63
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

3-D FE modelling of residual stress distribution in 3003 aluminium alloy overlapped joints by ARM laser with beam oscillations

, , &
Pages 249-264 | Received 06 Dec 2023, Accepted 03 Feb 2024, Published online: 05 Mar 2024

References

  • Canel T, Zeren M, Sınmazçelik T. Laser parameters optimization of surface treating of Al 6082-T6 with taguchi method. Optic Laser Technol. 2019;120:105714. doi: 10.1016/j.optlastec.2019.105714
  • Chen L, Mi G, Zhang X, et al. Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminium alloys lap welding. J Mater Process Technol. 2021;298:117314. doi: 10.1016/j.jmatprotec.2021.117314
  • Deng A, Chen H, Zhang Y, et al. Effect of filler materials on the porosity formation of aluminium alloy by laser welding with filler wire. Optic Laser Technol. 2023;159:109000. doi: 10.1016/j.optlastec.2022.109000
  • Ahn J, Chen L, He E, et al. Optimisation of process parameters and weld shape of high power Yb-fibre laser welded 2024-T3 aluminium alloy. J Manuf Processes. 2018;34:70–85. doi: 10.1016/j.jmapro.2018.05.028
  • Ramiarison H, Barka N, Pilcher C, et al. Weldability improvement by wobbling technique in high power density laser welding of two aluminium alloys: Al-5052 and Al-6061. Laser Appl. 2021;33(3):032015. doi: 10.2351/7.0000353
  • Wang Z, Oliveira JP, Zeng Z, et al. Laser beam oscillating welding of 5A06 aluminium alloys: microstructure, porosity and mechanical properties. Optic Laser Technol. 2019;111:58–65. doi: 10.1016/j.optlastec.2018.09.036
  • Zhao J, Jiang P, Geng S, et al. Experimental and numerical study on the effect of increasing frequency on the morphology and microstructure of aluminium alloy in laser wobbling welding. J Mater Res Technol. 2022;21:267–282. doi: 10.1016/j.jmrt.2022.09.008
  • Wang L, Gao M, Zhang C, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminium alloy. Mater Design. 2016;108:707–717. doi: 10.1016/j.matdes.2016.07.053
  • Liu T, Mu Z, Hu R, et al. Sinusoidal oscillating laser welding of 7075 aluminium alloy: hydrodynamics, porosity formation and optimization. Int J Heat Mass Transf. 2019;140:346–358. doi: 10.1016/j.ijheatmasstransfer.2019.05.111
  • Yoon H-S, Bang H-S. The effect of wobbling on the welding characteristics in Al/Cu fibre laser welded joints. Int J Adv Manuf Technol. 2023;127(11-12):5343–5352. doi: 10.1007/s00170-023-11653-1
  • Mohammadpour M, Wang L, Kong F, et al. Adjustable ring mode and single beam fibre lasers: a performance comparison. Manuf Lett. 2020;25:50–55. doi: 10.1016/j.mfglet.2020.07.003
  • Wang L, Yao M, Gao X, et al. Keyhole stability and surface quality during novel adjustable-ring mode laser (ARM) welding of aluminium alloy. Optic Laser Technol. 2023;161:109202. doi: 10.1016/j.optlastec.2023.109202
  • Punzel E, Hugger F, Dinkelbach T, et al. Influence of power distribution on weld seam quality and geometry in laser beam welding of aluminium alloys. Procedia CIRP. 2020;94:601–604. doi: 10.1016/j.procir.2020.09.086
  • Jabar S, Baghbani Barenji A, Franciosa P, et al. Effects of the adjustable ring-mode laser on intermetallic formation and mechanical properties of steel to aluminium laser welded lap joints. Mater Design. 2023;227:111774. doi: 10.1016/j.matdes.2023.111774
  • Kang S, Shin J. Numerical and experimental study on melt-Pool heat transfer and weld characteristics in dual-mode fibre laser welding of aluminium alloy. Optic Laser Technol. 2023;158:108805. doi: 10.1016/j.optlastec.2022.108805
  • Maina MR, Okamoto Y, Okada A, et al. High surface quality welding of aluminium using adjustable ring-mode fibre laser. J Mater Process Technol. 2018;258:180–188. doi: 10.1016/j.jmatprotec.2018.03.030
  • Kong F, Lavoie J-P, Kleine K, et al. Computational modelling and experimental validations of the heat transfer and residual stresses in the aluminium 6061-T6 plate welded by an adjustable ring mode (ARM) laser. 軽金属溶接. 2020;58:19–25.
  • Sun T, Mohan A, Liu C, et al. The impact of adjustable-ring-mode (ARM) laser beam on the microstructure and mechanical performance in remote laser welding of high strength aluminium alloys. J Mater Res Technol. 2022;21:2247–2261. doi: 10.1016/j.jmrt.2022.10.055
  • Li J, Jiang P, Geng S, et al. Numerical and experimental study on keyhole dynamics and pore formation mechanisms during adjustable-ring-mode laser welding of medium-thick aluminium alloy. Int J Heat Mass Transf. 2023;214:124443. doi: 10.1016/j.ijheatmasstransfer.2023.124443
  • Han C, Jiang P, Geng S, et al. Nucleation mechanism in oscillating laser welds of 2024 aluminium alloy: a combined experimental and numerical study. Optic Laser Technol. 2023;158:108812.
  • Ke W, Bu X, Oliveira JP, et al. Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminium alloy. Optic Laser Technol. 2021;133:106540. doi: 10.1016/j.optlastec.2020.106540
  • Yao M, Kong F, Tong W. A 3D finite element analysis of thermally induced residual stress distribution in stainless steel coatings on a mild steel by laser hot wire cladding. Int J Adv Manuf Technol. 2023;126(1-2):759–776. doi: 10.1007/s00170-023-11155-0
  • Frewin MR, Scott DA. Finite element model of pulsed laser welding. Welding J. 1999;78:15-s.
  • Kong F, Ma J, Kovacevic R. Numerical and experimental study of thermally induced residual stress in the hybrid laser–GMA welding process. J Mater Process Technol. 2011;211(6):1102–1111. doi: 10.1016/j.jmatprotec.2011.01.012
  • Farahmand P, Kovacevic R. An experimental–numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser. Optic Laser Technol. 2014;63:154–168. doi: 10.1016/j.optlastec.2014.04.016
  • Radaj D. Heat effects of welding: temperature field, residual stress, distortion. Berlin Heidelberg: Springer Science & Business Media; 2012.
  • ANSYS M. ANSYS® Academic Research—Mechanical, Release 18.1. Ansys; 2018.
  • Kaufman JG. Properties of aluminum alloys: tensile, creep, and fatigue data at high and low temperatures. Materials Park (OH): ASM International; 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.