyama E, Habazaki H, et al. The role of chromium and molybdenum in passivation of amorphous Fe–Cr–Mo–P–C alloys in de-aerated 1 M HCl. Corros Sci. 1996;38:2137–2151. doi:10.1016/S0010-938X(96)00071-6
  • Hashimoto K, Naka M, Asami K, et al. An x-ray photo-electron spectroscopy study of the passivity of amorphous Fe–Mo alloys. Corros Sci. 1979;19:165–170. doi:10.1016/0010-938X(79)90014-3
  • Inoue A, Gook JS. Fe-based ferromagnetic glassy alloys with wide supercooled liquid region. Mater Trans JIM. 1995;36:1180–1183. doi:10.2320/matertrans1989.36.1180
  • Hirata A, Hirotsu Y, Amiya K, et al. Crystallization process and glass stability of an Fe48Cr15 Mo14C15B6Tm2 bulk metallic glass. Phys Rev B Condens Matter Mater Phys. 2008;78:2–7. doi:10.1103/PhysRevB.78.144205
  • Pang SJ, Zhang T, Asami K, et al. Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater. 2002;50:489–497. doi:10.1016/S1359-6454(01)00366-4
  • Pang SJ, Zhang T, Asami K, et al. Bulk glassy Fe–Cr–Mo–C–B alloys with high corrosion resistance. Corros Sci. 2002;44:1847–1856. doi:10.1016/S0010-938X(02)00002-1
  • Pang S, Zhang T, Asami K, et al. Effects of chromium on the glass formation and corrosion behavior of bulk glassy Fe–Cr–Mo–C–B alloys. Mater Trans. 2002;43:2137–2142. doi:10.2320/matertrans.43.2137
  • Fay DL. Corrosion resistances of iron-based amorphous metals with yttrium and tungsten additions in Hot calcium chloride brine & natural seawater – Fe48Mo14Cr15Y2C15B6 and W-containing variants. Angew Chemie Int Ed. 6(11):951–952; 1967;3:485–496.
  • Miura H, Isa S, Omuro K. Production of amorphous iron-nickel based alloys by flame-spray quenching and coatings on metal substrates. Trans Japan Inst Met. 1984;25:284–291.
  • Kishitake K, Era H, Otsubo F. Thermal-sprayed Fe–10Cr–13P–7C amorphous coatings possessing excellent corrosion resistance. J Therm Spray Technol. 1996;5:476–482. doi:10.1007/BF02645279
  • Otsubo F, Era H, Kishitake K. Formation of amorphous Fe–Cr–Mo–8P–2C coatings by the high velocity oxy-fuel process. J Therm Spray Technol. 2000;9:494–498. doi:10.1361/105996300770349700
  • Farmer JC, Haslam JJ, Day SD, et al. Corrosion resistance of thermally sprayed high-boron iron-based amorphous-metal coatings: Fe49.7Cr17.7 Mn1.9Mo7.4W1.6B15.2 C3.8Si2.4. J Mater Res. 2007;22:2297–2311. doi:10.1557/jmr.2007.0291
  • Farmer J, Choi J-SS, Saw C, et al. Iron-Based amorphous metals: high-performance corrosion-resistant material development. Metall Mater Trans A Phys Metall Mater Sci. 2009;40:1289–1305. doi:10.1007/s11661-008-9779-8
  • Farmer JC, Haslam JJ, Day SD. Corrosion characterization of iron-based high-performance amorphous metal thermal-spray coatings. Proceedings of the ASME 2005 Pressure Vessels and Piping Conference. Volume 7: Operations, Applications, and Components. Denver, Colorado, USA. 2005:583–589.
  • Farmer JC, Haslam JJ, Day SD, et al. Corrosion resistance of iron-based amorphous metal coatings. Proceedings of the ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. Volume 7: Operations, Applications, and Components. Vancouver, BC, Canada. 2006;685–691. doi:10.1115/PVP2006-ICPVT-11-93835.
  • Farmer J, Haslam J, Day D, et al. A high-performance corrosion-resistant iron-based amorphous metal-the effects of composition, structure and environment on corrosion resistance. Mater Res Soc Symp Proc. 2007;985:255–260. doi:10.1557/proc-985-0985-nn08-03
  • Botta WJ, Berger JE, Kiminami CS, et al. Corrosion resistance of Fe-based amorphous alloys. J Alloys Compd. 2014;586:S105–S110. doi:10.1016/j.jallcom.2012.12.130
  • Chu Z, Deng W, Zheng X, et al. Corrosion mechanism of plasma-sprayed Fe-based amorphous coatings with high corrosion resistance. J Therm Spray Technol. 2020;29:1111–1118. doi:10.1007/s11666-020-01030-9
  • Si C, Duan B, Zhang Q, et al. Microstructure, corrosion-resistance, and wear-resistance properties of subsonic flame sprayed amorphous Fe–Mo–Cr–Co coating with extremely high amorphous rate. Integr Med Res. 2020: 1–12. doi:10.1016/j.jmrt.2020.01.024
  • Huang F, Kang J, Yue W, et al. Corrosion behavior of FeCrMoCBY amorphous coating fabricated by high-velocity air fuel spraying. J Therm Spray Technol. 2019;28:842–850. doi:10.1007/s11666-019-00843-7
  • Cao Q, Huang G, Ma L, et al. Comparison of a cold-sprayed and plasma-sprayed Fe25Cr20Mo1Si amorphous alloy coatings on 40Cr substrates. Mater Corros. 2020;71:1872–1884. doi:10.1002/maco.202011558
  • Henao J, Concustell A, Cano I, et al. Novel Al-based metallic glass coatings by cold gas spray. Mater Des. 2016;94:253–261. doi:10.1016/j.matdes.2016.01.040
  • Cheng J, Wang B, Liu Q, et al. In-situ synthesis of novel Al–Fe–Si metallic glass coating by arc spraying. J Alloys Compd. 2017;716:88–95. doi:10.1016/j.jallcom.2017.05.032
  • Wang AP, Zhang T, Wang JQ. Formation and properties of Ni-based amorphous metallic coating produced by HVAF thermal spraying. Mater Trans. 2005;46:1010–1015. doi:10.2320/MATERTRANS.46.1010
  • Yugeswaran S, Kobayashi A. Metallic glass coatings fabricated by gas tunnel type plasma spraying. Vacuum. 2014;110:177–182. doi:10.1016/J.VACUUM.2014.04.016
  • Lahiri D, Gill PK, Scudino S, et al. Cold sprayed aluminum based glassy coating: synthesis, wear and corrosion properties. Surf Coatings Technol. 2013;232:33–40. doi:10.1016/J.SURFCOAT.2013.04.049
  • Ge Y, Cheng J, Yan C, et al. Thermally induced microstructure evolution and effects on the corrosion behaviors of AlFeSi metallic glass coatings. Intermetallics. 2022;143:107473. doi:10.1016/J.INTERMET.2022.107473
  • Lee KA, Jung DJ, Park DY, et al. Study on the fabrication and physical properties of cold-sprayed, Cu-based amorphous coating. J Phys Conf Ser. 2009;144:012113. doi:10.1088/1742-6596/144/1/012113
  • Mao X, Wang Y, Jiang J, et al. Microstructure and corrosion properties of micro-nano FeCoNiCrMnAl0.5 coatings fabricated by plasma spraying. Mater Lett. 2022;314:131855. doi:10.1016/J.MATLET.2022.131855
  • Huang B, Zhang C, Zhang G, et al. Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: a review. Surf Coatings Technol. 2019;377:124896. doi:10.1016/j.surfcoat.2019.124896
  • Guo W, Wu Y, Zhang J, et al. Fabrication and characterization of thermal-sprayed Fe-based amorphous/nanocrystalline composite coatings: an overview. J Therm Spray Technol. 2014;23:1157–1180. doi:10.1007/s11666-014-0096-z
  • Liu L, Zhang C. Fe-based amorphous coatings: structures and properties. Thin Solid Films. 2014;561:70–86. doi:10.1016/j.tsf.2013.08.029
  • Joshi SS, Katakam S, Singh Arora H, et al. Amorphous coatings and surfaces on structural materials. Crit Rev Solid State Mater Sci. 2016;41:1–46. doi:10.1080/10408436.2015.1053602
  • Souza CAC, Ribeiro DV, Kiminami CS. Corrosion resistance of Fe–Cr-based amorphous alloys: an overview. J Non Cryst Solids. 2016;442:56–66. doi:10.1016/j.jnoncrysol.2016.04.009
  • Meghwal A, Anupam A, Murty BS, et al. Thermal spray high-entropy alloy coatings: a review. Vol. 29. Springer US; 2020. https://doi.org/10.1007/s11666-020-01047-0
  • Suryanarayana C, Inoue A. Bulk metallic glasses. 2010. https://doi.org/10.1201/9781420085976
  • Busch R, Schroers J, Wang WH. Thermodynamics and kinetics of bulk metallic glass. MRS Bull. 2007;32:620–623. doi:10.1557/MRS2007.122
  • Fecht HJ, Johnson WL. Thermodynamic properties and metastability of bulk metallic glasses. Mater Sci Eng A. 2004;375–377:2–8. doi:10.1016/j.msea.2003.10.254
  • Eckert J, Das J, Pauly S, et al. Mechanical properties of bulk metallic glasses and composites. J Mater Res. 2007;22:285–301. doi:10.1557/JMR.2007.0050
  • Chattopadhyay C, Idury KSNS, Bhatt J, et al. Critical evaluation of glass forming ability criteria. Mater Sci Technol (United Kingdom). 2016;32:380–400. doi:10.1179/1743284715Y.0000000104
  • Ramakrishna Rao B, Srinivas M, Shah AK, et al. A new thermodynamic parameter to predict glass forming ability in iron based multi-component systems containing zirconium. Intermetallics. 2013;35:73–81. doi:10.1016/j.intermet.2012.11.020
  • Wu Y, Hui XD, Lu ZP, et al. Effects of metalloid elements on the glass-forming ability of Fe-based alloys. J Alloys Compd. 2009;467:187–190. doi:10.1016/j.jallcom.2007.12.002
  • Jiao ZB, Li HX, Gao JE, et al. Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses. Intermetallics. 2011;19:1502–1508. doi:10.1016/j.intermet.2011.05.020
  • Lu ZP, Liu CT, Thompson JR, et al. Structural amorphous steels. Phys Rev Lett. 2004;92:1–4. doi:10.1103/PhysRevLett.92.245503
  • Li HX, Gao JE, Wu Y, et al. Enhancing glass-forming ability via frustration of nano-clustering in alloys with a high solvent content. Sci Rep. 2013;3:1–8. doi:10.1038/srep01983
  • Inoue A, Shinohara Y, Gook JS. Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting. Mater Trans JIM. 1995;36:1427–1433.
