274
Views
0
CrossRef citations to date
0
Altmetric
Review

A review on friction stir welding (FSW) process for dissimilar aluminium to steel metal systems

&
Pages 91-115 | Received 31 Jul 2023, Accepted 18 Nov 2023, Published online: 08 Jan 2024

References

  • Wan L, Huang Y. Friction stir welding of dissimilar aluminium alloys and steels: a review. Int J Adv Manuf Technol. 2018;99(5–8):1781–1811. doi: 10.1007/s00170-018-2601-x
  • Bozzi S, Helbert-Etter AL, Baudin T, et al. Intermetallic compounds in Al 6016/IF-steel friction stir spot welds. Mater Sci Eng A. 2010;527(16–17):4505–4509. doi: 10.1016/j.msea.2010.03.097
  • Leitao C, Arruti E, Aldanondo E, et al. Aluminium-steel lap joining by multipass friction stir welding. Mater Des. 2016;106:153–160. doi: 10.1016/j.matdes.2016.05.101
  • Meng X, Huang Y, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding. Prog Mater Sci. 2021;115:100706. doi: 10.1016/j.pmatsci.2020.100706
  • Meng X, Xie Y, Sun S, et al. Lightweight design: friction-based welding between metal and polymer. Acta Metall Sin. 2023:36:881–898. doi: 10.1007/s40195-023-01552-5
  • Tanaka T, Morishige T, Hirata T. Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminium alloys. Scr Mater. 2009;61(7):756–759. doi: 10.1016/j.scriptamat.2009.06.022
  • Lee WB, Yeon YM, Kim DU, et al. Effect of friction welding parameters on mechanical and metallurgical properties of aluminium alloy 5052–A36 steel joint. Mater Sci Technol. 2003;19(6):773–778. doi: 10.1179/026708303225001876
  • Yamamoto N, Takahashi M, Ikeuchi K, et al. Interfacial layer in friction-bonded joint of low carbon steel to Al-Mg alloy (AA5083) and its influence on bond strength. Mater Trans. 2004;45(2):296–299. doi: 10.2320/matertrans.45.296
  • Akca E, Gursel A. The effect of diffusion welding parameters on the mechanical properties of titanium alloy and aluminium couples. Metals. 2017;7(1):22. doi: 10.3390/met7010022
  • Troughton MJ. Handbook of plastics joining: a practical guide. Norwich (NY): William Andrew; 2008.
  • Lohwasser D, Chen Z, editors. Friction stir welding: from basics to applications. Cambridge: Woodhead Publishing; 2009.
  • Mehta KP, Badheka VJ. A review on dissimilar friction stir welding of copper to aluminium: process, properties, and variants. Mater Manuf Process. 2016;31(3):233–254. doi: 10.1080/10426914.2015.1025971
  • Chiteka K. Friction stir welding/processing tool materials and selection. Int J Eng Res Technol. 2013;2(11):8–18.
