275
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Deep learning for anomaly detection in wire-arc additive manufacturing

, , , &
Pages 457-467 | Received 28 May 2023, Accepted 22 Aug 2023, Published online: 01 Sep 2023

References

  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001
  • Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295. doi: 10.1016/j.mattod.2021.03.020
  • Felice IO, Shen J, Barragan AF, et al. Wire and arc additive manufacturing of Fe-based shape memory alloys: microstructure, mechanical and functional behavior. Mater Des. 2023;231:112004. doi: 10.1016/j.matdes.2023.112004
  • Rodrigues TA, Farias FW, Zhang K, et al. Wire and arc additive manufacturing of 316L stainless steel/inconel 625 functionally graded material: development and characterization. J Mater Res Technol. 2022;21:237–251. doi: 10.1016/j.jmrt.2022.08.169
  • Warsi R, Kazmi KH, Chandra M. Mechanical properties of wire and arc additive manufactured component deposited by a CNC controlled GMAW. Mater Today Proc. 2022;56:2818–2825. doi: 10.1016/j.matpr.2021.10.114
  • Azizul Izham ED, Alkahari MR, Hussein NI, et al. Online monitoring of wire arc additive manufacturing process: a review. Adv Mater Process Technol. 2023;18:1–16. doi: 10.1080/2374068X.2023.2190669
  • Kumar N, Bhavsar H, Mahesh PV, et al. Wire arc additive manufacturing – a revolutionary method in additive manufacturing. Mater Chem Phys. 2022;285:126144. doi: 10.1016/j.matchemphys.2022.126144
  • Wu B, Pan Z, Chen G, et al. Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling. Sci Technol Weld Join. 2019;24(5):484–494. doi: 10.1080/13621718.2019.1580439
  • Kapil S, Rajput AS, Sarma R. Hybridization in wire arc additive manufacturing. Front Mech Eng. 2022;8:981846. doi: 10.3389/fmech.2022.981846
  • Williams SW, Martina F, Addison AC, et al. Wire + arc additive manufacturing. Mater Sci Technol. 2016;32(7):641–647. doi: 10.1179/1743284715Y.0000000073
  • Bandyopadhyay A, Zhang Y, Onuike B. Additive manufacturing of bimetallic structures. Virtual Phys Prototyp. 2022;17(2):256–294. doi: 10.1080/17452759.2022.2040738
  • Gisario A, Kazarian M, Martina F, et al. Metal additive manufacturing in the commercial aviation industry: a review. J Manuf Syst. 2019;53:124–149. doi: 10.1016/j.jmsy.2019.08.005
  • Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: a review. Mater Des. 2021;209:110008. doi: 10.1016/j.matdes.2021.110008
  • Sword JI, Galloway A, Toumpis A. An environmental impact comparison between wire + arc additive manufacture and forging for the production of a titanium component. Sustain Mater Technol. 2023;36:e00600. doi: 10.1016/j.susmat.2023.e00600
  • Xiong J, Li Y, Li R, et al. Influences of process parameters on surface roughness of multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing. J Mater Process Technol. 2018;252:128–136. doi: 10.1016/j.jmatprotec.2017.09.020
  • Wu Q, Lu J, Liu C, et al. Obtaining uniform deposition with variable wire feeding direction during wire-feed additive manufacturing. Mater Manuf Process. 2017;32(16):1881–1886. doi: 10.1080/10426914.2017.1364860
  • Yuan Q, Liu C, Wang W, et al. Residual stress distribution in a large specimen fabricated by wire-arc additive manufacturing. Sci Technol Weld Join. 2023;28(2):137–144. doi: 10.1080/13621718.2022.2134963
  • Wu B, Pan Z, Ding D, et al. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process. 2018;35:127–139. doi: 10.1016/j.jmapro.2018.08.001
  • Lee K, Yi S, Hyun S, et al. Review on the recent welding research with application of CNN-based deep learning part I: models and applications. J Weld Join. 2021;39(1):10–19. doi: 10.5781/JWJ.2021.39.1.1
  • Guo Z, Ye S, Wang Y, et al. Resistance welding spot defect detection with convolutional neural networks. In: Computer Vision Systems: 11th International Conference, ICVS 2017; 2017 Jul 10–13; Shenzhen, China. Revised Selected Papers 11. Springer International Publishing; 2017. p. 169–174.