  • Inoue A, Shen BL, Chang CT. Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1-xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater. 2004;52:4093–4099. doi:10.1016/j.actamat.2004.05.022
  • Yao JH, Wang JQ, Li Y. Ductile Fe–Nb–B bulk metallic glass with ultrahigh strength. Appl Phys Lett. 2008;92:2–5. doi:10.1063/1.2949747
  • Huang D, Li R, Huang L, et al. Fretting wear behavior of bulk amorphous steel. Intermetallics. 2011;19:1385–1389. doi:10.1016/j.intermet.2011.04.014
  • Guo SF, Chan KC, Xie SH, et al. Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater. J Non Cryst Solids. 2013;369:29–33. doi:10.1016/j.jnoncrysol.2013.02.026
  • Guo S, Su C. Micro/nano ductile-phases reinforced Fe-based bulk metallic glass matrix composite with large plasticity. Mater Sci Eng A. 2017;707:44–50. doi:10.1016/j.msea.2017.09.036
  • Li YC, Zhang C, Xing W, et al. Design of Fe-based bulk metallic glasses with improved wear resistance. ACS Appl Mater Interfaces. 2018;10:43144–43155. doi:10.1021/acsami.8b11561
  • Li Z, Zhang C, Liu L. Wear behavior and corrosion properties of Fe-based thin film metallic glasses. J Alloys Compd. 2015;650:127–135. doi:10.1016/j.jallcom.2015.07.256
  • Wang SL, Zhang ZY, Gong YB, et al. Microstructures and corrosion resistance of Fe-based amorphous/nanocrystalline coating fabricated by laser cladding. J Alloys Compd. 2017;728:1116–1123. doi:10.1016/j.jallcom.2017.08.251
  • Ye X, Shin YC. Synthesis and characterization of Fe-based amorphous composite by laser direct deposition. Surf Coatings Technol. 2014;239:34–40. doi:10.1016/J.SURFCOAT.2013.11.013
  • Wang HZ, Cheng YH, Zhang XC, et al. Effect of laser scanning speed on microstructure and properties of Fe based amorphous/ nanocrystalline cladding coatings. Mater Chem Phys. 2020;250:123091. doi:10.1016/J.MATCHEMPHYS.2020.123091
  • Wang HZ, Cheng YH, Yang JY, et al. Microstructure and properties of laser clad Fe-based amorphous alloy coatings containing Nb powder. J Non Cryst Solids. 2020;550:120351. doi:10.1016/J.JNONCRYSOL.2020.120351
  • Chen LT, Lee JW, Yang YC, et al. Microstructure, mechanical and anti-corrosion property evaluation of iron-based thin film metallic glasses. Surf Coatings Technol. 2014;260:46–55. doi:10.1016/J.SURFCOAT.2014.07.039
  • Obeydavi A, Shafyei A, Rezaeian A, et al. Microstructure, mechanical properties and corrosion performance of Fe44Cr15Mo14Co7C10B5Si5 thin film metallic glass deposited by DC magnetron sputtering. J Non Cryst Solids. 2020;527:119718. doi:10.1016/J.JNONCRYSOL.2019.119718
  • Kishitake K, Era H, Otsubo F. Characterization of plasma sprayed Fe–10Cr–10Mo–(C,B) amorphous coatings. J Therm Spray Technol. 1996;5(2):145–153. doi:10.1007/BF02646428
  • Zhang J, Liu M, Song J, et al. Microstructure and corrosion behavior of Fe-based amorphous coating prepared by HVOF. J Alloys Compd. 2017;721:506–511. doi:10.1016/j.jallcom.2017.06.046
  • Guo Y, Koga GY, Jorge AM, et al. Microstructural investigation of Fe[sbnd]Cr[sbnd]Nb[sbnd]B amorphous/nanocrystalline coating produced by HVOF. Mater Des. 2016;111:608–615. doi:10.1016/j.matdes.2016.09.027
  • Yoon S, Kim J, Kim BD, et al. Tribological behavior of B4C reinforced Fe-base bulk metallic glass composite coating. Surf Coatings Technol. 2010;205:1962–1968. doi:10.1016/j.surfcoat.2010.08.078
  • Liu XQ, Zheng YG, Chang XC, et al. Microstructure and properties of Fe-based amorphous metallic coating produced by high velocity axial plasma spraying. J Alloys Compd. 2009;484:300–307. doi:10.1016/j.jallcom.2009.04.086
  • Cheng JB, Liang XB, Xu BS, et al. Formation and properties of Fe-based amorphous/nanocrystalline alloy coating prepared by wire arc spraying process. J Non Cryst Solids. 2009;355:1673–1678. doi:10.1016/j.jnoncrysol.2009.06.024
  • Lin J, Wang Z, Cheng J, et al. Evaluation of cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings in NaCl solution. Results Phys. 2019;12:597–602. doi:10.1016/j.rinp.2018.12.007
  • Kishitake K, Era H, Otsubo F. Characterization of plasma sprayed Fe–17Cr–38Mo–4C amorphous coatings crystallizing at extremely high temperature. J Therm Spray Technol. 1996;5:283–288. doi:10.1007/BF02645879
  • Branagan DJ, Swank WD, Haggard DC, et al. Wear-resistant amorphous and nanocomposite steel coatings. Metall Mater Trans A Phys Metall Mater Sci. 2001;32:2615–2621. doi:10.1007/s11661-001-0051-8
  • Otsubo F, Kishitake K. Corrosion resistance of Fe–16%Cr–30%Mo-(C,B,P) amorphous coatings sprayed by HVOF and APS processes. Mater Trans. 2005;46:80–83.
  • Ajdelsztajn L, Jodoin B, Richer P, et al. Cold gas dynamic spraying of iron-base amorphous alloy. Proc Int Therm Spray Conf. 2006;15:495–500. doi:10.1361/105996306X146857
  • Kobayashi A, Yano S, Kimura H, et al. Fe-based metallic glass coatings produced by smart plasma spraying process. Mater Sci Eng B Solid-State Mater Adv Technol. 2008;148:110–113. doi:10.1016/j.mseb.2007.09.035
  • Wu Y, Lin P, Wang Z, et al. Microstructure and microhardness characterization of a Fe-based coating deposited by high-velocity oxy-fuel thermal spraying. J Alloys Compd. 2009;481:719–724. doi:10.1016/j.jallcom.2009.03.099
  • Ni HS, Liu XH, Chang XC, et al. High performance amorphous steel coating prepared by HVOF thermal spraying. J Alloys Compd. 2009;467:163–167. doi:10.1016/j.jallcom.2007.11.133
  • Zhou Z, Wang L, Wang FC, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings prepared by detonation gun spraying. Trans Nonferrous Met Soc China (English Ed). 2009;19. doi:10.1016/S1003-6326(10)60123-9
  • Chokethawai K, McCartney DG, Shipway PH. Microstructure evolution and thermal stability of an Fe-based amorphous alloy powder and thermally sprayed coatings. J Alloys Compd. 2009;480:351–359. doi:10.1016/j.jallcom.2009.02.035
  • Kumar S, Kim J, Kim H, et al. Phase dependence of Fe-based bulk metallic glasses on properties of thermal spray coatings. J Alloys Compd. 2009;475:10–13. doi:10.1016/j.jallcom.2008.07.064
  • Fu B, He DY, Zhao LD. Effect of heat treatment on the microstructure and mechanical properties of Fe-based amorphous coatings. J Alloys Compd. 2009;480:422–427. doi:10.1016/j.jallcom.2009.02.107
  • Zois D, Lekatou A, Vardavoulias M. Preparation and characterization of highly amorphous HVOF stainless steel coatings. J Alloys Compd. 2010;504; doi:10.1016/j.jallcom.2010.02.062
  • Movahedi B, Enayati MH, Wong CC. Structural and thermal behavior of Fe–Cr–Mo–P–B–C–Si amorphous and nanocrystalline HVOF coatings. J Therm Spray Technol. 2010;19:1093–1099. doi:10.1007/s11666-010-9507-y
  • Guo RQ, Zhang C, Chen Q, et al. Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF. Corros Sci. 2011;53:2351–2356. doi:10.1016/j.corsci.2010.12.022
  • Lu W, Wu Y, Zhang JJ, et al. Microstructure and corrosion resistance of plasma sprayed Fe-based alloy coating as an alternative to hard chromium. J Therm Spray Technol. 2011;20:1063–1070. doi:10.1007/s11666-010-9611-z
  • Liu G, An Y, Guo Z, et al. Structure and corrosion behavior of iron-based metallic glass coatings prepared by LPPS. Appl Surf Sci. 2012;258:5380–5386. doi:10.1016/j.apsusc.2012.02.015
  • Cheng JB, Wang ZH, Xu BS. Wear and corrosion behaviors of FeCrBSiNbW amorphous/nanocrystalline coating prepared by arc spraying process. J Therm Spray Technol. 2012;21:1025–1031. doi:10.1007/s11666-012-9779-5
  • Huang Y, Guo Y, Fan H, et al. Synthesis of Fe–Cr–Mo–C–B amorphous coating with high corrosion resistance. Mater Lett. 2012;89:229–232. doi:10.1016/j.matlet.2012.08.114
  • Wang Y, Zheng YG, Ke W, et al. Corrosion of high-velocity oxy-fuel (HVOF) sprayed iron-based amorphous metallic coatings for marine pump in sodium chloride solutions. Mater Corros. 2012;63:685–694. doi:10.1002/maco.201106211
  • Guo RQ, Zhang C, Yang Y, et al. Corrosion and wear resistance of a Fe-based amorphous coating in underground environment. Intermetallics. 2012;30:94–99. doi:10.1016/j.intermet.2012.03.026
  • Jiang CP, Xing YZ, Zhang FY, et al. Microstructure and corrosion resistance of Fe/Mo composite amorphous coatings prepared by air plasma spraying. Int J Miner Metall Mater. 2012;19:657–662. doi:10.1007/s12613-012-0609-z
  • Chen Y, Liang X, Bai J, et al. High velocity electric arc sprayed Fe–Al–Nb–B composite coating and its wear behavior. Acta Metall Sin (English Lett). 2013;26:313–320. doi:10.1007/s40195-013-0017-z
  • Varadaraajan V, Guduru RK, Mohanty PS. Synthesis and microstructural evolution of amorphous/nanocrystalline steel coatings by different thermal-spray processes. J Therm Spray Technol. 2013;22:452–462. doi:10.1007/s11666-013-9885-z
  • Piao ZY, Xu BS, Wang HD, et al. Characterization of Fe-based alloy coating deposited by supersonic plasma spraying. Fusion Eng Des. 2013;88:2933–2938. doi:10.1016/j.fusengdes.2013.06.013
  • Yugeswaran S, Kobayashi A, Suresh K, et al. Characterization of gas tunnel type plasma sprayed TiN reinforced Fe-based metallic glass coatings. J Alloys Compd. 2013;551:168–175. doi:10.1016/j.jallcom.2012.09.111
  • Wang SL, Cheng JC, Yi SH, et al. Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying. Trans Nonferrous Met Soc China (English Ed). 2014;24:146–151. doi:10.1016/S1003-6326(14)63040-5