  • Liu J, Hao Z, Xie Y, et al. Interface stability and fracture mechanism of Al/steel friction stir lap joints by novel designed tool. J Mater Process Technol. 2022;300:117425. doi: 10.1016/j.jmatprotec.2021.117425
  • Zhang YN, Cao X, Larose S, et al. Review of tools for friction stir welding and processing. Can Metall Q. 2012;51(3):250–261. doi: 10.1179/1879139512Y.0000000015
  • Sawada YK, Nakamura M. Lapped friction stir welding between ductile cast irons and stainless steels. J Jpn Weld Soc. 2009;27(3):176–182. doi: 10.2207/qjjws.27.176
  • Nandan R, DebRoy T, Bhadeshia H. Recent advances in friction-stir welding–process, weldment structure and properties. Prog Mater Sci. 2008;53(6):980–1023. doi: 10.1016/j.pmatsci.2008.05.001
  • Elangovan K, Balasubramanian V, Valliappan M. Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int J Adv Manuf Technol. 2008;38(3–4):285–295. doi: 10.1007/s00170-007-1100-2
  • Xu WF, Liu JH, Chen DL, et al. Improvements of strength and ductility in aluminum alloy joints via rapid cooling during friction stir welding. Mater Sci Eng A. 2012;548:89–98. doi: 10.1016/j.msea.2012.03.094
  • Li JQ, Liu HJ. Effects of welding speed on microstructures and mechanical properties of AA2219-T6 welded by the reverse dual-rotation friction stir welding. Int J Adv Manuf Technol. 2013;68(9–12):2071–2083. doi: 10.1007/s00170-013-4812-5
  • Galvão I, Leal RM, Rodrigues DM, et al. Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. J Mater Process Tech. 2013;213(2):129–135. doi: 10.1016/j.jmatprotec.2012.09.016
  • Dawood HI, Mohammed KS, Rahmat A, et al. Effect of small tool pin profiles on micro structures and mechanical properties of 6061 aluminium alloy by friction stir welding. Trans Nonferrous Met Soc China. 2015;25(9):2856–2865. doi: 10.1016/S1003-6326(15)63911-5
  • Azizieh M, Kokabi AH, Abachi P. Effect of rotational speed and probe profile on micro structure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Des. 2011;32(4):2034–2041. doi: 10.1016/j.matdes.2010.11.055
  • Khan NZ, Khan ZA, Siddiquee AN. Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength of friction stir welded 6063 aluminium alloy. Mater Today Proc. 2015;2(4–5):1450–1457. doi: 10.1016/j.matpr.2015.07.068
  • Ramachandran KK, Murugan N, Kumar SS. Effect of tool axis offset and geometry of tool pin profile on the characteristics of friction stir welded dissimilar joints of aluminium alloy AA5052 and HSLA steel. Mater Sci Eng A. 2015;639:219–233. doi: 10.1016/j.msea.2015.04.089
  • Alimadadi M, Mahmoudiniya M, Goodarzi M, et al. Effect of tool transverse speed and pin offset on the properties of friction stir welding Al6061-St52 dissimilar joint. J Adv Join Process. 2022;5:100116. doi: 10.1016/j.jajp.2022.100116
  • Shah L, Guo S, Walbridge S, et al. Effect of tool eccentricity on the properties of friction stir welded AA6061 aluminum alloys. Manuf Lett. 2018;15:14–17. doi: 10.1016/j.mfglet.2017.12.019
  • Naghibi HD, Shakeri M, Hosseinzadeh M. Neural network and genetic algorithm based modeling and optimization of tensile properties in FSW of AA 5052 to AISI 304 dissimilar joints. Trans Indian Inst Met. 2016;69(4):891–900. doi: 10.1007/s12666-015-0572-2
  • Sahu PK, Pal S, Pal SK, et al. Influence of plate position, tool offset and tool rotational speed on mechanical properties and microstructures of dissimilar Al/Cu friction stir welding joints. J Mater Process Technol. 2016;235:55–67. doi: 10.1016/j.jmatprotec.2016.04.014
  • Mao Y, Ke L, Liu F, et al. Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminium alloy thick plate. Mater Des. 2014;62(1980–2015):334–343. doi: 10.1016/j.matdes.2014.05.038
  • Pankaj P, Tiwari A, Dhara LN, et al. Investigations on the effect of sheets positioning in advancing & retreating side for dissimilar FSW of DH36 steel and aluminium alloy 6061. J Inst Eng India Ser C. 2022;103(1):5–20. doi: 10.1007/s40032-021-00714-7
  • Coelho RS, Kostka A, Sheikhi S, et al. Microstructure and mechanical properties of an AA6181‐T4 aluminium alloy to HC340LA high strength steel friction stir overlap weld. Adv Eng Mater. 2008;10(10):961–972. doi: 10.1002/adem.200800028
  • Coelho RS, Kostka A, Dos Santos JF, et al. Friction-stir dissimilar welding of aluminium alloy to high strength steels: mechanical properties and their relation to microstructure. Mater Sci Eng A. 2012;556:175–183. doi: 10.1016/j.msea.2012.06.076
  • Bang H, Bang H, Jeon G, et al. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminium alloy and STS304 stainless steel. Mater Des. 2012;37:48–55. doi: 10.1016/j.matdes.2011.12.018
  • Dehghani M, Amadeh A, Mousavi SA. Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminium alloy to mild steel. Mater Des. 2013;49:433–441. doi: 10.1016/j.matdes.2013.01.013
  • Derazkola HA, Aval HJ, Elyasi M. Process parameters effects on dissimilar friction stir welding of AA1100 and A441 AISI steel. Sci Technol Weld Join. 2015;20(7):553–562. doi: 10.1179/1362171815Y.0000000038
  • Wahid MA, Khan ZA, Siddiquee AN. Review on underwater friction stir welding: a variant of friction stir welding with great potential of improving joint properties. Trans Nonferrous Met Soc China. 2018;28(2):193–219. doi: 10.1016/S1003-6326(18)64653-9
  • Kumar M, Das A, Ballav R. Influence of tool geometry on morphology and mechanical properties of friction stir welded dissimilar joints: a review. Mater Today Proc. 2020;33:4951–4955.
