165
Views
1
CrossRef citations to date
0
Altmetric
Review

Linear friction welded titanium alloy joints: a brief review of microstructure evolution and mechanical properties

ORCID Icon
Pages 647-654 | Accepted 24 Oct 2022, Published online: 30 Nov 2022

References

  • Li W, Vairis A, Preuss M, et al. Linear and rotary friction welding review. Int Mater Rev. 2016;61(2):71–100.
  • Vairis A, Frost M. High frequency linear friction welding of a titanium alloy. Wear. 1998;217(1):117–131.
  • Vairis A, Frost M. On the extrusion stage of linear friction welding of Ti 6Al 4V. Mater Sci Eng A Struc Mater Properties Microstruc Process. 1999;271(1-2):477–484.
  • Vairis A, Frost M. Modelling the linear friction welding of titanium blocks. Mater Sci Eng A Struc Mater Properties Microstruc Process. 2000;292(1):8–17.
  • Trickey P, Forsdike S, Daum P. inventores; assignee. Method of replacing damaged aerofoil. United States patent US20160076376A1. 2015.
  • Mucic K, Enzinger N, Fuchs F. Linear friction welding of high strength chains. In: DebRoy T, editor. ASM proceedings of the international conference: trends in welding research. Chicago, USA: ASM International; 2012. p. 752–756.
  • Wanjara P, Jahazi M. Linear friction welding of Ti-6Al-4V: processing, microstructure, and mechanical-property inter-relationships. Metall and Mat Trans A. 2005;36(8):2149–2164.
  • Li W, Ma T, Yang S. Microstructure evolution and mechanical properties of linear friction welded Ti‐5Al‐2Sn‐2Zr‐4Mo‐4Cr (Ti17) titanium alloy joints. Adv. Eng. Mater. 2010;12(1-2):35–43.
  • Dalgaard E, Wanjara P, Gholipour J, et al. Linear friction welding of a near-β titanium alloy. Acta Mater. 2012;60(2):770–780.
  • Mary C, Jahazi M. Multi-Scale analysis of in-718 microstructure evolution during linear friction welding. Adv. Eng. Mater. 2008;10(6):573–578.
  • Chamanfar A, Jahazi M, Gholipour J, et al. Analysis of integrity and microstructure of linear friction welded waspaloy. Mater Charact. 2015;104:149–161.
  • Ma T, Yan M, Yang X, et al. Microstructure evolution in a single crystal nickel-based superalloy joint by linear friction welding. Materials & Design. 2015;85:613–617.
  • Ma T, Li W-Y, Xu Q, et al. Microstructure evolution and mechanical properties of linear friction welded 45 steel joint. Adv. Eng. Mater. 2007;9(8):703–707.
  • Bhamji I, Preuss M, Threadgill PL, et al. Linear friction welding of AISI 316L stainless steel. Mater Sci Eng A Struc Mater Properties Microstruc Process. 2010;528(2):680–690.
  • Li Y, Liu Y, Liu C, et al. Microstructure evolution and mechanical properties of linear friction welded S31042 heat-resistant steel. Journal of Materials Science & Technology. 2018;34(4):653–659.
  • Fratini L, Buffa G, Cammalleri M, et al. On the linear friction welding process of aluminum alloys: experimental insights through process monitoring. Cirp Annals-Manufacturing Technology. 2013;62(1):295–298.
  • Mogami H, Matsuda T, Sano T, et al. High-frequency linear friction welding of aluminum alloys. Materials & Design. 2018;139:457–466.
  • Bhamji I, Moat RJ, Preuss M, et al. Linear friction welding of aluminium to copper. Sci Technol Weld Joining. 2012;17(4):314–320.
  • Bhamji I, Preuss M, Moat RJ, et al. Linear friction welding of aluminium to magnesium. Sci Technol Weld Joining. 2012;17(5):368–374.
  • Matsuda T, Adachi H, Sano T, et al. High-frequency linear friction welding of aluminum alloys to stainless steel. J Mater Process Technol. 2019;269:45–51.