  • An Y, Hou G, Chen J, et al. Microstructure and tribological properties of iron-based metallic glass coatings prepared by atmospheric plasma spraying. Vacuum. 2014;107:132–140. doi:10.1016/j.vacuum.2014.04.021
  • Zhang H, Xie Y, Huang L, et al. Effect of feedstock particle sizes on wear resistance of plasma sprayed Fe-based amorphous coatings. Surf Coatings Technol. 2014;258:495–502. doi:10.1016/j.surfcoat.2014.08.050
  • Choi SJ, Lee HS, Jang JW, et al. Corrosion behavior in a 3.5 wt% NaCl solution of amorphous coatings prepared through plasma-spray and cold-spray coating processes. Met Mater Int. 2014;20:1053–1057. doi:10.1007/s12540-014-6008-4
  • Wang Y, Xing ZZ, Luo Q, et al. Corrosion and erosion-corrosion behaviour of activated combustion high-velocity air fuel sprayed Fe-based amorphous coatings in chloride-containing solutions. Corros Sci. 2015;98:339–353. doi:10.1016/j.corsci.2015.05.044
  • Concustell A, Henao J, Dosta S, et al. On the formation of metallic glass coatings by means of cold gas spray technology. J Alloys Compd. 2015;651:764–772. doi:10.1016/j.jallcom.2015.07.270
  • Wang G, Huang Z, Xiao P, et al. Spraying of Fe-based amorphous coating with high corrosion resistance by HVAF. J Manuf Process. 2016;22:34–38. doi:10.1016/j.jmapro.2016.01.009
  • Chu Z, Yang Y, Chen X, et al. Characterization and tribology performance of Fe-based metallic glassy composite coatings fabricated by gas multiple-tunnel plasma spraying. Surf Coatings Technol. 2016;292:44–48. doi:10.1016/j.surfcoat.2016.03.024
  • Zhou YY, Ma GZ, Wang HD, et al. Fabrication and characterization of supersonic plasma sprayed Fe-based amorphous metallic coatings. Mater Des. 2016;110:332–339. doi:10.1016/j.matdes.2016.08.003
  • Ma HR, Chen XY, Li JW, et al. Fe-based amorphous coating with high corrosion and wear resistance. Surf Eng. 2017;33:56–62. doi:10.1080/02670844.2016.1176718
  • Ma HR, Li JW, Chang CT, et al. Passivation behavior of Fe-based amorphous coatings prepared by high-velocity air/oxygen fuel processes. J Therm Spray Technol. 2017;26:2040–2047. doi:10.1007/s11666-017-0647-1
  • Wu H, Lan XD, Liu Y, et al. Fabrication, tribological and corrosion behaviors of detonation gun sprayed Fe-based metallic glass coating. Trans Nonferrous Met Soc China (English Ed). 2016;26:1629–1637. doi:10.1016/S1003-6326(16)64271-1
  • Koga GY, Schulz R, Savoie S, et al. Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors. Surf Coatings Technol. 2017;309:938–944. doi:10.1016/j.surfcoat.2016.10.057
  • Zhang C, Chu Z, Wei F, et al. Optimizing process and the properties of the sprayed Fe-based metallic glassy coating by plasma spraying. Surf Coatings Technol. 2017;319:1–5. doi:10.1016/j.surfcoat.2017.03.063
  • Li D, Chen X, Hui X, et al. Effect of amorphicity of HVOF sprayed Fe-based coatings on their corrosion performances and contacting osteoblast behavior. Surf Coatings Technol. 2017;310:207–213. doi:10.1016/j.surfcoat.2016.12.092
  • Luo Q, Sun YJ, Jiao J, et al. Formation and tribological behavior of AC-HVAF-sprayed nonferromagnetic Fe-based amorphous coatings. Surf Coatings Technol. 2018;334:253–260. doi:10.1016/j.surfcoat.2017.11.042
  • Jiang C, Liu W, Wang G, et al. The corrosion behaviours of plasma-sprayed Fe-based amorphous coatings. Surf Eng. 2018;34:634–639. doi:10.1080/02670844.2017.1319647
  • Ziemian CW, Wright WJ, Cipoletti DE. Influence of impact conditions on feedstock deposition behavior of cold-sprayed Fe-based metallic glass. J Therm Spray Technol. 2018;27:843–856. doi:10.1007/s11666-018-0720-4
  • Chen SY, Ma GZ, Wang HD, et al. Solidification mechanism and quantitative characterization of Fe-based amorphous splat formed by plasma sprayed droplets with different in-flight status. J Alloys Compd. 2018;768:789–799. doi:10.1016/j.jallcom.2018.07.005
  • Zhang B, Cheng J, Liang X. Effects of Cr and Mo additions on formation and mechanical properties of arc-sprayed FeBSiNb-based glassy coatings. J Non Cryst Solids. 2018;499:245–251.
  • Qiao JH, Jin X, Qin Jh, et al. A super-hard superhydrophobic Fe-based amorphous alloy coating. Surf Coatings Technol. 2018;334:286–291. doi:10.1016/j.surfcoat.2017.11.046
  • Sadeghi E, Joshi S. Chlorine-induced high-temperature corrosion and erosion-corrosion of HVAF and HVOF-sprayed amorphous Fe-based coatings. Surf Coatings Technol. 2019;371:20–35. doi:10.1016/j.surfcoat.2019.01.080
  • Dong Q, Zhang B, Ba Z, et al. Microstructure and properties of FeCrNiMoCBSi amorphous/nanocrystalline composite coatings via plasma spraying process. Surf Topogr Metrol Prop. 2019;7; doi:10.1088/2051-672X/ab411b
  • Kumar A, Kumar R, Bijalwan P, et al. Fe-based amorphous/nanocrystalline composite coating by plasma spraying: effect of heat input on morphology, phase evolution and mechanical properties. J Alloys Compd. 2019;771:827–837. doi:10.1016/j.jallcom.2018.09.024
  • Si C, Wu W. Excellent corrosion resistant amorphous coating prepared by gas atomization followed by AC-HVAF spray technology. Mater Res Express. 2019;6:55202. doi:10.1088/2053-1591/ab0250
  • Xie L, Xiong X, Zeng Y, et al. The wear properties and mechanism of detonation sprayed iron-based amorphous coating. Surf Coatings Technol. 2019;366:146–155. doi:10.1016/j.surfcoat.2019.03.028
  • Ham GS, Kim KW, Cho GS, et al. Fabrication, microstructure and wear properties of novel Fe–Mo–Cr–C–B metallic glass coating layers manufactured by various thermal spray processes. Mater Des. 2020;195:109043. doi:10.1016/j.matdes.2020.109043
  • Kim KW, Ham GS, Cho GS, et al. Microstructures and corrosion properties of novel Fe46.8–Mo30.6–Cr16.6–C4.3–B1.7 metallic glass coatings manufactured by vacuum plasma spray process. Intermetallics. 2021;130:107061. doi:10.1016/J.INTERMET.2020.107061
  • Nayak SK, Kumar A, Sarkar K, et al. A study on the corrosion inhibition of Fe-based amorphous/nanocrystalline coating synthesized by high-velocity oxy-fuel spraying in an extreme environment. J Therm Spray Technol. 2019;28:1433–1447. doi:10.1007/s11666-019-00907-8
  • Kumar A, Nayak SK, Sarkar K, et al. Investigation of nano- and micro-scale structural evolution and resulting corrosion resistance in plasma sprayed Fe-based (Fe–Cr–B–C–P) amorphous coatings. Surf Coatings Technol. 2020;397:126058. doi:10.1016/j.surfcoat.2020.126058
  • Ning W, Zhai H, Xiao R, et al. The corrosion resistance mechanism of Fe-based amorphous coatings synthesised by detonation Gun spraying. J Mater Eng Perform. 2020;29:3921–3929. doi:10.1007/s11665-020-04876-w
  • Zhou Z, Han F-X, Yao H-H, et al. Novel Fe-based amorphous composite coating with a unique interfacial layer improving thermal barrier application. ACS Appl Mater Interfaces. 2021;13:23057–23066. doi:10.1021/ACSAMI.0C22868
  • Lee HB, Lin TJ, Lee CY. Corrosion of high-velocity-oxygen-fuel (HVOF) sprayed non-crystalline alloy coating in marine environment. Surf Coatings Technol. 2021;409:126896. doi:10.1016/J.SURFCOAT.2021.126896
  • Lin TJ, Sheu HH, Lee CY, et al. The study of mechanical properties and corrosion behavior of the Fe-based amorphous alloy coatings using high velocity oxygen fuel spraying. J Alloys Compd. 2021;867:159132.
  • Lee CY, Lin TJ, Sheu HH, et al. A study on corrosion and corrosion-wear behavior of Fe-based amorphous alloy coating prepared by high velocity oxygen fuel method. J Mater Res Technol. 2021;15:4880–4895. doi:10.1016/J.JMRT.2021.10.103
  • Sun YJ, Yang R, Xie L, et al. Interfacial bonding and corrosion behaviors of HVOF-sprayed Fe-based amorphous coating on 8090 Al–Li alloy. Surf Coatings Technol. 2022;436:128316. doi:10.1016/J.SURFCOAT.2022.128316
  • Liu X, Wu Y, Qiu Z, et al. Simultaneously enhancing wear and corrosion resistance of HVAF-sprayed Fe-based amorphous coating from Mo clad feedstock. J Mater Process Technol. 2022;302:117465. doi:10.1016/J.JMATPROTEC.2021.117465
  • Liang D, Zhou Y, Liu X, et al. Wettability and corrosion performance of arc-sprayed Fe-based amorphous coatings. Surf Coatings Technol. 2022;433:128129. doi:10.1016/J.SURFCOAT.2022.128129
  • Pan P, Zhou W, Zhao Y, et al. Hot corrosion behavior of an arc sprayed Fe-based amorphous coating in a simulated biomass firing environment. Corros Sci. 2022;194:109938. doi:10.1016/J.CORSCI.2021.109938
  • Shi M, Pang S, Zhang T. Towards improved integrated properties in FeCrPCB bulk metallic glasses by Cr addition. Intermetallics. 2015;61:16–20. doi:10.1016/j.intermet.2015.02.010
  • Archer MD, Corke CC, Harji BH. The electrochemical properties of metallic glasses. Electrochim Acta. 1987;32:13–26. doi:10.1016/0013-4686(87)87002-0
  • Hashimoto K, Asami K, Naka M, et al. The role of alloying elements in improving the corrosion resistance of amorphous iron base alloys. Corros Sci. 1979;19:857–867. doi:10.1016/S0010-938X(79)80080-3
  • Zhang SD, Liu ZW, Wang ZM, et al. In situ EC-AFM study of the effect of nanocrystals on the passivation and pit initiation in an Al-based metallic glass. Corros Sci. 2014;83:111–123. doi:10.1016/j.corsci.2014.02.005
  • Miller M, Liaw P. Bulk metallic glasses – an overview. Germany: Springer US; 2007.