  • Chen TP, Lin WB. Optimal FSW process parameters for interface and welded zone toughness of dissimilar aluminium–steel joint. Sci Technol Weld Join. 2010;15(4):279–285. doi: 10.1179/136217109X12518083193711
  • Jiang WH, Kovacevic R. Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel. Proc Inst Mech Eng B J Eng Manuf. 2004;218(10):1323–1331. doi: 10.1243/0954405042323612
  • Kimapong K, Watanabe T. Friction stir welding of aluminium alloy to steel. Weld J. 2004;83(10):277.
  • Uzun H, Dalle Donne C, Argagnotto A, et al. Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel. Mater Des. 2005;26(1):41–46. doi: 10.1016/j.matdes.2004.04.002
  • Lee WB, Schmuecker M, Mercardo UA, et al. Interfacial reaction in steel–aluminium joints made by friction stir welding. Scr Mater. 2006;55(4):355–358. doi: 10.1016/j.scriptamat.2006.04.028
  • Girard M, Huneau B, Genevois C, et al. Friction stir diffusion bonding of dissimilar metals. Sci Technol Weld Join. 2010;15(8):661–665. doi: 10.1179/136217110X12720264008475
  • Movahedi M, Kokabi AH, Reihani SS, et al. Effect of tool travel and rotation speeds on weld zone defects and joint strength of aluminium steel lap joints made by friction stir welding. Sci Technol Weld Join. 2012;17(2):162–167. doi: 10.1179/1362171811Y.0000000092
  • Yazdipour A, Heidarzadeh A. Effect of friction stir welding on microstructure and mechanical properties of dissimilar Al 5083-H321 and 316L stainless steel alloy joints. J Alloys Compd. 2016;680:595–603. doi: 10.1016/j.jallcom.2016.03.307
  • Chen T. Process parameters study on FSW joint of dissimilar metals for aluminium–steel. J Mater Sci. 2009;44(10):2573–2580. doi: 10.1007/s10853-009-3336-8
  • Chen CM, Kovacevic R. Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding. Int J Mach Tools Manuf. 2004;44(11):1205–1214. doi: 10.1016/j.ijmachtools.2004.03.011
  • Watanabe T, Takayama H, Yanagisawa A. Joining of aluminium alloy to steel by friction stir welding. J Mater Process Technol. 2006;178(1–3):342–349. doi: 10.1016/j.jmatprotec.2006.04.117
  • Habibnia M, Shakeri M, Nourouzi S, et al. Microstructural and mechanical properties of friction stir welded 5050 Al alloy and 304 stainless steel plates. Int J Adv Manuf Technol. 2015;76(5–8):819–829. doi: 10.1007/s00170-014-6306-5
  • Xiong JT, Li JL, Qian JW, et al. High strength lap joint of aluminium and stainless steels fabricated by friction stir welding with cutting pin. Sci Technol Weld Join. 2012;17(3):196–201. doi: 10.1179/1362171811Y.0000000093
  • Ghosh M, Kar A, Kumar K, et al. Structural characterisation of reaction zone for friction stir welded aluminium–stainless steel joint. Mater Technol. 2012;27(2):169–172. doi: 10.1179/175355509X12608916825994
  • Mehta M, Arora A, De A, et al. Tool geometry for friction stir welding—optimum shoulder diameter. Metall Mater Trans A. 2011;42(9):2716–2722. doi: 10.1007/s11661-011-0672-5
  • Dehghani M, Mousavi SA, Amadeh A. Effects of welding parameters and tool geometry on properties of 3003-H18 aluminium alloy to mild steel friction stir weld. Trans Nonferrous Met Soc China. 2013;23(7):1957–1965. doi: 10.1016/S1003-6326(13)62683-7
  • Liu X, Lan S, Ni J. Analysis of process parameters effects on friction stir welding of dissimilar aluminium alloy to advanced high strength steel. Mater Des. 2014;59:50–62. doi: 10.1016/j.matdes.2014.02.003
