35
Views
0
CrossRef citations to date
0
Altmetric
Reviews

A critical overview on fracture mechanical characterization on marine grade structural materials and its welds

, , &
Pages 335-346 | Received 16 Feb 2024, Accepted 28 Mar 2024, Published online: 16 Apr 2024

References

  • Lou B, Zhang S, Tong J, et al. A fracture mechanics based approach for the analysis of crack growth at weld joints of ship structures. Analysis and design of marine structures. London (UK): Taylor & Francis Group; 2015. ISBN: 9780429226205. doi: 10.1201/b18179
  • Griffith AA. The phenomenon of rupture and flow in solids. Phil Trans R Soc A. 1920;221:163–198. doi: 10.1098/rsta.1921.0006
  • Irwin GR. Fracture dynamics, fracturing of metals. Cleveland: American Society for Metals; 1948. p. 147–166.
  • Irwin GR. Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech. 1957;24:361–364. doi: 10.1115/1.4011547
  • Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech. 1968;35:379–386. doi: 10.1115/1.3601206
  • Franco-Urquiza EA. Clay-based polymer nanocomposites: essential work of fracture. Polymers. 2021;13(15):2399. doi: 10.3390/polym13152399
  • Khoei AR. Extended finite element method: theory and applications. John Wiley & Sons; 2014. doi: 10.1002/9781118869673
  • ASTM E1820-08. Standard test method for measurement of fracture toughness. West Conshohocken (PA): ASTM International; 2008. doi: 10.1520/E1820-08
  • Sharma P, Dwivedi DK. Comparative study of activated flux-GTAW and multipass-GTAW dissimilar P92 steel-304H ASS joints. Mater Manuf Process. 2019;34(11):1195–1204. doi: 10.1080/10426914.2019.1605175
  • Arivazhagan B, Vasudevan M. Studies on A-TIG welding of 2.25 Cr–1Mo (P22) steel. J Manuf Process. 2015;18:55–59. doi: 10.1016/j.jmapro.2014.12.003
  • Vysakh KB, Mathiazhagan A, Krishna Prasad S. A systematic overview on activated-tungsten inert gas welding. Weld Int. 2022;36(10):597–615. doi: 10.1080/09507116.2022.2138795
  • Dagur AH, Kartha AA, Subodh MA, et al. Microstructure, mechanical properties and biocorrosion behavior of dissimilar welds of AISI 904L and UNS S32750. J Manuf Process. 2017;30:27–40. doi: 10.1016/j.jmapro.2017.09.001
  • Amer AE, Koo MY, Lee KH, et al. Effect of welding heat input on microstructure and mechanical properties of simulated HAZ in Cu containing microalloyed steel. J Mater Sci. 2010;45(5):1248–1254. doi: 10.1007/s10853-009-4074-7
  • Ureña A, Otero E, Utrilla MV, et al. Weldability of a 2205 duplex stainless steel using plasma arc welding. J Mater Process Technol. 2007;182(1–3):624–631. doi: 10.1016/j.jmatprotec.2006.08.030
  • Zengliang G, Kangda Z. Comparison of the fracture and fatigue properties of 16MnR steel weld metal, the HAZ and the base metal. J Mater Process Technol. 1997;63(1–3):559–562. doi: 10.1016/S0924-0136(96)02683-0
  • Muda WSHW, Nasir NSM, Mamat S, et al. Effect of welding heat input on microstructure and mechanical properties at coarse grain heat affected zone of ABS grade a steel. ARPN J Eng Appl Sci. 2015;10(20):9487–9495.