  • Choi SG, Hwang I, Kim D, et al. Prediction of the weld qualities using surface appearance image in resistance spot welding. Metals. 2019;9(8):831. doi: 10.3390/met9080831
  • Khumaidi A, Yuniarno EM, Purnomo MH. Welding defect classification based on convolution neural network (CNN) and Gaussian kernel. In: 2017 International Seminar on Intelligent Technology and its Applications (ISITIA); 2017 Aug 28. IEEE; 2017. p. 261–265. doi: 10.1109/ISITIA.2017.8124091
  • Feng Y, Chen Z, Wang D, et al. DeepWelding: a deep learning enhanced approach to GTAW using multisource sensing images. IEEE Trans Ind Inf. 2020;16(1):465–474. doi: 10.1109/TII.2019.2937563
  • Wang Q, Jiao W, Zhang YM. Deep learning-empowered digital twin for visualized weld joint growth monitoring and penetration control. J Manuf Syst. 2020;57:429–439. doi: 10.1016/j.jmsy.2020.10.002
  • Kang M, Jin BJ, Park KY, et al. Deep learning models for quality estimation of gas tungsten arc welding. Weld Int. 2022;36(1):17–24. doi: 10.1080/09507116.2022.2030202
  • Bacioiu D, Melton G, Papaelias M, et al. Automated defect classification of aluminium 5083 TIG welding using HDR camera and neural networks. J Manuf Process. 2019;45:603–613. doi: 10.1016/j.jmapro.2019.07.020
  • Ma G, Yu L, Yuan H, et al. A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network. J Manuf Process. 2021;64:130–139. doi: 10.1016/j.jmapro.2020.12.067
  • Wang X, Zhang Y, Liu J, et al. Online detection of weld surface defects based on improved incremental learning approach. Expert Syst Appl. 2022;195(391):116407. doi: 10.1016/j.eswa.2021.116407
  • Zhang B, Hong KM, Shin YC. Deep-learning-based porosity monitoring of laser welding process. Manuf Lett. 2020;23:62–66. doi: 10.1016/j.mfglet.2020.01.001
  • Yang Y, Pan L, Ma J, et al. A high-performance deep learning algorithm for the automated optical inspection of laser welding. Appl Sci. 2020;10(3):933. doi: 10.3390/app10030933
  • He F, Yuan L, Mu H, et al. Research and application of artificial intelligence techniques for wire arc additive manufacturing: a state-of-the-art review. Rob Comput Integr Manuf. 2023;82:102525. doi: 10.1016/j.rcim.2023.102525
  • Bevans B, Ramalho A, Smoqi Z, et al. Monitoring and flaw detection during wire-based directed energy deposition using in-situ acoustic sensing and wavelet graph signal analysis. Mater Des. 2023;225:111480. doi: 10.1016/j.matdes.2022.111480
  • Cho HW, Shin SJ, Seo GJ, et al. Real-time anomaly detection using convolutional neural network in wire arc additive manufacturing: molybdenum material. J Mater Process Technol. 2022;302:117495. doi: 10.1016/j.jmatprotec.2022.117495
  • Li W, Zhang H, Wang G, et al. Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing. Rob Comput Integr Manuf. 2023;80:102470. doi: 10.1016/j.rcim.2022.102470
  • Fu Y, Downey AR, Yuan L, et al. Machine learning algorithms for defect detection in metal laser-based additive manufacturing: a review. J Manuf Process. 2022;75:693–710. doi: 10.1016/j.jmapro.2021.12.061
  • Wang Z, Yang W, Liu Q, et al. Data-driven modeling of process, structure and property in additive manufacturing: a review and future directions. J Manuf Process. 2022;77:13–31. doi: 10.1016/j.jmapro.2022.02.053
  • O'Shea K, Nash R. An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458; 2015.
  • Pathak AR, Pandey M, Rautaray S. Application of deep learning for object detection. Proc Comput Sci. 2018;132:1706–1717. doi: 10.1016/j.procs.2018.05.144
  • Indolia S, Goswami AK, Mishra SP, et al. Conceptual understanding of convolutional neural network—a deep learning approach. Proc Comput Sci. 2018;132:679–688. doi: 10.1016/j.procs.2018.05.069
  • Tammina S. Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int J Sci Res Publ. 2019;9(10):p9420. doi: 10.29322/IJSRP.9.10.2019.p9420

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.