  • McAndrew AR, Colegrove PA, Bühr C, et al. A literature review of Ti-6Al-4V linear friction welding. Prog Mater Sci. 2018;92:225–257.
  • Grujicic M, Arakere G, Pandurangan B, et al. Process modeling of Ti-6Al-4V linear friction welding (LFW). J. of Materi Eng and Perform. 2012;21(10):2011–2023.
  • Karadge M, Preuss M, Lovell C, et al. Texture development in Ti–6Al–4V linear friction welds. Mater Sci Eng A Struc Mater Properties Microstruc Process. 2007;459(1-2):182–191.
  • Romero J, Attallah MM, Preuss M, et al. Effect of the forging pressure on the microstructure and residual stress development in Ti–6Al–4V linear friction welds. Acta Mater. 2009;57(18):5582–5592.
  • McAndrew A, Colegrove PA, Addison AC, et al. Modelling of the workpiece geometry effects on Ti–6Al–4V linear friction welds. Mater Design. 2015;87:1087–1099.
  • Scherillo F, Astarita A, Carrino L, et al. Linear friction welding of Ti-6Al-4V parts produced by electron beam melting. Mater Manuf Processes. 2019;34(2):201–207.
  • Ma T, Chen T, Li W-Y, et al. Formation mechanism of linear friction welded Ti-6Al-4V alloy joint based on microstructure observation. Mater Charact. 2011;62(1):130–135.
  • Li W, Wu H, Ma T, et al. Influence of parent metal microstructure and Post-Weld heat treatment on microstructure and mechanical properties of linear friction welded Ti-6Al-4V joint. Adv. Eng. Mater. 2012;14(5):312–318.
  • Guo Y, Attallah MM, Chiu Y, et al. Spatial variation of microtexture in linear friction welded Ti-6Al-4V. Mater Charact. 2017;127:342–347.
  • Stinville JC, Bridier F, Ponsen D, et al. High and low cycle fatigue behavior of linear friction welded Ti–6Al–4V. Int J Fatigue. 2015;70:278–288.
  • Li W-Y, Ma T, Zhang Y, et al. Microstructure characterization and mechanical properties of linear friction welded Ti‐6Al‐4V alloy. Adv. Eng. Mater. 2008;10(1-2):89–92.
  • Wen GD, Ma TJ, Li WY, et al. Cyclic deformation behavior of linear friction welded Ti6Al4V joints. Mater Sci Eng A Struc Mater Properties Microstruc Process. 2014;597:408–414.
  • Ahmed T, Rack HJ. Phase transformations during cooling in α + β titanium alloys. Mater Sci Eng A Struc Mater Properties Microstruc Process. 1998;243(1-2):206–211.
  • Lang B, Zhang TC, Li XH, et al. Microstructural evolution of a TC11 titanium alloy during linear friction welding. J Mater Sci. 2010;45(22):6218–6224.
  • Li W, Suo J, Ma T, et al. Abnormal microstructure in the weld zone of linear friction welded Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy joint and its influence on joint properties. Mater Sci Eng A Struc Mater Properties Microstruc Process. 2014;599:38–45.
  • Wang X, Li W, Ma T, et al. Microstructural evolution and mechanical properties of a linear friction welded two-phase Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy joint. Mater Sci Eng A Struc Mater Properties Microstruc Process. 2019;743:12–23.
  • Ballat-Durand D, Bouvier S, Risbet M. Contributions of an innovative post-weld heat treatment to the micro-tensile behavior of two Mono-material linear friction welded joints using: the β-metastable Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) and the near-α Ti–6Al–2Sn–4Zr–2Mo (Ti6242) Ti-alloys. Mater Sci Eng A Struc Mater Properties Microstruc Process. 2019;766:138334.