  • Scully JR, Gebert A, Payer JH. Corrosion and related mechanical properties of bulk metallic glasses. J Mater Res. 2007;22:302–313. doi:10.1557/jmr.2007.0051
  • Hasannaeimi V, Sadeghilaridjani M, Mukherjee S. Electrochemical and corrosion behavior of metallic glasses. Switzerland: MDPI AG; 2021.
  • Wang SL, Li HX, Zhang XF, et al. Effects of Cr contents in Fe-based bulk metallic glasses on the glass forming ability and the corrosion resistance. Mater Chem Phys. 2009;113:878–883. doi:10.1016/j.matchemphys.2008.08.057
  • Shen B, Akiba M, Inoue A. Effect of Cr addition on the glass-forming ability, magnetic properties, and corrosion resistance in FeMoGaPCBSi bulk glassy alloys. J Appl Phys. 2006;100; doi:10.1063/1.2335393
  • Long ZL, Shao Y, Deng XH, et al. Cr effects on magnetic and corrosion properties of Fe–Co–Si–B–Nb–Cr bulk glassy alloys with high glass-forming ability. Intermetallics. 2007;15:1453–1458. doi:10.1016/j.intermet.2007.05.002
  • Pardo A, Otero E, Merino MC, et al. The influence of Cr addition on the corrosion in marine environments. Corros Sci. 2002;44:1193–1211.
  • Pardo A, Merino MC, Otero E, et al. Influence of Cr additions on corrosion resistance of Fe- and Co-based metallic glasses and nanocrystals in H2SO4. J Non Cryst Solids. 2006;352:3179–3190. doi:10.1016/j.jnoncrysol.2006.05.021
  • Wang SL, Yi S. The corrosion behaviors of Fe-based bulk metallic glasses in a sulfuric solution at 70°C. Intermetallics. 2010;18:1950–1953. doi:10.1016/j.intermet.2010.01.020
  • Li J, Yang L, Ma H, et al. Improved corrosion resistance of novel Fe-based amorphous alloys. Mater Des. 2016;95:225–230. doi:10.1016/j.matdes.2016.01.100
  • Xu DD, Zhou BL, Wang QQ, et al. Effects of Cr addition on thermal stability, soft magnetic properties and corrosion resistance of FeSiB amorphous alloys. Corros Sci. 2018;138:20–27. doi:10.1016/j.corsci.2018.04.006
  • Li X, Qin C, Kato H, et al. Mo microalloying effect on the glass-forming ability, magnetic, mechanical and corrosion properties of (Fe0.76Si0.096B 0.084P0.06)100-xMox bulk glassy alloys. J Alloys Compd. 2011;509:7688–7691. doi:10.1016/j.jallcom.2011.04.081
  • Pang S, Zhang T, Asami K, et al. Formation of bulk glassy Fe75–x–yCrxMoyC15B10 alloys and their corrosion behavior. J Mater Res. 2002;17:701–704. doi:10.1557/JMR.2002.0100
  • Tan MW, Akiyama E, Kawashima A, et al. The influences of Mo addition and air exposure on the corrosion behavior of amorphous Fe–8Cr–13P–7C alloy in de-aerated 1 M HCl. Corros Sci. 1996;38:349–365. doi:10.1016/0010-938X(96)00133-3
  • Marcus P. On some fundamental factors in the effect of alloying elements on passivation of alloys. Corros Sci. 1994;36:2155–2158. doi:10.1016/0010-938X(94)90013-2
  • Kiessling R, Charles J, Suzuki H, et al. Amorphous metallic alloys. 1984. https://doi.org/10.1016/b978-0-408-11033-4.50001-4
  • Waseda Y, Aust KT. Corrosion behaviour of metallic glasses. J Mater Sci. 1981;16:2337–2359. doi:10.1007/BF01113569
  • Pang S, Zhang T, Asami K, et al. New Fe–Cr–Mo–(Nb, Ta)–C–B glassy alloys with high glass-forming ability and good corrosion resistance. Mater Trans. 2001;42:376–379.
  • Long ZL, Chang CT, Ding YH, et al. Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)–B–Si–Nb bulk glassy alloys in aqueous electrolytes. J Non Cryst Solids. 2008;354:4609–4613. doi:10.1016/j.jnoncrysol.2008.06.009
  • Zohdi H, Shahverdi HR, Hadavi SMM. Effect of Nb addition on corrosion behavior of Fe-based metallic glasses in Ringer’s solution for biomedical applications. Electrochem Commun. 2011;13:840–843. doi:10.1016/j.elecom.2011.05.017
  • Ma XH, Zhang L, Yang XH, et al. Effect of Ni addition on corrosion resistance of FePC bulk glassy alloy. Corros Eng Sci Technol. 2015;50:433–437. doi:10.1179/1743278214Y.0000000242
  • Souza CAC, De Oliveira MF, May JE, et al. Corrosion resistance of amorphous and nanocrystalline Fe–M–B (M=Zr, Nb) alloys. J Non Cryst Solids. 2000;273:282–288. doi:10.1016/S0022-3093(00)00174-5
  • Souza CAC, May JE, Bolfarini L, et al. Influence of composition and partial crystallization on corrosion resistance of amorphous Fe–M–B–Cu (M=Zr, Nb, Mo) alloys. J Non Cryst Solids. 2001;284:99–104. doi:10.1016/S0022-3093(01)00386-6
  • Habazaki H, Kawashima A, Asami K, et al. The effect of tungsten on the corrosion behavior of amorphous Fe–Cr–W–P–C alloys in 1M HCl. J Electrochem Soc. 1991;138:1033–1036.
  • Angelini E, Antonione C, Baricco M, et al. Corrosion behaviour of Fe80-xCoxB10Si10 metallic glasses in sulphate and chloride media. Mater Corros. 1993;44:98–106. doi:10.1002/maco.19930440307
  • Li Y, Jia X, Zhang W, et al. Effects of alloying elements on the thermal stability and corrosion resistance of an Fe-based metallic glass with low glass transition temperature. Metall Mater Trans A Phys Metall Mater Sci. 2014;45:2393–2398. doi:10.1007/s11661-013-2071-6
  • Jayaraj J, Kim YC, Kim KB, et al. Corrosion behaviors of Fe45-xCr18Mo14C15B6Y2Mx (M=Al, Co, Ni, N and x=0, 2) bulk metallic glasses under conditions simulating fuel cell environment. J Alloys Compd. 2007;434–435:237–239. doi:10.1016/j.jallcom.2006.08.288
  • Alvarez MG, Vazquez SM, Moya J, et al. Anodic behaviour of Fe73.5Si13.5-xAlxB9Nb3Cu1 (X ⴝ 0–2) amorphous, nanostructured and crystalline alloys. Scr Mater. 44 2001;44:507–512. doi:10.1016/b978-0-12-053620-7.50010-x
  • Fang H, Hui X, Chen G. Effects of Mn addition on the magnetic property and corrosion resistance of bulk amorphous steels. J Alloys Compd. 2008;464:292–295. doi:10.1016/j.jallcom.2007.09.139
  • Gostin F, Siegel U, Mickel C, et al. Corrosion behavior of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2 C15.8B5.9)98.5Y1.5 alloy. J Mater Res. 2009;24:1471–1479. doi:10.1557/jmr.2009.0169
  • Fan HB, Zheng W, Wang GY, et al. Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in sulfuric acid solutions. Metall Mater Trans A Phys Metall Mater Sci. 2011;42:1524–1533. doi:10.1007/s11661-010-0500-3
  • Wang ZM, Ma YT, Zhang J, et al. Influence of yttrium as a minority alloying element on the corrosion behavior in Fe-based bulk metallic glasses. Electrochim Acta. 2008;54:261–269. doi:10.1016/j.electacta.2008.08.017
  • López MF, Escudero ML, Vida E, et al. Corrosion behaviour of amorphous Fe–Cr–Ni–(Si,P) alloys. Electrochim Acta. 1997;42:659–665. doi:10.1016/S0013-4686(96)00211-3
  • Naka M, Hashimoto K, Masumoto T. Effect of metalloidal elements on corrosion resistance of amorphous iron-chromium alloys. J Non Cryst Solids. 1978;28:403–413. doi:10.1016/0022-3093(78)90090-X
  • Jayaraj J, Kim KB, Ahn HS, et al. Corrosion mechanism of N-containing Fe–Cr–Mo–Y–C–B bulk amorphous alloys in highly concentrated HCl solution. Mater Sci Eng A. 2007;449–451:517–520. doi:10.1016/j.msea.2006.02.418
  • Shanlin W, Shanben C, Seonghoon Y, et al. Effects of sulphide on pit corrosion in metallic glass steel. Mater Res Innov. 2014;18:S2638–S2641. doi:10.1179/1432891714Z.000000000475
  • Virtanen S, Elsener B, Bohni H. Effect of metalloids on passivity of amorphous Fe–Cr alloys. J Less Common Met. 1988;145:581–593
  • Gostin PF, Oswald S, Schultz L, et al. Acid corrosion process of Fe-based bulk metallic glass. Corros Sci. 2012;62:112–121. doi:10.1016/j.corsci.2012.05.004
  • Jargelius-Pettersson RFA. Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels. Corros Sci. 1999;41:1639–1664. doi:10.1016/S0010-938X(99)00013-X
  • Tian WP, Yang HW, De ZS. Synergistic effect of Mo, W, Mn and Cr on the passivation behavior of a Fe-based amorphous alloy coating. Acta Metall Sin (English Lett). 2018;31:308–320. doi:10.1007/s40195-017-0604-5
  • Zheng S, Li J, Zhang J, et al. Effect of Si addition on the electrochemical corrosion and passivation behavior of Fe–Cr–Mo–C–B–Ni–P metallic glasses. J Non Cryst Solids. 2018;493:33–40. doi:10.1016/j.jnoncrysol.2018.04.036
  • Zhou Z, Wang L, Wang FC, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying. Surf Coatings Technol. 2009;204:563–570. doi:10.1016/j.surfcoat.2009.08.025
  • Zhang SD, Zhang WL, Wang SG, et al. Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour. Corros Sci. 2015;93:211–221. doi:10.1016/j.corsci.2015.01.022
  • Zhang SD, Wu J, Qi WB, et al. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel. Corros Sci. 2016;110:57–70. doi:10.1016/j.corsci.2016.04.021
  • Suegama PH, Fugivara CS, Benedetti AV, et al. Electrochemical behavior of thermally sprayed stainless steel coatings in 3.4% NaCl solution. Corros Sci. 2005;47:605–620. doi:10.1016/j.corsci.2004.07.003
  • Wang AP, Zhang T, Wang JQ. Ni-based fully amorphous metallic coating with high corrosion resistance. Philos Mag Lett. 2006;86:5–11. doi:10.1080/09500830500479718
  • Ahmed N, Bakare MS, McCartney DG, et al. The effects of microstructural features on the performance gap in corrosion resistance between bulk and HVOF sprayed Inconel 625. Surf Coatings Technol. 2010;204:2294–2301. doi:10.1016/j.surfcoat.2009.12.028
  • Koga GY, Nogueira RP, Roche V, et al. Corrosion properties of Fe–Cr–Nb–B amorphous alloys and coatings. Surf Coatings Technol. 2014;254:238–243. doi:10.1016/j.surfcoat.2014.06.022
  • Celis JP, Roos JR, Fan C. Porosity of electrolytic nickel-phosphorus coatings. Trans Inst Met Finish. 1991;69:15–19. doi:10.1080/00202967.1991.11870885
  • Notter IM, Gabe DR. Porosity of electrodeposited coatings: its cause, nature, effect and management. Corros Rev. 1992;10:217–280.
