273
Views
13
CrossRef citations to date
0
Altmetric
Articles

The chemistry of TIG weld bead formation

References

  • Metcalfe JC, Quigley MBC. Arc and pool instability in GTA welding. Weld J. 1977;56(5):133s–139s.
  • Heiple CR, Roper JR. Mechanism for minor element effect on GTA fusion zone geometry. Weld J. 1982;61(4):97s–102s.
  • Heiple CR, Roper JR, Stagner RT, Aden RJ. Surface active elements effects on the shape of GTA, laser, and electron bean welds. Weld J. 1983;62(3):72s–77s.
  • Savage WF, Nippes EF, Goodwin GM. Effect of minor elements on fusion zone dimensions of Inconel 600. Weld J. 1977 :126s–132s.
  • Bennett WS, Mills GS. GTA weldability studies on high manganese stainless steel. Weld J. 1974 :548s–553s.
  • Ludwig HC. Current density and anode spot size in the gas tungsten arc. Weld J. 1968;47(5):234s–240s.
  • Spicer RA, Baeslack WA III, Kelly TJ. Elemental effects on GTA spot weld penetration in cast alloy 718. Weld J. 1990;69(8):285s–288s.
  • Shirali AA, Mills KC. The effect of welding parameters on penetration in GTA welds. Weld J. 1993;72(7):347s–353s.
  • Leinonen JI. Heat-to-heat variations ins gas–tungsten–-arc (GTA) weld penetration of austenitic stainless steels. J Mater Energy Syst. 1987;4(4):409–413.
  • Chase JR, T F, Savage WF. Effect of anode composition on tungsten arc characteristics. Weld J. 1971 :467s–473s.
  • Mishra S, Lienert TJ, Johnson MQ, Debroy T. An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations. Acta Mater. 2008;56:2133–2146.
  • Mills KC, Keene BJ, Brooks RF, Shirali A. Marangoni effects in welding. Phil Trans R Soc Lond A. 1998;356:911–925.
  • Pierce W, Burgardt P, Olson DL. Thermocapillary and arc phenomena in stainless steel welding. Weld J. 1999 :45s–52s.
  • Kou S, Limmaneevichitr C, Wei PS. Oscillatory Marangoni flow: a fundamental study by conduction-mode laser spot welding. Weld J. 2011 :229s–240s.
  • Pitscheneder W, Debroy T, Mundra K, Ebner R. Role of sulfur and processing variables on the temporal evolution of weld pool geometry during multikilowatt laser beam welding of steels. Weld J Res Suppl. 1996 :71s–80s.
  • Jarvis BL. Gas tungsten arc welding (Chapter 3). In: Ahmed N, editor. New developments in advanced welding. Woodhead; 2005. p. 308.
  • Howse DS, Lucas W. An investigation into arc constriction by active fluxes for TIG (A-TIG) welding. Sci Technol Weld Joining. 2000;5(3):189–193.
  • Majetich C, Yeo RBC. Methods of welding stainless steel. US Patent, 3,584,187. 1997. 3pp.
  • Modenesi PJ, Apolinário ER, Pereira IM. TIG welding with single-component fluxes. J Mater Process Technol. 2000;99(1):260–265.
  • Azevedo AGL, Ferraresi VA, Farias JP. Welding of a ferritic stainless steel with the A-TIG process. Soldagem Insp. 2009;14(1):2–9.
  • Wang L, Shen J, Xu N. Effects of TiO2 coating on the microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints. Mater Sci Eng A. 2011;528:7276–7284.
  • Kovalenko DV, Pavlyak DA, Sudnik VA, Kovalenko IV. Adequacy of thermohydrodynamic model of through penetration in TIG and A-TIG welding of nimonic-75 nickel alloy. Paton Weld J. 2010;10:2–6.
  • Lu S, Fujii H, Sugiyama H, Tanaka M, Nogi K. Weld penetration and Marangoni convection with oxide fluxes in GTA welding. Mater Trans. 2002;43(11):2926–2931.
  • Lu S, Fujii H, Sugiyama Hiroyuki, Tanaka M, Nogi K. Marangoni convection and welding penetration in A-TIG welding. Trans JWRI. 2003;32(1):79–82.
  • Lu S, Fujii H, Sugiyama H, Nogi K. Mechanism and optimization of oxide fluxes for deep penetration in gas tungsten arc welding. Metall Mater Trans A. 2003;34A:1901–1907.