  • Ballat-Durand D, Bouvier S, Risbet M, et al. Through analysis of the microstructure changes during linear friction welding of the near-α titanium alloy Ti-6Al-2Sn-4Zr-2Mo (Ti6242) towards microstructure optimization. Mater Charact. 2019;151:38–52.
  • Su Y, Li W, Wang X, et al. On microstructure and property differences in a linear friction welded near-alpha titanium alloy joint. J Manuf Processes. 2018;36:255–263.
  • Guo Y, Jung T, Chiu YL, et al. Microstructure and microhardness of Ti6246 linear friction weld. Mater Sci Eng A Struc Mater Properties Microstruc Process. 2013;562:17–24.
  • Ji Y, Chai Z, Zhao D, et al. Linear friction welding of Ti–5Al–2Sn–2Zr–4Mo–4Cr alloy with dissimilar microstructure. J Mater Process Technol. 2014;214(4):979–987.
  • Ji Y, Wu S. Study on microstructure and mechanical behavior of dissimilar Ti17 friction welds. Mater Sci Eng A Struc Mater Properties Microstruc Process. 2014;596:32–40.
  • Ballat-Durand D, Bouvier S, Risbet M, et al. Multi-scale and multi-technic microstructure analysis of a linear friction weld of the metastable-β titanium alloy Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti17) towards a new Post-Weld heat treatment. Mater Charact. 2018;144:661–670.
  • Wang XY, Li WY, Ma TJ, et al. Characterisation studies of linear friction welded titanium joints. Materials & Design. 2017;116:115–126.
  • Zhilyaev AP, Kashaev RM, Khusnullin AM, et al. Microstructure and mechanical properties of linear friction welded titanium subjected to ECAP. Reviews on Advanced Materials Science. 2018;57(1):104–109.
  • Ma TJ, Zhong B, Li W-Y, et al. On microstructure and mechanical properties of linear friction welded dissimilar Ti–6Al–4V and Ti–6·5Al–3·5Mo–1·5Zr–0·3Si joint. Sci Technol Weld Joining. 2012;17(1):9–12.
  • Wen GD, Ma TJ, Li WY, et al. Strain-controlled fatigue properties of linear friction welded dissimilar joints between Ti–6Al–4V and Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloys. Mater Sci Eng A Struc Mater Properties Microstruc Process. 2014;612:80–88.
  • Zhang C, Zhang T, Ji Y, et al. Effects of heat treatment on microstructure and microhardness of linear friction welded dissimilar Ti alloys. Transactions Nonferrous Metals Society China. 2013;23(12):3540–3544.
  • Ji Y, Wu S, Zhao D. Microstructure and mechanical properties of friction welding joints with dissimilar titanium alloys. Metals. 2016;6(5):108.
  • Zhao P, Fu L. Strain hardening behavior of linear friction welded joints between TC11 and TC17 dissimilar titanium alloys. Mater Sci Eng A Struc Mater Properties Microstruc Process. 2015;621:149–156.
  • Zhao P, Fu L, Chen H. Low cycle fatigue properties of linear friction welded joint of TC11 and TC17 titanium alloys. J Alloys Compd. 2016;675(675):248–256.
  • Boyat X, Ballat-Durand D, Marteau J, et al. Interfacial characteristics and cohesion mechanisms of linear friction welded dissimilar titanium alloys: ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) and Ti–6Al–2Sn–4Zr–2Mo (Ti6242). Mater Charact. 2019;158:109942.
  • Wang X, Li W, Ma T, et al. Effect of welding parameters on the microstructure and mechanical properties of linear friction welded Ti-6.5Al-3.5Mo-1.5Zr-0.3Si joints. J Manuf Processes. 2019;46:100–108.
  • Gey N, Humbert M. Characterization of the variant selection occurring during the α→β→α phase transformations of a cold rolled titanium sheet. Acta Mater. 2002;50(2):277–287.
  • Ma TJ, Li W-Y, Yang SY. Impact toughness and fracture analysis of linear friction welded Ti–6Al–4V alloy joints. Materials & Design. 2009;30(6):2128–2132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.