  • Sajan SG, Meshram M, Srinivas P, et al. Friction stir welding of aluminium 6082 with mild steel and its joint analyses. Int J Adv Mater Manuf Charact. 2013;3(1):189–193. doi: 10.11127/ijammc.2013.02.033
  • Elrefaey A, Gouda M, Takahashi M, et al. Characterization of aluminium/steel lap joint by friction stir welding. J Mater Eng Perform. 2005;14(1):10–17. doi: 10.1361/10599490522310
  • Liyanage T, Kilbourne J, Gerlich AP, et al. Joint formation in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds. Sci Technol Weld Join. 2009;14(6):500–508. doi: 10.1179/136217109X456960
  • Zhou L, Yu M, Liu B, et al. Microstructure and mechanical properties of Al/steel dissimilar welds fabricated by friction surfacing assisted friction stir lap welding. J Mater Res Technol. 2020;9(1):212–221. doi: 10.1016/j.jmrt.2019.10.046
  • Feng K, Watanabe M, Kumai S. Microstructure and joint strength of friction stir spot welded 6022 aluminium alloy sheets and plated steel sheets. Mater Trans. 2011;52(7):1418–1425. doi: 10.2320/matertrans.L-M2011811
  • Chen YC, Gholinia A, Prangnell PB. Interface structure and bonding in abrasion circle friction stir spot welding: a novel approach for rapid welding aluminium alloy to steel automotive sheet. Mater Chem Phys. 2012;134(1):459–463. doi: 10.1016/j.matchemphys.2012.03.017
  • Uematsu Y, Kakiuchi T, Tozaki Y, et al. Comparative study of fatigue behaviour in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds fabricated by scroll grooved tool without probe. Sci Technol Weld Join. 2012;17(5):348–356. doi: 10.1179/1362171812Y.0000000014
  • Sun YF, Fujii H, Takaki N, et al. Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Mater Des. 2013;47:350–357. doi: 10.1016/j.matdes.2012.12.007
  • Fotouhi Y, Rasaee S, Askari A, et al. Effect of transverse speed of the tool on microstructure and mechanical properties in dissimilar butt friction stir welding of Al5083–copper sheets. Eng Solid Mech. 2014;2(3):239–246. doi: 10.5267/j.esm.2014.3.001
  • Ericsson M, Sandström R. Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG. Int J Fatigue. 2003;25(12):1379–1387. doi: 10.1016/S0142-1123(03)00059-8
  • Balasubramanian V. Relationship between base metal properties and friction stir welding process parameters. Mater Sci Eng A. 2008;480(1–2):397–403. doi: 10.1016/j.msea.2007.07.048
  • Wan L, Huang Y. Microstructure and mechanical properties of Al/steel friction stir lap weld. Metals. 2017;7(12):542. doi: 10.3390/met7120542
  • Padhy GK, Wu S, Gao S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: a review. J Mater Sci Technol. 2018;34(1):1–38. doi: 10.1016/j.jmst.2017.11.029
  • Casalino G, El Mehtedi M, Forcellese A, et al. Effect of cold rolling on the mechanical properties and formability of FSWed sheets in AA5754-H114. Metals. 2018;8(4):223. doi: 10.3390/met8040223
  • Campanelli SL, Casalino G, Casavola C, et al. Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminium alloy. Materials. 2013;6(12):5923–5941. doi: 10.3390/ma6125923
  • Mehta KP, Badheka VJ. Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminium. Mater Manuf Process. 2016;31(3):255–263. doi: 10.1080/10426914.2014.994754
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1–2):1–78. doi: 10.1016/j.mser.2005.07.001