  • Juan W, Yajiang L, Peng L. Effect of weld heat input on toughness and structure of HAZ of a new super-high strength steel. Bull Mater Sci. 2003;26(3):301–305. doi: 10.1007/BF02707450
  • Yang X, Di X, Liu X, et al. Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels. Mater Charact. 2019;155:109818. doi: 10.1016/j.matchar.2019.109818
  • Arora H, Singh R, Brar GS. Thermal and structural modelling of arc welding processes: a literature review. Meas Control. 2019;52(7–8):955–969. doi: 10.1177/0020294019857747
  • Ainsworth RA, Sharples JK, Smith SD. Effects of residual stresses on fracture behaviour—experimental results and assessment methods. J Strain Anal Eng Des. 2000;35(4):307–316. doi: 10.1243/0309324001514431
  • Panontin TL, Hill MR. The effect of residual stresses on brittle and ductile fracture initiation predicted by micromechanical models. Int J Fract. 1996;82(4):317–333. doi: 10.1007/BF00013236
  • An G, Woo W, Park J. Welding residual stress effect in fracture toughness. J Nanosci Nanotechnol. 2019;19(4):2323–2328. doi: 10.1166/jnn.2019.16008
  • Armstrong RW. Material grain size and crack size influences on cleavage fracturing. Phil Trans R Soc A. 2015;373(2038):20140124. doi: 10.1098/rsta.2014.0124
  • Anderson TL. Fracture mechanics: fundamentals and applications. Boca Raton: CRC Press; 2017. doi: 10.1201/9781315370293
  • Raj R, Ashby MF. Intergranular fracture at elevated temperature. Acta Metall. 1975;23(6):653–666. doi: 10.1016/0001-6160(75)90047-4
  • Becker WT, Shipley RJ, Lampman SR, et al. ASM handbook. Fail Anal Prev. ASM International. 2002;11:107.
  • Liu S, Liu D, Liu S. Transgranular fracture in low temperature brittle fracture of high nitrogen austenitic steel. J Mater Sci. 2007;42(17):7514–7519. doi: 10.1007/s10853-007-1614-x
  • González-Velázquez J. Fracture. In: Mechanical Behavior and Fracture of Engineering Materials. Structural Integrity. Vol. 12. Cham: Springer; 2020. doi: 10.1007/978-3-030-29241-6_6
  • Das A, Das SK, Sivaprasad S, et al. Analysis of damage accumulations in high strength low alloy steels under monotonic deformation. Proc Eng. 2013;55:786–792. doi: 10.1016/j.proeng.2013.03.332
  • Souza GFMD, Ayyub BM. Probabilistic fatigue life prediction for ship structures using fracture mechanics. Nav Eng J. 2000;112(4):375–397. doi: 10.1111/j.1559-3584.2000.tb03344.x
  • Roue ST, Barsom JM. Fracture & fatigue control in structures: applications of fracture mechanics. New York (NY): Prentice-Hall Inc.; 1987. doi: 10.1520/MNL41-3RD-EB
  • Filin VY, Ilyin AV. On the fracture mechanics based development of cleavage fracture resistance criteria for the materials of large-size welded structures. Proc Struct Integr. 2019;14:758–773. doi: 10.1016/j.prostr.2019.07.054
  • Shankar K, Wu W. Effect of welding and weld repair on crack propagation behaviour in aluminium alloy 5083 plates. Mater Des. 2002;23(2):201–208. doi: 10.1016/S0261-3069(01)00059-0
  • Murthy AR, Kumaran MM, Saravanan M, et al. Effect of dissimilar metal SENB specimen width and crack length on stress intensity factor. Nucl Eng Technol. 2020;52(7):1579–1586. doi: 10.1016/j.net.2019.12.018
  • Nykänen T, Li X, Björk T, et al. A parametric fracture mechanics study of welded joints with toe cracks and lack of penetration. Eng Fract Mech. 2005;72(10):1580–1609. doi: 10.1016/j.engfracmech.2004.11.004
  • Sun L, Huang X. Fatigue crack propagation in thin balcony opening corners in a cruise ship accounting for warping deformation. Eng Fract Mech. 2022;271:108660. doi: 10.1016/j.engfracmech.2022.108660
  • Paris P, Erdogan F. A critical analysis of crack propagation laws. J Basic Eng. 1963;85:528–533. doi: 10.1115/1.3656900
  • Li L, Yang YH, Xu Z, et al. Fatigue crack growth law of API X80 pipeline steel under various stress ratios based on J-integral. Fatigue Fract Eng Mat Struct. 2014;37(10):1124–1135. doi: 10.1111/ffe.12193