  • Wu J, Zhang SD, Sun WH, et al. Influence of oxidation related structural defects on localized corrosion in HVAF-sprayed Fe-based metallic coatings. Surf Coatings Technol. 2018;335:205–218. doi:10.1016/j.surfcoat.2017.12.038
  • Guilemany JM, Fernández J, Espallargas N, et al. Influence of spraying parameters on the electrochemical behaviour of HVOF thermally sprayed stainless steel coatings in 3.4% NaCl. Surf Coatings Technol. 2006;200:3064–3072. doi:10.1016/j.surfcoat.2005.02.116
  • Kim J, Kang K, Yoon S, et al. Oxidation and crystallization mechanisms in plasma-sprayed Cu-based bulk metallic glass coatings. Acta Mater. 2010;58:952–962. doi:10.1016/j.actamat.2009.10.011
  • Wang Y, Li KY, Scenini F, et al. The effect of residual stress on the electrochemical corrosion behavior of Fe-based amorphous coatings in chloride-containing solutions. Surf Coatings Technol. 2016;302:27–38. doi:10.1016/j.surfcoat.2016.05.034
  • Totemeier TC, Wright RN, Swank WD. Residual stresses in high-velocity oxy-fuel metallic coatings. Metall Mater Trans A Phys Metall Mater Sci A. 2004;35:1807–1814. doi:10.1007/s11661-004-0089-5
  • Clyne TW, Gill SC. Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J Therm Spray Technol. 1996;5:401–418. doi:10.1007/BF02645271
  • Yang Y, Zhang C, Peng Y, et al. Effects of crystallization on the corrosion resistance of Fe-based amorphous coatings. Corros Sci. 2012;59:10–19. doi:10.1016/j.corsci.2012.02.003
  • Zheng ZB, Zheng YG, Sun WH, et al. Effect of heat treatment on the structure, cavitation erosion and erosion-corrosion behavior of Fe-based amorphous coatings. Tribol Int. 2015;90:393–403. doi:10.1016/j.triboint.2015.04.039
  • Huang F, Kang JJ, Yue W, et al. Effect of heat treatment on erosion–corrosion of Fe-based amorphous alloy coating under slurry impingement. J Alloys Compd. 2020;820:153132. doi:10.1016/j.jallcom.2019.153132
  • Li HX, Yi S. Corrosion behaviors of bulk metallic glasses Fe66.7C7.0Si3.3BB5.5P8.7Cr2.3Al2.0Mo4.5 having different crystal volume fractions. Mater Chem Phys. 2008;112:305–309. doi:10.1016/j.matchemphys.2008.05.061
  • Zohdi H, Bozorg M, Arabi Jeshvaghani R, et al. Corrosion performance and metal ion release of amorphous and nanocrystalline Fe-based alloys under simulated body fluid conditions. Mater Lett. 2013;94:193–196. doi:10.1016/j.matlet.2012.12.051
  • Wu YF, Chiang WC, Wu JK. Effect of crystallization on corrosion behavior of Fe40Ni38B18Mo4 amorphous alloy in 3.5% sodium chloride solution. Mater Lett. 2008;62:1554–1556. doi:10.1016/j.matlet.2007.09.047
  • Gostin PF, Gebert A, Schultz L. Comparison of the corrosion of bulk amorphous steel with conventional steel. Corros Sci. 2010;52:273–281. doi:10.1016/j.corsci.2009.09.016
  • Ha HM, Miller JR, Payer JH. Devitrification of Fe-based amorphous metal SAM 1651 and the effect of heat-treatment on corrosion behavior. J Electrochem Soc. 2009;156:C246. doi:10.1149/1.3148325
  • Duarte MJ, Kostka A, Jimenez JA, et al. Crystallization, phase evolution and corrosion of Fe-based metallic glasses: an atomic-scale structural and chemical characterization study. Acta Mater. 2014;71:20–30. doi:10.1016/j.actamat.2014.02.027
  • Coimbrão DD, Zepon G, Koga GY, et al. Corrosion properties of amorphous, partially, and fully crystallized Fe68Cr8Mo4Nb4B16 alloy. J Alloys Compd. 2020;826. doi:10.1016/j.jallcom.2020.154123
  • Koga GY, Ferreira T, Guo Y, et al. Challenges in optimizing the resistance to corrosion and wear of amorphous Fe–Cr–Nb–B alloy containing crystalline phases. J Non Cryst Solids. 2021;555:120537. doi:10.1016/j.jnoncrysol.2020.120537
  • Marzo FF, Pierna AR, Vega MM. Effect of irreversible structural relaxation on the electrochemical behavior of Fe78-xSi13B9Cr(x=3,4,7) amorphous alloys. J Non Cryst Solids. 2003;329:108–114. doi:10.1016/j.jnoncrysol.2003.08.022
  • Pardo A, Otero E, Merino MC, et al. Influence of Cr addition on the corrosion resistance and magnetic properties of amorphous Fe73.5Si13.5B9Nb3Cu1 in simulated industrial environments. J Non Cryst Solids. 2001;287:421–427. doi:10.1016/S0022-3093(01)00636-6
  • Souza CAC, May JE, Carlos IA, et al. Influence of the corrosion on the saturation magnetic density of amorphous and nanocrystalline Fe73Nb3Si15:5B7: 5Cu1 and Fe80Zr3:5Nb3:5B12Cu1 alloys. J Non Cryst Solids. 2002;304:210–216. doi:10.1016/S0924-4247(03)00135-3
  • Gavrilović A, Rafailović LD, Artner W, et al. The corrosion behavior of amorphous and nanocrystalline Fe73.5Cu1Nb3Si15.5B7 alloy. Corros Sci. 2011;53:2400–2405. doi:10.1016/j.corsci.2011.03.023
  • May JE, Nascente PAP, Kuri SE. Corrosion processes and their influence on the magnetic flux density of FeNbCuSiB alloys. Corros Sci. 2006;48:1721–1732. doi:10.1016/j.corsci.2005.05.024
  • Szewieczek D, Baron A. Electrochemical corrosion and its influence on magnetic properties of Fe75.5Si13.5 B9Nb3Cu1 alloy. J Mater Process Technol. 2005;164-165:940–946. doi:10.1016/j.jmatprotec.2005.02.084
  • Ha HM, Payer JH. Devitrification of Fe-based amorphous metal SAM 1651: a structural and compositional study. Metall Mater Trans A Phys Metall Mater Sci. 2009;40:2519–2529. doi:10.1007/s11661-009-9977-z
  • Gan Z, Zhang C, Zhang ZR, et al. Crystallization-dependent transition of corrosion resistance of an Fe-based bulk metallic glass under hydrostatic pressures. Corros Sci. 2021;179:109098. doi:10.1016/j.corsci.2020.109098
  • Cheng JB, Liang XB, Xu BS. Effects of crystallization on the corrosion resistance of arc-sprayed FeBSiNb coatings. J Therm Spray Technol. 2014;23:373–379. doi:10.1007/s11666-013-9990-z
  • Kang Y, Chen Y, Wen Y, et al. Effects of structural relaxation and crystallization on the corrosion resistance of an Fe-based amorphous coating. J Non Cryst Solids. 2020;550. doi:10.1016/j.jnoncrysol.2020.120378
  • Liang D, Liu X, Zhou Y, et al. Effects of annealing below glass transition temperature on the wettability and corrosion performance of Fe-based amorphous coatings. Acta Metall Sin (English Lett). 2021. doi:10.1007/s40195-021-01228-y
  • Wang Y, Jiang SL, Zheng YG, et al. Effect of processing parameters on the microstructures and corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings. Mater Corros. 2013;64:801–810. doi:10.1002/maco.201106426
  • Zhang H, Hu Y, Hou G, et al. The effect of high-velocity oxy-fuel spraying parameters on microstructure, corrosion and wear resistance of Fe-based metallic glass coatings. J Non Cryst Solids. 2014;406:37–44. doi:10.1016/j.jnoncrysol.2014.09.041
  • Cui S, Zhai H, Li W, et al. Microstructure and corrosion resistance of Fe-based amorphous coating prepared by detonation spray. Surf Coatings Technol. 2020;399:126096. doi:10.1016/j.surfcoat.2020.126096
  • Qin Y, Wu Y, Zhang J, et al. Optimization of the HOVF spray parameters by Taguchi method for high corrosion-resistant Fe-based coatings. J Mater Eng Perform. 2015;24:2637–2644. doi:10.1007/s11665-015-1536-8
  • Qiao L, Wu Y, Hong S, et al. Influence of the high-velocity oxygen-fuel spray parameters on the porosity and corrosion resistance of iron-based amorphous coatings. Surf Coatings Technol. 2019;366:296–302. doi:10.1016/j.surfcoat.2019.03.046
  • Wu NC, Chen K, Sun WH, et al. Correlation between particle size and porosity of Fe-based amorphous coating. Surf Eng. 2019;35:37–45. doi:10.1080/02670844.2018.1447782
  • Vignesh S, Shanmugam K, Balasubramanian V, et al. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings. Def Technol. 2017;13:101–110. doi:10.1016/j.dt.2017.03.001
  • Kairet T, Degrez M, Campana F, et al. Influence of the powder size distribution on the microstructure of cold-sprayed copper coatings studied by x-ray diffraction. J Therm Spray Technol. 2007;16:610–618. doi:10.1007/s11666-007-9116-6
  • Zhang C, Guo RQ, Yang Y, et al. Influence of the size of spraying powders on the microstructure and corrosion resistance of Fe-based amorphous coating. Electrochim Acta. 2011;56:6380–6388. doi:10.1016/j.electacta.2011.05.020
  • Qiao L, Wu Y, Hong S, et al. Corrosion behavior of HVOF-sprayed Fe-based alloy coating in various solutions. J Mater Eng Perform. 2017;26:3813–3820. doi:10.1007/s11665-017-2590-1
  • Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. Houston (TX): National Association of Corrosion Engineers; 1974.