  • Zhang S, Shi Q, Liu Q, et al. Effects of tool tilt angle on the in-process heat transfer and mass transfer during friction stir welding. Int J Heat Mass Transf. 2018;125:32–42. doi: 10.1016/j.ijheatmasstransfer.2018.04.067
  • Long L, Chen G, Zhang S, et al. Finite-element analysis of the tool tilt angle effect on the formation of friction stir welds. J Manuf Process. 2017;30:562–569. doi: 10.1016/j.jmapro.2017.10.023
  • Beygi R, Mehrizi MZ, Verdera D, et al. Influence of tool geometry on material flow and mechanical properties of friction stir welded Al-Cu bimetals. J Mater Process Technol. 2018;255:739–748. doi: 10.1016/j.jmatprotec.2018.01.033
  • Lambiase F, Derazkola HA, Simchi A. Friction stir welding and friction spot stir welding processes of polymers—state of the art. Materials. 2020;13(10):2291. doi: 10.3390/ma13102291
  • Murugan B, Thirunavukarasu G, Kundu S, et al. Interfacial microstructure and mechanical properties of friction stir welded joints of commercially pure aluminium and 304 stainless steel. J Mater Eng Perform. 2018;27(6):2921–2931. doi: 10.1007/s11665-018-3389-4
  • Memon S, Fydrych D, Fernandez AC, et al. Effects of FSW tool plunge depth on properties of an Al-Mg-Si alloy T-joint: thermomechanical modeling and experimental evaluation. Materials. 2021;14(16):4754. doi: 10.3390/ma14164754
  • Aghajani Derazkola H, Khodabakhshi F. Intermetallic compounds (IMCs) formation during dissimilar friction-stir welding of AA5005 aluminium alloy to St-52 steel: numerical modeling and experimental study. Int J Adv Manuf Technol. 2019;100(9–12):2401–2422. doi: 10.1007/s00170-018-2879-8
  • Das H, Basak S, Das G, et al. Influence of energy induced from processing parameters on the mechanical properties of friction stir welded lap joint of aluminium to coated steel sheet. Int J Adv Manuf Technol. 2013;64(9–12):1653–1661. doi: 10.1007/s00170-012-4130-3
  • Ogura T, Saito Y, Nishida T, et al. Partitioning evaluation of mechanical properties and the interfacial microstructure in a friction stir welded aluminium alloy/stainless steel lap joint. Scr Mater. 2012;66(8):531–534. doi: 10.1016/j.scriptamat.2011.12.035
  • Kobayashi S, Yakou T. Control of intermetallic compound layers at interface between steel and aluminium by diffusion-treatment. Mater Sci Eng A. 2002;338(1–2):44–53. doi: 10.1016/S0921-5093(02)00053-9
  • Nishida T, Ogura T, Nishida H, et al. Formation of interfacial microstructure in a friction stir welded lap joint between aluminium alloy and stainless steel. Sci Technol Weld Join. 2014;19(7):609–616. doi: 10.1179/1362171814Y.0000000232
  • Beygi R, Galvão I, Akhavan-Safar A, et al. Effect of alloying elements on intermetallic formation during friction stir welding of dissimilar metals: A critical review on aluminium/steel. Metals. 2023;13(4):768. doi: 10.3390/met13040768
  • Kundu S, Roy D, Bhola R, et al. Microstructure and tensile strength of friction stir welded joints between interstitial free steel and commercially pure aluminium. Mater Des. 2013;50:370–375. doi: 10.1016/j.matdes.2013.02.017
  • Sato YS, Park SHC, Kokawa H. Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metall Mater Trans A. 2001;32(12):3033–3042. doi: 10.1007/s11661-001-0178-7