  • Moon DH, Kim DG, Lee JS, et al. Estimation of constraint factor on the relationship between J integral and CTOD for offshore structural steel weldments. J Offshore Mech Arct Eng. 2015 Dec 1;137(6):064001. doi: 10.1115/1.4031668
  • Zhu XK, Joyce JA. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng Fract Mech. 2012;85:1–46. doi: 10.1016/j.engfracmech.2012.02.001
  • Cravero S, Ruggieri C. Estimation procedure of J-resistance curves for SE (T) fracture specimens using unloading compliance. Eng Fract Mech. 2007;74(17):2735–2757. doi: 10.1016/j.engfracmech.2007.01.012
  • Zhu XK, Joyce JA. J-resistance curve testing of HY80 steel using SE (B) specimens and normalization method. Eng Fract Mech. 2007;74(14):2263–2281. doi: 10.1016/j.engfracmech.2006.10.018
  • Wang HT, Wang GZ, Xuan FZ, et al. Fracture mechanism of a dissimilar metal welded joint in nuclear power plant. Eng Fail Anal. 2013;28:134–148. doi: 10.1016/j.engfailanal.2012.10.005
  • Wang HT, Wang GZ, Xuan FZ, et al. Numerical investigation of ductile crack growth behaviour in a dissimilar metal welded joint. Nucl Eng Des. 2011;241(8):3234–3243. doi: 10.1016/j.nucengdes.2011.05.010
  • Wang H, Woo W, Lee SY, et al. Correlation of localized residual stresses with ductile fracture toughness using in situ neutron diffraction and finite element modelling. Int J Mech Sci. 2019;160:332–342. doi: 10.1016/j.ijmecsci.2019.06.013
  • Lee JH, Jang BS, Kim HJ, et al. The effect of weld residual stress on fracture toughness at the intersection of two welding lines of offshore tubular structure. Mar Struct. 2020;71:102708. doi: 10.1016/j.marstruc.2020.102708
  • Duan C, Zhang S. Prediction of fully plastic J-integral for weld centre line surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network. Int J Nav Archit Ocean Eng. 2020;12:354–366. doi: 10.1016/j.ijnaoe.2020.03.008
  • Božić Ž, Schmauder S, Mlikota M. Fatigue growth models for multiple long cracks in plates under cyclic tension based on ΔKI, ΔJ-integral and ΔCTOD parameter. Key engineering materials. Vol. 488. Trans Tech Publications Ltd.; 2012. p. 525–528. doi: 10.4028/www.scientific.net/KEM.488-489.525
  • Yu Q, Wu W, Gan J. CTOD fracture toughness tests and numerical simulation for welded joints of Q370qE. In: International Conference on Offshore Mechanics and Arctic Engineering; 2009 May 31–June 5; Honolulu, Hawaii, USA. Vol. 43468. ASME; 2009. p. 187–192. doi: 10.1115/OMAE2009-79858
  • Gadallah R, Tsutsumi S, Tanaka S, et al. Accurate evaluation of fracture parameters for a surface-cracked tubular T-joint taking welding residual stress into account. Mar Struct. 2020;71:102733. doi: 10.1016/j.marstruc.2020.102733
  • Yuen BKC, Taheri F, Gharghouri M. Fatigue life prediction of welded stiffened 350WT steel plates. Mar Struct. 2006;19(4):241–270. doi: 10.1016/j.marstruc.2007.02.002
  • Bayley C, Aucoin N. Fracture testing of welded single edge notch tensile specimens. Eng Fract Mech. 2013;102:257–270. doi: 10.1016/j.engfracmech.2013.02.020
  • Tanaka S, Kawahara T, Okada H. Study on crack propagation simulation of surface crack in welded joint structure. Mar Struct. 2014;39:315–334. doi: 10.1016/j.marstruc.2014.08.001
  • Cerik BC, Lee K, Park SJ, et al. Simulation of ship collision and grounding damage using Hosford–Coulomb fracture model for shell elements. Ocean Eng. 2019;173:415–432. doi: 10.1016/j.oceaneng.2019.01.004
  • Pack K, Tancogne-Dejean T, Gorji MB, et al. Hosford–Coulomb ductile failure model for shell elements: experimental identification and validation for DP980 steel and aluminum 6016-T4. Int J Solids Struct. 2018;151:214–232. doi: 10.1016/j.ijsolstr.2018.08.006
  • Bai Y, Wierzbicki T. Application of extended Mohr–Coulomb criterion to ductile fracture. Int J Fract. 2010;161(1):1–20. doi: 10.1007/s10704-009-9422-8
  • Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech. 1985;21(1):31–48. doi: 10.1016/0013-7944(85)90052-9
  • Cockcroft MG. Ductility and workability of metals. J Metals. 1968;96:2444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.