  • Petre Flaviu Gostin von, Bukarest in, Schultz L, Eckert J. Corrosion behaviour of advanced Fe-based bulk metallic glasses n.d.
  • Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment. Ocean Eng. 2014;87:10–15. doi:10.1016/j.oceaneng.2014.05.003
  • Zhang C, Zhang ZW, Chen Q, et al. Effect of hydrostatic pressure on the corrosion behavior of HVOF-sprayed Fe-based amorphous coating. J Alloys Compd. 2018;758:108–115. doi:10.1016/j.jallcom.2018.05.100
  • Habib K. Stress corrosion cracking of Fe–Co–B–Si metallic glasses in HCl solutions. Scr Metall Mater. 1994;31:1669–1672.
  • Wang Y, Li MY, Sun LL, et al. Environmentally assisted fracture behavior of Fe-based amorphous coatings in chloride-containing solutions. J Alloys Compd. 2018;738:37–48. doi:10.1016/j.jallcom.2017.12.150
  • Tang X, Xu LY, Cheng YF. Electrochemical corrosion behavior of X-65 steel in the simulated oil-sand slurry. II: synergism of erosion and corrosion. Corros Sci. 2008;50:1469–1474. doi:10.1016/j.corsci.2008.01.019
  • Wang Y, Zheng YG, Ke W, et al. Slurry erosion-corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings for marine pump in sand-containing NaCl solutions. Corros Sci. 2011;53:3177–3185. doi:10.1016/j.corsci.2011.05.062
  • Zheng ZB, Zheng YG, Sun WH, et al. Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution. Corros Sci. 2013;76:337–347. doi:10.1016/j.corsci.2013.07.006
  • Zheng ZB, Zheng YG, Zhou X, et al. Determination of the critical flow velocities for erosion-corrosion of passive materials under impingement by NaCl solution containing sand. Corros Sci. 2014;88:187–196. doi:10.1016/j.corsci.2014.07.043
  • Zheng ZB, Zheng YG, Sun WH, et al. Effect of applied potential on passivation and erosion-corrosion of a Fe-based amorphous metallic coating under slurry impingement. Corros Sci. 2014;82:115–124. doi:10.1016/j.corsci.2014.01.004
  • Burstein GT, Sasaki K. The birth of corrosion pits as stimulated by slurry erosion. Corros Sci. 2000;42:841–860. doi:10.1016/S0010-938X(99)00100-6
  • Sasaki K, Burstein GT. Erosion-corrosion of stainless steel under impingement by a fluid jet. Corros Sci. 2007;49:92–102. doi:10.1016/j.corsci.2006.05.012
  • Wang Y, Jiang SL, Zheng YG, et al. Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions. Corros Sci. 2012;63:159–173. doi:10.1016/j.corsci.2012.05.025
  • Wang Y, Li MY, Zhu F, et al. Pitting corrosion mechanism of Cl−- and S2−-induced by oxide inclusions in Fe-based amorphous metallic coatings. Surf Coatings Technol. 2020;385; doi:10.1016/j.surfcoat.2020.125449
  • Wang SL, Li HX, Jeong YU, et al. Effects of electrolyte pH on the electrochemical behavior of Fe-based bulk metallic glass. Met Mater Int. 2012;18:791–797. doi:10.1007/s12540-012-5007-6
  • Lu W, Wang D, Wang Q, et al. Sensitivity of corrosion behavior for fe-based amorphous coating to temperature and chloride concentration. Coatings. 2021;11:1–14. doi:10.3390/coatings11030331
  • Wang DB, Wu J, Wang Q, et al. Temperature-dependent corrosion behaviour of the amorphous steel in simulated wet storage environment of spent nuclear fuels. Corros Sci. 2021;188. doi:10.1016/j.corsci.2021.109529
  • Usman BJ, Scenini F, Curioni M. The effect of exposure conditions on performance evaluation of post-treated anodic oxides on an aerospace aluminium alloy: comparison between salt spray and immersion testing. Surf Coatings Technol. 2020;399:126157. doi:10.1016/J.SURFCOAT.2020.126157
  • Zhang B, Dong Q, Ba Z, et al. Electrochemical corrosion behavior of plasma-sprayed FeCrNiMoCBSi amorphous/nanocrystalline coatings in simulated seawater medium. J Mater Eng Perform. 2018;27:6227–6236. doi:10.1007/s11665-018-3661-7
  • Qin YJ, Wu YP, Zhang JF, et al. Long-term corrosion behavior of HVOF sprayed FeCrSiBMn amorphous/nanocrystalline coating. Trans Nonferrous Met Soc China (English Ed). 2015;25:1144–1150. doi:10.1016/S1003-6326(15)63709-8
  • Wang M, Zhou Z, Wang Q, et al. Long term semiconducting and passive film properties of a novel dense FeCrMoCBY amorphous coating by atmospheric plasma spraying. Appl Surf Sci. 2019;495:143600. doi:10.1016/j.apsusc.2019.143600
  • Bijalwan P, Singh C, Kumar A, et al. Corrosion behaviour of plasma sprayed Fe based metallic glass (Fe73Cr2Si11B11C3 (at%) coatings in 3.5% NaCl solution. J Non Cryst Solids. 2021;567:120913. doi:10.1016/j.jnoncrysol.2021.120913
  • Blink J, Farmer J, Choi J, et al. Applications in the nuclear industry for thermal spray amorphous metal and ceramic coatings. Metall Mater Trans A Phys Metall Mater Sci. 2009;40:1344–1354. doi:10.1007/s11661-009-9830-4
  • Kong W, Li K, Hu J. Immersion corrosion behavior, electrochemical performance and corrosion mechanism of subsonic flame sprayed FeCoCrMoSi amorphous coating in 3.5% NaCl solution. Int J Hydrogen Energy. 2022;47:6911–6923. doi:10.1016/J.IJHYDENE.2021.12.039
  • Fernández-Domene RM, Blasco-Tamarit E, García-García DM, et al. Passive and transpassive behaviour of alloy 31 in a heavy brine LiBr solution. Electrochim Acta. 2013;95:1–11. doi:10.1016/j.electacta.2013.02.024
  • McCafferty E. Thermodynamics of corrosion: Pourbaix diagrams. In: McCafferty E, editor. Introduction to corrosion science. New York, NY: Springer; 2010. p. 95–117.
  • Burstein GT, Sazou D. Passivity and localized corrosion. Ref Modul Mater Sci Mater Eng. 2016. doi:10.1016/B978-0-12-803581-8.01589-7
  • Heusler KE, Huerta D. Kinetics and mechanisms of the anodic dissolution of metallic glasses. J Electrochem Soc. 1989;136:65. doi:10.1149/1.2096615
  • Zhang LM, Zhang SD, Ma AL, et al. Thermally induced structure evolution on the corrosion behavior of Al–Ni–Y amorphous alloys. Corros Sci. 2018;144:172–183. doi:10.1016/J.CORSCI.2018.08.046
  • Olsson COA, Landolt D. Passive films on stainless steels – chemistry, structure and growth. Electrochim Acta. 2003;48:1093–1104. doi:10.1016/S0013-4686(02)00841-1
  • Duarte MJ, Klemm J, Klemm SO, et al. Element-resolved corrosion. Science (80-). 2013;372:372–377.
