153
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quantitative evaluation of keyhole stability during laser welding using optical coherence tomography

, , , &
Pages 225-238 | Received 26 Oct 2023, Accepted 05 Feb 2024, Published online: 26 Feb 2024

References

  • Wang L, Yao M, Gao X, et al. Keyhole stability and surface quality during novel adjustable-ring mode laser (ARM) welding of aluminum alloy. Optics & Laser Technol. 2023;161:109202. doi: 10.1016/j.optlastec.2023.109202
  • Meng W, Li Z, Lu F, et al. Porosity formation mechanism and its prevention in laser lap welding for T- joints. J Mater Process Technol. 2014;214(8):1658–1664. doi: 10.1016/j.jmatprotec.2014.03.011
  • Ai Y, Han S, Lei C, et al. The characteristics extraction of weld seam in the laser welding of dissimilar materials by different image segmentation methods. Optics & Laser Technol. 2023;167:109740. doi: 10.1016/j.optlastec.2023.109740
  • Ai Y, Yan Y, Dong G, et al. Investigation of microstructure evolution process in circular shaped oscillating laser welding of inconel 718 superalloy. Int J Heat Mass Transf. 2023;216:124522. doi: 10.1016/j.ijheatmasstransfer.2023.124522
  • Kim H, Nam K, Oh S, et al. Deep-learning-based real-time monitoring of full-penetration laser keyhole welding by using the synchronized coaxial observation method. J Manuf Processes. 2021;68:1018–1030. doi: 10.1016/j.jmapro.2021.06.029
  • Zhang B, Liu S, Shin YC. In-process monitoring of porosity during laser additive manufacturing process. Addit Manuf. 2019;28:497–505. doi: 10.1016/j.addma.2019.05.030
  • Fleming TG, Rees DT, Marussi S, et al. In situ correlative observation of humping-induced cracking in directed energy deposition of nickel-based superalloys. Addit Manuf. 2023;71:103579. doi: 10.1016/j.addma.2023.103579
  • Fleming TG, Clark SJ, Fan X, et al. Synchrotron validation of inline coherent imaging for tracking laser keyhole depth. Addit Manuf. 2023;77:103798. doi: 10.1016/j.addma.2023.103798
  • Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science. 2019;363(6429):849–852. doi: 10.1126/science.aav4687
  • Huang Y, Fleming TG, Clark SJ, et al. Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing. Nat Commun. 2022;13(1):1170. doi: 10.1038/s41467-022-28694-x
  • Zhao C, Parab ND, Li X, et al. Critical instability at moving keyhole tip generates porosity in laser melting. Science. 2020;370(6520):1080–1086. doi: 10.1126/science.abd1587
  • Matsunawa A, Kim J-D, Seto N, et al. Dynamics of keyhole and molten Pool in laser welding. J Laser Appl. 1998;10(6):247–254. doi: 10.2351/1.521858
  • Nakamura H, Kawahito Y, Nishimoto K, et al. Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium. J Laser Appl. 2015;27(3):032012. doi: 10.2351/1.4922383
  • Leung CLA, Marussi S, Atwood RC, et al. In situ X-ray imaging of defect and molten Pool dynamics in laser additive manufacturing. Nat Commun. 2018;9(1):1355. doi: 10.1038/s41467-018-03734-7
  • Ren Z, Gao L, Clark SJ, et al. Machine learning–aided real-time detection of keyhole pore generation in laser powder bed fusion. Science. 2023;379(6627):89–94. doi: 10.1126/science.add4667
  • Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254(5035):1178–1181. doi: 10.1126/science.1957169
  • Webster PJ, Wright LG, Mortimer KD, et al. Automatic real-time guidance of laser machining with inline coherent imaging. J Laser Appl. 2011;23(2):022001. doi: 10.2351/1.3567955
  • Webster PJ, Joe X, Leung BY, et al. In situ 24 kHz coherent imaging of morphology change in laser percussion drilling. Opt Lett. 2010;35(5):646–648. doi: 10.1364/OL.35.000646
  • Leung BY, Webster PJ, Fraser JM, et al. Real‐time guidance of thermal and ultrashort pulsed laser ablation in hard tissue using inline coherent imaging. Lasers Surg Med. 2012;44(3):249–256. doi: 10.1002/lsm.21162