  • Dong C, Zhu Y, Chai G, Zhang H, Katayama S. Preliminary study on the mechanism of arc welding with the activating flux. In Aeronautical manufacturing technology, supplement 2004. Paper presented at International Symposium, 2004 September 12–17. Kunming: High Energy Density Beam Processing Technology p. 271–278.
  • Shyu SW, Huang HY, Tseng KH, Chou CP. Study of the performance of stainless steel A-TIG welds. JMEPEG. 2008;17:193–201.
  • Tseng K-H, Hsu C-Y. Performance of activated TIG process in austenitic stainless steel welds. J Mater Process Technol. 2011;211:503–512.
  • Tseng K-H, Chen K-L. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes. J Nanosci Nanotechnol. 2012;12:6359–6367.
  • Leconte S, Paillard P, Saindrenan J. Effect of fluxes containing oxides on tungsten inert gas welding process. Sci Technol Weld Joining. 2006;11(1):43–47.
  • Leconte S, Paillard P, Chapelle P, Henrion G, Saindrenan J. Effects of flux containing fluorides on TIG welding process. Sci Technol Weld Joining. 2007;12(2):120–126.
  • Sire S, Rückert G, Marya S. Élioration des performances du soudage TIG des alliages d'aluminium: Le procédé FBTIG. Soudage et Tech Connexes. 2002;56(11/12):11–13.
  • Liu LM, Zhang ZD, Song G, Wang L. Mechanism and microstructure of oxide fluxes for gas tungsten arc welding of magnesium alloy. Metall Mater Trans A. 2007;38A:649–658.
  • Zhang Z, Liu L, Sun H, Wang L. AC TIG welding with single-component oxide activating flux for AZ31B magnesium alloys. J Mater Sci. 2008;43:1382–1388.
  • Marya M, Edwards GR. Chloride contributions in flux-assisted GTA welding of magnesium alloys. Weld J. 2002 :291s–298s.
  • Oliveira WC. Study of the effect of fluxes in ATIG welding of aluminium [thesis]. Gerais: Federal University of Minas; 2007.
  • Perry N. Etude et développement des flux solides en vue d'application en soudage ATIG appliqué au titane et ses alliages ainsi qu'aux aciers inoxydables. Tese: Ecole Centrale de Nantes; 2000.
  • Modenesi PJ, Colen Neto P, Apolinário ER, Dias KB. Effect of Flux Density and the presence of additives in ATIG welding of austenitic stainless steel. Soldag Insp São Paulo. 2013;18(2):118–126.
  • Berthier A, Paillard P, Carin M, Valensi F, Pellerin S. TIG and A-TIG welding experimental investigations and comparison to simulation. Part 1: identification of Marangoni effect. Sci Technol Weld Joining. 2012;17(8):609–615.
  • Middel W, Den Ouden G. The effect of additives on arc characteristics in GTA welding. In Proceedings of the 8th international conference in welding research; 1998 Jun 1–5. ASM International. p. 394–399.
  • Eroshenko LE, Prilutskii VP, Zamkov VN. Examination of the glow of anode vapours in the arc in TIG welding titanium in argon through a flux layer. Paton Weld J. 1997;9(11):11–13.
  • Perry N, Marya S. New perspectives of flux assisted GTA welding in titanium structures. Obtido em [cited 2009 Jan]; 1999. p. 55–62. Available from www.wahchanglabs.com/pdf/1999/1999009.pdf; 1999. p. 55–62.
  • Zhang R-H, Pan J-L, Katayama S. The mechanism of penetration increase in A-TIG welding. Front Mater Sci. 2011;5(2):109–118.
  • Tanaka M, Shimizu T, Terasaki H, Koshi-ishi F, Yang C-L. Effects of activating flux on arc phenomena in gas tungsten arc welding. Sci Technol Weld Joining. 2000;5(6):397–402.
  • Tseng K-H. Development and application of oxide-based flux powder for tungsten inert gas welding of austenitic stainless steels. Powder Technol. 2013;233:72–79.
  • Zhao Y, Shi Y, Lei Y. The study of surface-active element oxygen on flow patterns and penetration in A-TIG welding. Metall Mater Trans B. 2006;37B:485–493.
  • Sándor T. Comparison of penetration profiles of different TIG process variations. In: Stainless steel world conference; 2009 Nov 12; Artigo P9047; 2009. 16pp..
