122
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Influence of pin profiles on temperature distribution, microstructure evolution and mechanical properties of friction stir welded AA6061

, , , &
Pages 116-127 | Received 09 Oct 2023, Accepted 05 Dec 2023, Published online: 08 Jan 2024

References

  • Miller WS, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A. 2000;280(1):37–49. doi: 10.1016/S0921-5093(99)00653-X
  • Kuleckci MK. Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol. 2008;39:851–865.
  • Jeal N. High-performance magnesium. Adv Mater Proc. 2005;163:65–67.
  • Rajendran C, Srinivasan K, Balasubramanian V, et al. Feasibility study of FSW, LBW and TIG joining process to fabricate light combat aircraft structure. Int J Light Mater Manuf. 2021;4(4):480–490. doi: 10.1016/j.ijlmm.2021.07.001
  • Olabode M, Kah P, Martikainen J. Aluminium alloys welding processes: challenges, joint types and process selection. Proc Inst Mech Eng B J Eng Manuf. 2013;227(8):1129–1137. doi: 10.1177/0954405413484015
  • Liang Y, Shen J, Hu S, et al. Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG–CMT hybrid welding. J Mater Process Technol. 2018;255:161–174. doi: 10.1016/j.jmatprotec.2017.12.006
  • Thomas WM, Nicholas ED, Needham JC, et al. Friction-stir butt welding. International patent application PCT/GB92/02203 and GB patent application 9125978.8, UK patent office. London. 1991.
  • Meng X, Huang Y, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding. Prog Mater Sci. 2021;115:100706. doi: 10.1016/j.pmatsci.2020.100706
  • Meng X, Xie Y, Sun S, et al. Lightweight design: friction-based welding between metal and polymer. Acta Metall Sin (Engl Lett). 2023;36(6):881–898. doi: 10.1007/s40195-023-01552-5
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50(1–2):1–78. doi: 10.1016/j.mser.2005.07.001
  • Hao DD, Tra HT, Okazaki M, et al. Pin length, pin offset, and reversed metal flow interaction in the improvement of dissimilar friction stir welded T-lap joints. Int J Adv Manuf Technol. 2022;121(7–8):4677–4689. doi: 10.1007/s00170-022-09629-8
  • Nam HQ, Hao DD, Tra HT. Impact of tool offset and friction stir welding speed on interface morphology of a dissimilar T-lap joints. Weld Int. 2022;36(7):379–386.
  • Huy HH, Hao DD, Quan MN, et al. Mechanical performance of dissimilar friction stir welded lap-joint between aluminum alloy 6061 and 316 stainless steel. Weld Int. 2023;37(2):101–110.
  • Tra TH, Hao DD, Okazaki M, et al. Tensile property and failure behavior of copper/aluminum dissimilar friction stir welding at elevated temperatures. J Mater Eng Perform. 2022;31:8878–8884.
  • Tra TH, Okazaki M, Hao DD. Tensile fracture behavior of Cu/Al butt friction stir welding: role of interface morphology. J Mater Eng Perform. 2022;31(2):1039–1045. doi: 10.1007/s11665-021-06281-3
  • Gollo R, Sandeep S, Yadaiah N, et al. Influence of welding speed and material location on microstructure and mechanical properties of friction stir welding joints of AA6061–AA7050. Mater Today Commun. 2022;33:104419. doi: 10.1016/j.mtcomm.2022.104419
  • Vivek P, Jeroen DB, Henrik H, et al. High-speed friction stir welding in light weight battery trays for the EV industry. Sci Technol Weld Join. 2022;27(4):250–255.
  • Hao DD, Okazaki M, Tra HT. Influence of probe length on the formation of an interface in friction stir welded T-lap joints. Mater Manuf Process. 2021;36(6):693–701. doi: 10.1080/10426914.2020.1854470
  • Kumar K, Kailas SV. On the role of axial load and the effect of interface position on the tensile strength of a friction stir welded aluminium alloy. Mater Des. 2008;29(4):791–797. doi: 10.1016/j.matdes.2007.01.012
  • Rajendran C, Srinivasan K, Balasubramanian V, et al. Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy. Trans Nonferrous Met Soc China. 2019;29(9):1824–1835. doi: 10.1016/S1003-6326(19)65090-9