  • King WE, Barth HD, Castillo VM, et al. Observation of keyhole-mode laser melting in laser powder- bed fusion additive manufacturing. J Mater Process Technol. 2014;214(12):2915–2925. doi: 10.1016/j.jmatprotec.2014.06.005
  • Kanko JA, Sibley AP, Fraser JM. In situ morphology-based defect detection of selective laser melting through inline coherent imaging. J Mater Process Technol. 2016;231:488–500. doi: 10.1016/j.jmatprotec.2015.12.024
  • Bertoli US, Wolfer AJ, Matthews MJ, et al. On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Design. 2017;113:331–340. doi: 10.1016/j.matdes.2016.10.037
  • Boley M, Fetzer F, Weber R, et al. Statistical evaluation method to determine the laser welding depth by optical coherence tomography. Opt Lasers Eng. 2019;119:56–64. doi: 10.1016/j.optlaseng.2019.03.014
  • Boley M, Weber R, Graf T. Online detection of pore formation during laser deep-penetration welding. In: Graf T, Emmelmann C, Overmeyer L, et al., editors. Proceeding of lasers in manufacturing congress (LIM); 2015 Jun 22–25; Munich, Germany. Munich: ICM - Internationales Congress Center München; 2015. p. 75–81. Available from: https://api.semanticscholar.org/CorpusID:195781347
  • Abt F, Weber R, Graf T. Novel high-speed space-resolved x-ray system for in-situ diagnostics of laser based processes. In: Peter B, Kris S, Barbara S, editors. PICALO 2010: 4th Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication; 2010 Mar 23–25; Wuhan, CN; 2010. p. 184–190. doi: 10.2351/1.5062023
  • Stadter C, Schmoeller M, von Rhein L, et al. Real-time prediction of quality characteristics in laser beam welding using optical coherence tomography and machine learning. J Laser Appl. 2020;32(2):022046. doi: 10.2351/7.0000077
  • Will T, Jeron T, Hoelbling C, et al. In-process analysis of melt pool fluctuations with scanning optical coherence tomography for laser welding of copper for quality monitoring. Micromachines (Basel). 2022;13(11):1937. doi: 10.3390/mi13111937
  • Dorsch F, Dubitzky W, Effing L, et al. Capillary depth measurement for process control. In: Kaierle S, Heinemann S, editors. High- Power Laser Materials Processing: Applications, Diagnostics, and Systems VI; 2017 Jan 28–Feb 2; San Francisco, CA. Bellingham (WA): SPIE- International Society for Optics and Photonics; 2017. (Proc. of SPIE Vol. 10097, 1009708). doi: 10.1117/12.2250108
  • Liu S, Ding Y. Wire-based direct metal deposition with Ti6Al4V. In: Gu B, Helvajian H, Chen H, editors. Laser 3D Manufacturing VI; 2019 Feb 5–7; San Francisco, CA. Bellingham (WA): SPIE-International Society for Optics and Photonics; 2019. (Proc. of SPIE Vol. 10909, 109090J). doi: 10.1117/12.2510521
  • Ding Y, Akbari M, Gao X-L, et al. Use of powder-feed metal additive manufacturing system for fabricating metallic metamaterials. Manufacturing techniques for materials: Engineering and engineered. Boca Raton (FL): CRC Press; 2018. p. 51–65. doi: 10.1201/b22313-3
  • Wu Z, Tang G, Clark SJ, et al. High frequency beam oscillation keyhole dynamics in laser melting revealed by in-situ x-ray imaging. Commun Mater. 2023;4(1):5. doi: 10.1038/s43246-023-00332-z
  • Wei M, Ding WJ, Vastola G, et al. Quantitative study on the dynamics of melt Pool and keyhole and their controlling factors in metal laser melting. Addit Manuf. 2022;54:102779. doi: 10.1016/j.addma.2022.102779
  • Miyagi M, Wang J. Keyhole dynamics and morphology visualized by in-situ X-ray imaging in laser melting of austenitic stainless steel. J Mater Process Technol. 2020;282:116673. doi: 10.1016/j.jmatprotec.2020.116673
  • Ye J, Khairallah SA, Rubenchik AM, et al. Energy coupling mechanisms and scaling behavior associated with laser powder bed fusion additive manufacturing. Adv Eng Mater. 2019;21(7):1900185. doi: 10.1002/adem.201900185
  • Drexler W, Fujimoto JG. Optical coherence tomography: technology and applications. New York (NY): Springer; 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.