  • Huang HY, Shyu SW, Tseng KH, Chou CP. Evaluation of TIG flux welding on the characteristics of stainless steel. Sci Technol Weld Joining. 2005;10(5):566–573.
  • Sándor T, Mekler C, Dobránszky J, Kaptay G. An improved theoretical model for A-TIG welding based on surface phase transition and reversed Marangoni flow. Metall Mater Trans A. 2013;44A:351–361.
  • Kumar V, Lucas B, Howse D, Melton G, Raghunathan S, Vilarinho L. Investigation of the A-TIG mechanism and the productivity benefits in TIG welding. In: 15th International conference on the joining of materials (JOM 15) and 6th International Conference on Education in Welding (ICEW 6); 2009 May 3–6; Helsingor, Denmark. 11pp. .
  • Li Q, Wang X, Zou Z, Wu J. Effect of activating flux on arc shape and arc voltage in tungsten inert gas welding. Trans Nonferrous Met Soc China. 2007;17:486–490.
  • Simonink AG. The effect of contraction of the arc discharge upon the introduction of electronegative elements. Weld Prod. 1976;3:49–51.
  • Skvortsov EA. Role of electronegative elements in contraction of the arc discharge. Weld Int. 1998;12(6):471–475.
  • Lowke JJ, Tanaka M, Ushio M. Mechanisms giving increased weld depth due to a flux. J Phys D Appl Phys. 2005;38:3438–3445.
  • Liu L, Zhang Z, Song G, Shen Y. Effect of cadmium chloride flux in active flux TIG welding of magnesium alloys. Mater Trans. 2006;47(2):446–449.
  • Rückert G, Huneau B, Marya S. Optimizing the design of silica coating for productivity gains during the TIG welding of 304L stainless steel. Mater Des. 2007;28:2387–2393.
  • Sire S, Marya S. Productivity gains by flux bounded TIG welding of aluminum. Mater Sci Forum. 2003;4033:426–432.
  • Lu S, Fujii H, Nogi K. Marangoni convection and weld shape variations in Ar–O2 and Ar–CO2 shielded GTA welding. Mater Sci Eng A. 2004;380:290–297.
  • Lu S, Fujii H, Nogi K. Marangoni convection in weld pool in CO2-Ar–shielded gas thermal arc welding. Metall Mater Trans A. 2004;35A:2861–2867.
  • Lu S, Fujii H, Nogi K. Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2–Ar shielded GTA welding. Scr Mater. 2004;51:271–277.
  • Lu S, Fujii H, Nogi K. Marangoni convection and gas tungsten arc weld shape variations on pure iron plates. ISIJ Int. 2006;46(2):276–280.
  • Lu S, Fujii H, Nogi K, Sato T. Effect of oxygen content in He–O2 shielding gas on weld shape in ultra deep penetration TIG. Sci Technol Weld Joining. 2007;12(8):689–695.
  • Lu S, Li D, Fujii H, Nogi K. Time dependent weld shape in Ar–O2 shielded stationary GTA welding. J Mater Sci Technol. 2007;23(5):650–654.
  • Fujii H, Lu S, Sato T, Nogi K. Effect of oxygen content in He–O2 shielding gas on weld shape for ultra deep penetration TIG. Trans JWRI. 2008;37(1):19–26.
  • Lu S, Fujii H, Nogi K. Marangoni convection and weld shape variations in He–CO2 shielded gas tungsten arc welding on SUS304 stainless steel. J Mater Sci. 2008;43:4583–4591.
  • Lu S, Fujii H, Nogi K. Weld shape variation and electrode protection under Ar–(Ar–O2) double shielded GTA welding. Sci Technol Weld Joining. 2009;14(8):726–733.
  • Lu S, Fujii H, Nogi K. Arc ignitability, bead protection and weld shape variations for He–Ar–O2 shielded GTA welding on SUS304 stainless steel. J Mater Process Technol. 2009;209:1231–1239.
  • Li DJ, Lu SP, Li DZ, Li YY. Mechanisms increasing welding efficiency during new development of double shielded TIG process. Sci Technol Weld Joining. 2010;15(1):528–533.
  • Lu S, Fujii H, Nogi K. Weld shape variation and electrode oxidation behavior under Ar–(Ar–CO2) double shielded GTA welding. J Mater Sci Technol. 2010;26(2):170–176.
  • Li D, Lu S, Li D, Li Y. Weld pool shape variations and electrode protection in double shielded TIG welding. Adv Mater Res. 2010;97–101:3978–3981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.