  • Klemm J, Klemm SO, Duarte MJ, et al. Multi-element-resolved electrochemical corrosion analysis. Part I. Dissolution behavior and passivity of amorphous Fe50Cr15Mo14C15B6. Corros Sci. 2014;89:59–68. doi:10.1016/j.corsci.2014.08.002
  • Chattoraj I, Baunack S, Stoica M, et al. Electrochemical response of Fe65.5Cr4Mo4Ga4P12 C5B5.5 bulk amorphous alloy in different aqueous media. Mater Corros. 2004;55:36–42. doi:10.1002/maco.200303693
  • MacDonald DD. The history of the point defect model for the passive state: a brief review of film growth aspects. Electrochim Acta. 2011;56:1761–1772. doi:10.1016/j.electacta.2010.11.005
  • Wang W, Alfantazi A. An electrochemical impedance spectroscopy and polarization study of the role of crystallographic orientation on electrochemical behavior of niobium. Electrochim Acta. 2014;131:79–88. doi:10.1016/j.electacta.2013.12.085
  • Poddar C, Ningshen S, Jayaraj J. Corrosion assessment of Ni60Nb30Ta10 metallic glass and its partially crystallized alloy in concentrated nitric acid environment. J Alloys Compd. 2020;813:152172. doi:10.1016/j.jallcom.2019.152172
  • Fattah-alhosseini A, Golozar MA, Saatchi A, et al. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels. Corros Sci. 2010;52:205–209. doi:10.1016/j.corsci.2009.09.003
  • Tang J, Yu L, Qiao J, et al. Effect of atomic mobility on the electrochemical properties of a Zr58Nb3Cu16Ni13Al10 bulk metallic glass. Electrochim Acta. 2018;267:222–233. doi:10.1016/j.electacta.2018.02.071
  • Taveira L V, Montemor MF, Da Cunha Belo M, et al. Influence of incorporated Mo and Nb on the Mott-Schottky behaviour of anodic films formed on AISI 304L. Corros Sci. 2010;52:2813–2818. doi:10.1016/j.corsci.2010.04.021
  • Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals. Nat Commun. 2018;9:1–9. doi:10.1038/s41467-018-04942-x
  • Steinberger R, Duchoslav J, Arndt M, et al. X-ray photoelectron spectroscopy of the effects of Ar+ ion sputtering on the nature of some standard compounds of Zn, Cr, and Fe. Corros Sci. 2014;82:154–164. doi:10.1016/j.corsci.2014.01.018
  • Kerner Z, Pajkossy T. On the origin of capacitance dispersion of rough electrodes. Electrochim Acta. 2000;46:207–211. doi:10.1016/S0013-4686(00)00574-0
  • Wang M, Zhou Z, Wang Q, et al. Role of passive film in dominating the electrochemical corrosion behavior of FeCrMoCBY amorphous coating. J Alloys Compd. 2019;811:151962. doi:10.1016/j.jallcom.2019.151962
  • Huang J, Wu X, Han EH. Electrochemical properties and growth mechanism of passive films on alloy 690 in high-temperature alkaline environments. Corros Sci. 2010;52:3444–3452. doi:10.1016/j.corsci.2010.06.016
  • Guo SF, Pan FS, Zhang HJ, et al. Fe-based amorphous coating for corrosion protection of magnesium alloy. Mater Des. 2016;108:624–631. doi:10.1016/j.matdes.2016.07.031
  • Shan X, Ha H, Payer JH. Comparison of crevice corrosion of Fe-based amorphous metal and crystalline Ni-Cr-Mo alloy. Metall Mater Trans A Phys Metall Mater Sci. 2009;40:1324–1333. doi:10.1007/s11661-008-9697-9
  • Szewieczek D, Baron A. Electrochemical corrosion properties of amorphous Fe78Si 13B9 alloy. J Mater Process Technol. 2004;157–158:442–445. doi:10.1016/j.jmatprotec.2004.09.069
  • Wang M, Zhou Z, Wang Q, et al. Box–Behnken design to enhance the corrosion resistance of plasma sprayed Fe-based amorphous coating. Results Phys. 2019;15:102708. doi:10.1016/j.rinp.2019.102708
  • Burstein GT, Liu C, Souto RM, et al. Origins of pitting corrosion. Corros Eng Sci Technol. 2004;39:25–30. doi:10.1179/147842204225016859
  • Wang ZM, Zhang J, Wang JQ. Pit growth in a Ni–Nb metallic glass compared with its crystalline counterpart. Intermetallics. 2010;18:2077–2082. doi:10.1016/j.intermet.2010.06.010
  • Bakare MS, Voisey KT, Chokethawai K, et al. Corrosion behaviour of crystalline and amorphous forms of the glass forming alloy Fe43Cr16Mo16C15B10. J Alloys Compd. 2012;527:210–218. doi:10.1016/j.jallcom.2012.02.127
  • Zhang C, Chan KC, Wu Y, et al. Pitting initiation in Fe-based amorphous coatings. Acta Mater. 2012;60:4152–4159. doi:10.1016/j.actamat.2012.04.005
  • Ryan MP, Williams DE, Chater RJ, et al. Why stainless steel corrodes. Nature. 2002;415:770–774. doi:10.1038/415770a
  • Sathirachinda N, Pettersson R, Pan J. Depletion effects at phase boundaries in 2205 duplex stainless steel characterized with SKPFM and TEM/EDS. Corros Sci. 2009;51:1850–1860. doi:10.1016/j.corsci.2009.05.012
  • Maachi B, Pirri C, Mehdaoui A, et al. Atomic force microscopy, scanning Kelvin probe force microscopy and magnetic measurements on thermally oxidized AISI 304 and AISI 316 stainless steels. Corros Sci. 2011;53:984–991. doi:10.1016/j.corsci.2010.11.031
  • Punckt C, Bölscher M, Rotermund HH, et al. Sudden onset of pitting corrosion on stainless steel as a critical phenomenon. Science (80-). 2004;305:1133–1136. doi:10.1126/science.1101358
  • Mikhailov AS, Scully JR, Hudson JL. Nonequilibrium collective phenomena in the onset of pitting corrosion. Surf Sci. 2009;603:1912–1921. doi:10.1016/j.susc.2008.08.045
  • Wu J, Zhang SD, Sun WH, et al. Enhanced corrosion resistance in Fe-based amorphous coatings through eliminating Cr-depleted zones. Corros Sci. 2018;136:161–173. doi:10.1016/j.corsci.2018.03.005
  • Wu J, Cui JP, Zheng QJ, et al. Insight into the corrosion evolution of Fe-based amorphous coatings under wet-dry cyclic conditions. Electrochim Acta. 2019;319:966–980. doi:10.1016/j.electacta.2019.07.058
  • Deshpande S, Sampath S, Zhang H. Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings – case study for Ni–Al. Surf Coatings Technol. 2006;200:5395–5406. doi:10.1016/j.surfcoat.2005.07.072
  • Choi H, Lee S, Kim B, et al. Effect of in-flight particle oxidation on the phase evolution of HVOF NiTiZrSiSn bulk amorphous coating. J Mater Sci. 2005;40:6121–6126. doi:10.1007/s10853-005-3169-z
  • Kim YB, Park HM. Electroless nickel–phosphorus plating on Ni–Zr–Ti–Si–Sn amorphous powder. Surf Coatings Technol. 2005;195:176–181. doi:10.1016/j.surfcoat.2004.07.106
  • Wang W, Zhang C, Xu P, et al. Enhancement of oxidation and wear resistance of Fe-based amorphous coatings by surface modification of feedstock powders. Mater Des. 2015;73:35–41. doi:10.1016/j.matdes.2015.02.015
  • Jiang C, Lu J, Liu W, et al. Corrosion resistance of plasma-sprayed Fe-based coatings by using core-shell structure powders. J Mater Res Technol. 2020;9:12273–12280. doi:10.1016/j.jmrt.2020.08.081
  • Sadeghimeresht E, Markocsan N, Nylén P. Microstructural characteristics and corrosion behavior of HVAF- and HVOF-sprayed Fe-based coatings. Surf Coatings Technol. 2017;318:365–373. doi:10.1016/j.surfcoat.2016.11.088
  • Zhang X, Wang Z, Lin J, et al. A study on high temperature oxidation behavior of high-velocity arc sprayed Fe-based coatings. Surf Coatings Technol. 2015;283:255–261. doi:10.1016/j.surfcoat.2015.10.067
  • Cui C, Ye F, Song G. Laser surface remelting of Fe-based alloy coatings deposited by HVOF. Surf Coatings Technol. 2012;206:2388–2395. doi:10.1016/j.surfcoat.2011.10.038
  • Zhang Y, Gao X, Liang X, et al. Effect of laser remelting on the microstructure and corrosion property of the arc-sprayed AlFeNbNi coatings. Surf Coatings Technol. 2020;398:126099. doi:10.1016/j.surfcoat.2020.126099
  • Jiang C, Wang J, Han J, et al. Effect of laser remelting on the microstructure and corrosion resistance of plasma sprayed Fe-based coating. J Wuhan Univ Technol Mater Sci Ed. 2015;30:804–807. doi:10.1007/s11595-015-1231-5
  • Zhang XL, Jiang CP, Zhang FY, et al. The evaluation of microstructure characteristic and corrosion performance of laser-re-melted fe-based amorphous coating deposited via plasma spraying. Mater Express. 2019;9:1100–1105. doi:10.1166/mex.2019.1598
  • Han C, Ma L, Sui X, et al. Influence of low energy density laser Re-melting on the properties of cold sprayed FeCoCrMoBCY amorphous alloy coatings. Coatings. 2021;11:695. doi:10.3390/coatings11060695
  • Knuuttila J, Sorsa P, Mäntylä T. Sealing of thermal spray coatings by impregnation. J Therm Spray Technol. 1999;8:249–257. doi:10.1007/s11666-999-0002-2
  • Wang Y, Jiang SL, Zheng YG, et al. Effect of porosity sealing treatments on the corrosion resistance of high-velocity oxy-fuel (HVOF)-sprayed Fe-based amorphous metallic coatings. Surf Coatings Technol. 2011;206:1307–1318. doi:10.1016/j.surfcoat.2011.08.045
  • Liu MM, Hu HX, Zheng YG. Effects of three sealing methods of aluminum phosphate sealant on corrosion resistance of the Fe-based amorphous coating. Surf Coatings Technol. 2017;309:579–589. doi:10.1016/j.surfcoat.2016.12.033
  • Liu MM, Hu HX, Zheng YG, et al. Effect of sol-gel sealing treatment loaded with different cerium salts on the corrosion resistance of Fe-based amorphous coating. Surf Coatings Technol. 2019;367:311–326. doi:10.1016/j.surfcoat.2019.04.011
  • Jiao J, Luo Q, Wei X, et al. Influence of sealing treatment on the corrosion resistance of Fe-based amorphous coatings in HCl solution. J Alloys Compd. 2017;714:356–362. doi:10.1016/j.jallcom.2017.04.179
  • Li LF, Celis JP. Pickling of austenitic stainless steels (a review). Can Metall Q. 2003;42:365–376. doi:10.1179/cmq.2003.42.3.365
  • Lu G, Ada ET, Zangari G. Investigations of the effect of chromate conversion coatings on the corrosion resistance of Ni-based alloys. Electrochim Acta. 2004;49:1461–1473. doi:10.1016/j.electacta.2003.10.032
  • Li C, Wang H, Ding J, et al. Effects of heat treatment on HVOF-sprayed Fe-based amorphous coatings. Surf Eng. 2021;37:590–598. doi:10.1080/02670844.2020.1759936.