  • Tan YB, Wang XM, Ma M, et al. A study on microstructure and mechanical properties of AA 3003 aluminium alloy joints by underwater friction stir welding. Mater Charact. 2017;127:41–52. doi: 10.1016/j.matchar.2017.01.039
  • Hansen N. Hall–Petch relation and boundary strengthening. Scr Mater. 2004;51(8):801–806. doi: 10.1016/j.scriptamat.2004.06.002
  • Devuri V, Mahapatra MM, Harsha SP, et al. Effect of shoulder surface dimension and geometries on FSW of AA7039. J Manuf Sci Prod. 2014;14(3):183–194. doi: 10.1515/jmsp-2014-0008
  • Tabatabaeipour M, Hettler J, Delrue S, et al. Non-destructive ultrasonic examination of root defects in friction stir welded butt-joints. NDT & E Int. 2016;80:23–34. doi: 10.1016/j.ndteint.2016.02.007
  • Garg A, Raturi M, Bhattacharya A. Experimental and finite element analysis of progressive failure in friction stir welded AA6061-AA7075 joints. Proc Struct Integr. 2019;17:456–463. doi: 10.1016/j.prostr.2019.08.060
  • Raturi M, Garg A, Bhattacharya A. Joint strength and failure studies of dissimilar AA6061-AA7075 friction stir welds: effects of tool pin, process parameters and preheating. Eng Fail Anal. 2019;96:570–588. doi: 10.1016/j.engfailanal.2018.12.003
  • Esmaeili A, Besharati Givi MK, Zareie Rajani HR, et al. Experimental investigation of material flow and welding defects in friction stir welding of aluminium to brass. Mater Manuf Process. 2012;27(12):1402–1408. doi: 10.1080/10426914.2012.663239
  • Esmaeili A, Givi MB, Rajani HZ. Investigation of weld defects in dissimilar friction stir welding of aluminium to brass by radiography. Sci Technol Weld Join. 2012;17(7):539–543. doi: 10.1179/1362171812Y.0000000044
  • Kah P, Vimalraj C, Martikainen J, et al. Factors influencing Al-Cu weld properties by intermetallic compound formation. Int J Mech Mater Eng. 2015;10:1–13.
  • Wahab MA, Dewan MW, Huggett DJ, et al. Challenges in the detection of weld-defects in friction-stir-welding (FSW). Adv Mater Process Technol. 2019;5(2):258–278. doi: 10.1080/2374068X.2019.1575713
  • Terra CS, Silveira JLL. Models for FSW forces using a square pin profile tool. J Manuf Process. 2021;68:1395–1404. doi: 10.1016/j.jmapro.2021.06.052
  • Choi DH, Ahn BW, Lee CY, et al. Effect of pin shapes on joint characteristics of friction stir spot welded AA5J32 sheet. Mater Trans. 2010;51(5):1028–1032. doi: 10.2320/matertrans.M2009405
  • Zhang H, Lin SB, Wu L, et al. Defects formation procedure and mathematic model for defect free friction stir welding of magnesium alloy. Mater Des. 2006;27(9):805–809. doi: 10.1016/j.matdes.2005.01.016
  • Shah LH, Ishak M. Review of research progress on aluminium–steel dissimilar welding. Mater Manuf Process. 2014;29(8):928–933. doi: 10.1080/10426914.2014.880461
  • Piccini JM, Svoboda HG. Effect of pin length on friction stir spot welding (FSSW) of dissimilar aluminium-steel joints. Proc Mater Sci. 2015;9:504–513. doi: 10.1016/j.mspro.2015.05.023
  • Shahrabadi AR, Mousavizade SM, Ezatpour HR, et al. Achieving high mechanical performance in protrusion friction stir spot welding (PFSSW) of DQSK steel compared to other techniques. Mater Res Express. 2018;5(10):106519. doi: 10.1088/2053-1591/aada37