  • Vivek P, Hendrik W, Amir B, et al. Robotic friction stir welding in lightweight battery assembly of extrusion-cast aluminium alloys. J Adv Join Process. 2023;8:100156.
  • Devang S, Wenya L, Vivek P. Stationary shoulder friction stir welding – low heat input joining technique: a review in comparison with conventional FSW and bobbin tool FSW. Crit Rev Solid State Mater Sci. 2022;47(6):865–914. doi: 10.1080/10408436.2021.1935724
  • Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater Sci. 2021;117:100752. doi: 10.1016/j.pmatsci.2020.100752
  • Huang Y, Xie Y, Meng X, et al. Numerical design of high depth-to-width ratio friction stir welding. J Mater Process Technol. 2018;252:233–241. doi: 10.1016/j.jmatprotec.2017.09.029
  • Huang Y, Xie Y, Meng X, et al. Joint formation mechanism of high depth-to-width ratio friction stir welding. J Mater Sci Technol. 2019;35(7):1261–1269. doi: 10.1016/j.jmst.2019.01.016
  • Elangovan K, Balasubramanian V, Valliappan M. Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int J Adv Manuf Technol. 2007;38(3–4):285–295. doi: 10.1007/s00170-007-1100-2
  • Gharaibeh N, Al-Jarrah A, Sawallha S. Effect of pin profile on mechanical properties of 6061 aluminum alloy welded joints prepared by friction stir welding. Int J Mech Appl. 2016;6(3):39–42.
  • Shanmuga Sundaram N, Murugan N. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys. Mater Des. 2010;31(9):4184–4193. doi: 10.1016/j.matdes.2010.04.035
  • Ma X, Xie Y, Meng X, et al. Stepped-shoulder friction stir welding to alleviate weld thinning for dissimilar AA2195-T8/AA2219-T6 alloys. Sci Technol Weld Join. 2021;26(8):599–605. doi: 10.1080/13621718.2021.1982341
  • Kadian AK, Biswas P. Effect of tool pin profile on the material flow characteristics of AA6061. J Manuf Process. 2017;26:382–392. doi: 10.1016/j.jmapro.2017.03.005
  • Ghiasvan A, Hassanifard S, Saadi S, et al. Tensile properties and microstructural features of friction stir welded Al 6061 joints fabricated by various dual-pin tool shapes. Sci Technol Weld Join. 2021;26(6):493–502. doi: 10.1080/13621718.2021.1950500
  • Su H, Wu CS, Bachmann M, et al. Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding. Mater Des. 2015;77:114–125. doi: 10.1016/j.matdes.2015.04.012
  • Zhang HW, Zhang Z, Chen JT. 3D modeling of material flow in friction stir welding under different process parameters. J Mater Process Technol. 2007;183(1):62–70. doi: 10.1016/j.jmatprotec.2006.09.027
  • Prashant C, Rahul J, Surjya KP, et al. Modeling of defects in friction stir welding using coupled Eulerian and Lagrangian method. J Manuf Process. 2018;34:158–166.
  • Al-Badour F, Merah N, Shuaib A, et al. Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes. J Mater Process Technol. 2013;213(8):1433–1439. doi: 10.1016/j.jmatprotec.2013.02.014
  • Xue W, Yanfei G, McDonnell M, et al. On the solid-state-bonding mechanism in friction stir welding. Extreme Mech Lett. 2020;37:100727. doi: 10.1016/j.eml.2020.100727
  • Gallais C, Denquin A, Bréchet Y, et al. Precipitation microstructures in an AA6056 aluminium alloy after friction stir welding: characterisation and modelling. Mater Sci Eng A. 2008;496(1–2):77–89. doi: 10.1016/j.msea.2008.06.033
  • Tran HT, Okazaki M, Suzuki K. Fatigue crack propagation behavior in friction stir welding of AA6063-T5: roles of residual stress and microstructure. Int J Fatigue. 2012;43:23–29. doi: 10.1016/j.ijfatigue.2012.02.003
  • Zhang L, Zhong H, Li S, et al. Microstructure, mechanical properties and fatigue crack growth behavior of friction stir welded joint of 6061-T6 aluminum alloy. Int J Fatigue. 2020;135:105556. doi: 10.1016/j.ijfatigue.2020.105556
  • Dickerson T. Fatigue of friction stir welds in aluminum alloys that contain root flaws. Int J Fatigue. 2003;25(12):1399–1409. doi: 10.1016/S0142-1123(03)00060-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.