  • Zhang C, Wu Y, Liu L. Robust hydrophobic Fe-based amorphous coating by thermal spraying. Appl Phys Lett. 2012;101:1–5. doi:10.1063/1.4754140
  • Wang Y, Wu CM, Li W, et al. Effect of bionic hydrophobic structures on the corrosion performance of Fe-based amorphous metallic coatings. Surf Coatings Technol. 2021;416. doi:10.1016/j.surfcoat.2021.127176
  • Zhang C, Zhou H, Liu L. Laminar Fe-based amorphous composite coatings with enhanced bonding strength and impact resistance. Acta Mater. 2014;72:239–251. doi:10.1016/j.actamat.2014.03.047
  • Peng Y, Zhang C, Zhou H, et al. On the bonding strength in thermally sprayed Fe-based amorphous coatings. Surf Coat Technol. 2013;218:17–22. doi:10.1016/j.surfcoat.2012.12.018
  • Terajima T, Takeuchi F, Nakata K, et al. Composite coating containing WC/12Co cermet and Fe-based metallic glass deposited by high-velocity oxygen fuel spraying. J Alloys Compd. 2010;504:S288–S291. doi:10.1016/j.jallcom.2010.03.209
  • Zhou H, Zhang C, Wang W, et al. Microstructure and mechanical properties of Fe-based amorphous composite coatings reinforced by stainless steel powders. J Mater Sci Technol. 2015;31:43–47. doi:10.1016/j.jmst.2014.09.008
  • Yasir M, Zhang C, Wang W, et al. Enhancement of impact resistance of Fe-based amorphous coating by Al2O3 dispersion. Mater Lett. 2016;171:112–116. doi:10.1016/j.matlet.2016.02.060
  • Wang W, Zhang C, Zhang ZW, et al. Toughening Fe-based amorphous coatings by reinforcement of amorphous carbon. Sci Rep. 2017;7:4084. doi:10.1038/s41598-017-04504-z
  • Guo SF, Liu L, Li N, et al. Fe-based bulk metallic glass matrix composite with large plasticity. Scr Mater. 2010;62:329–332. doi:10.1016/j.scriptamat.2009.10.024
  • Cheng JB, Liang XB, Chen YX, et al. High-temperature erosion resistance of FeBSiNb amorphous coatings deposited by arc spraying for boiler applications. J Therm Spray Technol. 2013;22:820–827. doi:10.1007/s11666-012-9876-5
  • Chu Z, Wei F, Zheng X, et al. Microstructure and properties of TiN/Fe-based amorphous composite coatings fabricated by reactive plasma spraying. J Alloys Compd. 2019;785:206–213. doi:10.1016/j.jallcom.2019.01.171
  • Yasir M, Zhang C, Wang W, et al. Wear behaviors of Fe-based amorphous composite coatings reinforced by Al2O3 particles in air and in NaCl solution. Mater Des. 2015;88:207–213. doi:10.1016/j.matdes.2015.08.142
  • Yasir M, Zhang C, Wang W, et al. Tribocorrosion behavior of Fe-based amorphous composite coating reinforced by Al2O3 in 3.5% NaCl solution. J Therm Spray Technol. 2016;25:1554–1560. doi:10.1007/s11666-016-0457-x
  • Xu L, Song J, Zhang X, et al. Microstructure and corrosion resistance of WC-based cermet/Fe-based amorphous alloy composite coatings. Coatings. 2018;8. doi:10.3390/COATINGS8110393
  • Cui C, Hou W. Properties of Fe-based amorphous alloy coatings with Al2O3-13% TiO2 deposited by plasma spraying. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met Mater Eng. 2014;43:2576–2579. doi:10.1016/s1875-5372(15)60004-2
  • Xu P, Zhang C, Wang W, et al. Pitting mechanism in a stainless steel-reinforced Fe-based amorphous coating. Electrochim Acta. 2016;206:61–69. doi:10.1016/j.electacta.2016.04.130
  • Wang SL, Li HX, Hwang SY, et al. Corrosion behaviors of coatings fabricated using bulk metallic glass powders with the composition of Fe68.5C7.1Si3.3B5.5P8.7Cr2.3Mo2.5Al2.0. Met Mater Int. 2012;18:607–612. doi:10.1007/s12540-012-4006-y
  • Iqbal A, Siddique S, Maqsood M, et al. Comparative analysis on the structure and properties of iron-based amorphous coating sprayed with the thermal spraying techniques. Coatings. 2020;10:1–12. doi:10.3390/coatings10101006
  • Cheng J, Zhang Q, Feng Y, et al. Microstructure and sliding wear behaviors of plasma-sprayed Fe-based amorphous coatings in 3.5 wt.% NaCl solution. J Therm Spray Technol. 2019;28:1049–1059. doi:10.1007/s11666-019-00866-0
  • Lin JR, Wang ZH, Lin PH, et al. Effect of crystallisation on electrochemical properties of arc sprayed FeNiCrBSiNbW coatings. Surf Eng. 2014;30:683–687. doi:10.1179/1743294414Y.0000000299
  • Liu S, Zhu Y, Lai X, et al. Influence of different heat treatment temperatures on the microstructure, corrosion, and mechanical properties behavior of Fe-based amorphous/nanocrystalline coatings. Coatings. 2019;9. doi:10.3390/coatings9120858
  • Zhou Z, Wang L, He DY, et al. Microstructure and electrochemical behavior of Fe-based amorphous metallic coatings fabricated by atmospheric plasma spraying. J Therm Spray Technol. 2011;20:344–350. doi:10.1007/s11666-010-9570-4
  • Rai PK, Naidu D, Satapathy B, et al. Amorphous/nanocrystalline composite coatings using blast furnace pig iron composition by atmospheric plasma spray and their electrochemical response. J Therm Spray Technol. 2020;29:843–856. doi:10.1007/s11666-020-00995-x
  • Zhang H, Gong Y, Zhang B, et al. Corrosion and algal adhesion behaviors of HVOF-sprayed Fe-based amorphous coatings for marine applications. J Therm Spray Technol. 2019;28:283–290. doi:10.1007/s11666-018-0774-3
  • Koga GY, Jorge Junior AM, Roche V, et al. Production and corrosion resistance of thermally sprayed Fe-based amorphous coatings from mechanically milled feedstock powders. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:4860–4870. doi:10.1007/s11661-018-4785-y
  • Liu WH, Shieu FS, Hsiao WT. Enhancement of wear and corrosion resistance of iron-based hard coatings deposited by high-velocity oxygen fuel (HVOF) thermal spraying. Surf Coatings Technol. 2014;249:24–41. doi:10.1016/j.surfcoat.2014.03.041
  • Lin J, Wang Z, Lin P, et al. Microstructure and corrosion resistance of Fe-based coatings prepared by twin wires arc spraying process. J Therm Spray Technol. 2014;23:333–339. doi:10.1007/s11666-013-0017-6
  • Zhang J, Deng C, Song J, et al. Electrochemical corrosive behaviors of Fe-based amorphous/nanocrystalline coating on stainless steel prepared by HVOF-sprayed. Coatings. 2019;9:1–15. doi:10.3390/coatings9040254
  • Sarkar K, Rai PK, Kumar Katiyar P, et al. Composite (glass + crystalline) coatings from blast furnace pig iron by high velocity oxy-fuel (HVOF) process and their electrochemical behavior. Surf Coatings Technol. 2019;372:72–83. doi:10.1016/j.surfcoat.2019.05.025
  • Mahata N, Banerjee A, Bijalwan P, et al. Electrochemical behavior of HVOF-sprayed amorphous and nanocrystalline Fe-based Fe73.13Si11.12B10.79Cr2.24C2.72 composite coatings. J Mater Eng Perform. 2017;26:5538–5552. doi:10.1007/s11665-017-2997-8
  • Bijalwan P, Kumar A, Nayak SK, et al. Microstructure and corrosion behavior of Fe-based amorphous composite coatings developed by atmospheric plasma spraying. J Alloys Compd. 2019;796:47–54. doi:10.1016/j.jallcom.2019.05.046
  • Nayak SK, Kumar A, Sarkar K, et al. Corrosion behavior of Fe-based amorphous / nanocrystalline composite coating : correlating the influence of porosity and amorphicity n.d.:2.
  • Kumar A, Nayak SK, Pathak A, et al. Investigation of nanomechanical deformation behavior in plasma sprayed Fe-based amorphous/ nanocrystalline composite coating via multi-scale indentation and nanotribology. J Non Cryst Solids. 2020;545:120244. doi:10.1016/j.jnoncrysol.2020.120244
  • Kumar A, Nayak SK, Laha T. Comparative study on wear and corrosion behavior of plasma sprayed Fe73Cr2Si11B11C3 and Fe63Cr9P5B16C7 metallic glass composite coatings. J Therm Spray Technol. 2022:1–15. doi:10.1007/S11666-021-01280-1/FIGURES/12
  • Nayak SK, Kumar A, Sarkar K, et al. Mechanistic insight into the role of amorphicity and porosity on determining the corrosion mitigation behavior of Fe-based amorphous/nanocrystalline coating. J Alloys Compd. 2020;849:156624. doi:10.1016/j.jallcom.2020.156624
  • Kumar A, Nayak SK, Banerjee A, et al. Multi-scale indentation creep behavior in Fe-based amorphous/nanocrystalline coating at room temperature. Mater Lett. 2021;283:128768. doi:10.1016/j.matlet.2020.128768
  • Kumar A, Nayak SK, Bijalwan P, et al. Optimization of mechanical and corrosion properties of plasma sprayed low-chromium containing Fe-based amorphous/nanocrystalline composite coating. Surf Coatings Technol. 2019;370:255–268. doi:10.1016/j.surfcoat.2019.05.010
  • Nayak SK, Kumar A, Laha T. Developing an economical wear and corrosion resistant Fe-based metallic glass composite coating by plasma and HVOF spraying. J Therm Spray Technol. 2021. doi:10.1007/s11666-021-01277-w
  • Nayak SK, Kumar A, Pathak A, et al. Multi-scale mechanical properties of Fe-based amorphous/nanocrystalline composite coating synthesized by HVOF spraying. J Alloys Compd. 2020;825:154120. doi:10.1016/j.jallcom.2020.154120
  • Kumar A, Nayak SK, Bijalwan P, et al. Mechanical and corrosion properties of plasma-sprayed Fe-based amorphous/nanocrystalline composite coating. Adv Mater Process Technol. 2019;5:371–377. doi:10.1080/2374068X.2019.1598129
  • Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Mater. 2011;59:2243–2267. doi:10.1016/j.actamat.2010.11.027
  • 2006 HK-T 2 nd. ATSC, 2006 undefined. Microstructure and wear behavior of Fe-based metallic glass sprayed coatings by HVOF on aluminum alloy. CiNiiAcJp, n.d.
  • Shmyreva T. Proceeding JK-MDM. 2004. Undefined. Nano-amorphous coatings for medical instruments. BooksGoogleCom n.d.
  • Li HF, Zheng YF. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 2016;36:1–20. doi:10.1016/j.actbio.2016.03.047
  • Li S, Wei Q, Li Q, et al. Development of Fe-based bulk metallic glasses as potential biomaterials. Mater Sci Eng C. 2015;52:235–241. doi:10.1016/j.msec.2015.03.041
  • Wang YB, Li HF, Zheng YF, et al. Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses. Mater Sci Eng C. 2012;32:599–606. doi:10.1016/j.msec.2011.12.018
  • Zhang LM, Yan MC, Zhang SD, et al. Significantly enhanced resistance to SRB corrosion via Fe-based amorphous coating designed with high dose corrosion-resistant and antibacterial elements. Corros Sci. 2020;164:108305. doi:10.1016/J.CORSCI.2019.108305
  • Available from: http://www.liquidmetal-kedun.com
  • Dong C, Ji Y, Wei X, et al. Integrated computation of corrosion: modelling, simulation and applications. Corros Commun. 2021. doi:10.1016/J.CORCOM.2021.07.001s

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.