  • Dourandish S, Mousavizade SM, Ezatpour HR, et al. Microstructure, mechanical properties and failure behaviour of protrusion friction stir spot welded 2024 aluminium alloy sheets. Sci Technol Weld Join. 2018;23(4):295–307. doi: 10.1080/13621718.2017.1386759
  • Zarghani F, Mousavizade SM, Ezatpour HR, et al. High mechanical performance of similar Al joints produced by a novel spot friction welding technique. Vacuum. 2018;147:172–186. doi: 10.1016/j.vacuum.2017.10.035
  • Mahto RP, Gupta C, Kinjawadekar M, et al. Weldability of AA6061-T6 and AISI 304 by underwater friction stir welding. J Manuf Process. 2019;38:370–386. doi: 10.1016/j.jmapro.2019.01.028
  • Azizieh M, Yazdi M, Tahmasebi M, et al. Characteristics of dissimilar friction stir spot brazing between aluminium and galvanized steel. Mater Res Express. 2018;6(2):026515. doi: 10.1088/2053-1591/aaec9d
  • Figner G, Vallant R, Weinberger T, et al. Friction stir spot welds between aluminium and steel automotive sheets: influence of welding parameters on mechanical properties and microstructure. Weld World. 2009;53(1–2):R13–R23. doi: 10.1007/BF03266697
  • Mahoney MW, Rhodes CG, Flintoff JG, et al. Properties of friction-stir-welded 7075 T651 aluminum. Metall Mater Trans A. 1998;29(7):1955–1964. doi: 10.1007/s11661-998-0021-5
  • Tiwari A, Pankaj P, Suman S, et al. CFD modelling of temperature distribution and material flow investigation during FSW of DH36 shipbuilding grade steel. Trans Indian Inst Met. 2020;73(9):2291–2307. doi: 10.1007/s12666-020-02030-7
  • Luo J, Chen W, Fu G. Hybrid-heat effects on electrical-current aided friction stir welding of steel, and Al and Mg alloys. J Mater Process Technol. 2014;214(12):3002–3012. doi: 10.1016/j.jmatprotec.2014.07.005
  • Liu X, Lan S, Ni J. Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J Mater Process Technol. 2015;219:112–123. doi: 10.1016/j.jmatprotec.2014.12.002
  • Eslami S, Tavares PJ, Moreira PMGP. Friction stir welding tooling for polymers: review and prospects. Int J Adv Manuf Technol. 2017;89(5–8):1677–1690. doi: 10.1007/s00170-016-9205-0
  • Scialpi A, Troughton M, Andrews S, et al. Viblade™: friction stir welding for plastics. Weld Int. 2009;23(11):846–855. doi: 10.1080/09507110902843271
  • Ahmadi H, Mostafa Arab NB, Ghasemi FA. Optimization of process parameters for friction stir lap welding of carbon fibre reinforced thermoplastic composites by Taguchi method. J Mech Sci Technol. 2014;28(1):279–284. doi: 10.1007/s12206-013-0966-1
  • Palanivel S, Sidhar H, Mishra RS. Friction stir additive manufacturing: route to high structural performance. JOM. 2015;67(3):616–621. doi: 10.1007/s11837-014-1271-x
  • Dilip JJS, Janaki Ram GD, Stucker BE. Additive manufacturing with friction welding and friction deposition processes. Int J Rapid Manuf. 2012;3(1):56–69. doi: 10.1504/IJRAPIDM.2012.046574
  • Palanivel S, Nelaturu P, Glass B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Mater Des. 2015;65:934–952. doi: 10.1016/j.matdes.2014.09.082
  • Hang ZY, Jones ME, Brady GW, et al. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition. Scr Mater. 2018;153:122–130. doi: 10.1016/j.scriptamat.2018.03.025
  • Hussein SA, Tahir ASM, Hadzley AB. Characteristics of aluminium-to-steel joint made by friction stir welding: a review. Mater Today Commun. 2015;5:32–49. doi: 10.1016/j.mtcomm.2015.09.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.