35
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Experimentally validated numerical prediction of laser welding induced distortions of Al alloy parts for railcar body by inherent strain method combined with thermo-elastic-plastic FE model

, , , &
Received 21 Sep 2023, Accepted 06 May 2024, Published online: 07 Jun 2024

References

  • Sun X, Han X, Dong C, et al. Applications of aluminium alloys in rail transportation. In: Dobrzanski LA, editor. Advanced Aluminium Composites and alloys. London (UK): IntechOpen; 2021.
  • Katayama S. Fundamentals and details of laser welding. Berlin (Germen): Springer Science & Business Media; 2020.
  • Katayama S. Handbook of laser welding technologies. Sawston Cambrige (UK): Woodhead Publishing; 2013.
  • Ueda Y, Murakawa H, Ma N. Welding deformation and residual stress prevention. New York: Elsevier; 2012.
  • Zhao H, White D, Debroy T. Current issues and problems in laser welding of automotive aluminium alloys. Int Mater Rev. 1999;44(6):238–266. doi: 10.1179/095066099101528298
  • Deng A, Chen H, Zhang Y, et al. Effect of filler materials on the porosity formation of aluminium alloy by laser welding with filler wire. Opt Laser Technol. 2023;159:109000. doi: 10.1016/j.optlastec.2022.109000
  • Matsunawa A, Mizutani M, Katayama S, et al. Porosity formation mechanism and its prevention in laser welding. Weld Int. 2003;17:431–437. doi: 10.1533/wint.2003.3138
  • Kawaguchi I, Tsukamoto S, Arakane G, et al. Characteristics of high-power CO2 laser welding and porosity suppression mechanism with nitrogen shielding. Study of high-power laser welding phenomena. Weld Int. 2006;20(2):100–105. doi: 10.1533/wint.2006.3541
  • Ma D, Jiang P, Shu L, et al. Real-time porosity monitoring during laser welding of aluminum alloys based on keyhole 3D morphology characteristics. J Manuf Syst. 2022;65:70–87. doi: 10.1016/j.jmsy.2022.08.011
  • Zhu B, Zhang G, Zou J, et al. Melt flow regularity and hump formation process during laser deep penetration welding. Opt Laser Technol. 2021;139:106950. doi: 10.1016/j.optlastec.2021.106950
  • Nisar S, Noor A, Shah A, et al. Optimization of process parameters for laser welding of A5083 aluminium alloy. Opt Laser Technol. 2023;163:109435. doi: 10.1016/j.optlastec.2023.109435
  • Chuang T, Lo Y, Tran H, et al. Optimization of butt-join laser welding parameters for elimination of angular distortion using high-fidelity simulation and machine learning. Opt Laser Technol. 2023;167:109566. doi: 10.1016/j.optlastec.2023.109566
  • Wan Z, Wang H, Li J, et al. Effect of beam oscillation frequency on spattering in remote laser stitch welding of thin-gage zinc-coated steel with keyhole penetration. J Mater Process Technol. 2022;302:117482. doi: 10.1016/j.jmatprotec.2021.117482
  • He Y, Xiong J, Li Y, et al. Process parameter selection for laser welding of aluminium alloy from the perspective of energy effectiveness. Proc Inst Mech Eng B J Eng Manuf. 2022;236(12):1574–1588. doi: 10.1177/095440542210780
  • Ramiarison H, Barka N, Amira S. Optimization of parameters in laser welding of aluminum alloy 5052-H32 using beam oscillation technique for mechanical performance improvement. Int J Lightweight Mater Manuf. 2002;5:470–483. doi: 10.1016/j.ijlmm.2022.05.006
  • Aminzadeh A, Barka N, Ouafi AE, et al. Experimental analysis of overlap fiber laser welding for aluminum alloys: porosity recognition and quality inspection. Opt Lasers Eng. 2024;173:107890. doi: 10.1016/j.optlaseng.2023.107890
  • Radaj D. Heat effects of welding, temperature field, residual stress, distortion. Berlin, Heidelberg: Springer; 2012.
  • Barat K, Kumar CN, Patil G, et al. Defectometry, distortion analysis and metallurgical properties in the keyhole and conduction mode of laser beam welding of Al–Mg–Sc alloy butt joints. Opt Laser Technol. 2023;162:109248. doi: 10.1016/j.optlastec.2023.109248
  • Hashemzadeh M, Garbatov Y, Soares CG. Hybrid-laser welding-induced distortions and residual stress analysis of large-scale stiffener panel. Ocean Eng. 2022;245:110411. doi: 10.1016/j.oceaneng.2021.110411
  • Kong F, Kovacevic R. 3D finite element modeling of the thermally induced residual stress in the hybrid laser/arc welding of lap joint. J Mater Process Technol. 2010;210(6–7):941–950. [Database] doi: 10.1016/j.jmatprotec.2010.02.006
  • Kong F, Lavoie JP, Kleine K, et al. Computational modelling and experimental validations of the heat transfer and residual stresses in the aluminium 6061-T6 plate welded by an adjustable ring mode (ARM) laser. J Light Met Weld. 2020;58:19–25. doi: 10.11283/jlwa.58.19
  • Derakhshan ED, Yazdian N, Craft B, et al. Numerical simulation and experimental validation of residual stress and welding distortion induced by laser-based welding processes of thin structural steel plates in butt joint configuration. Opt Laser Technol. 2018;104:170–182. doi: 10.1016/j.optlastec.2018.02.026
  • Li Y, Wang Y, Yin X, et al. Laser welding simulation of large-scale assembly module of stainless-steel side wall. Heliyon. 2023;9(3):e13835. doi: 10.1016/j.heliyon.2023.e13835
  • Zhang S, Ma J, Wang Z, et al. Research on welding deformation of hollow thin-walled complex structural parts based on plane bending theory of constant section beam. J Manuf Process. 2023;95:330–341. doi: 10.1016/j.jmapro.2023.03.079
  • Zhou H, Yi B, Shen C, et al. Mitigation of welding induced buckling with transient thermal tension and its application for accurate fabrication of offshore cabin structure. Mar Struct. 2022;81:103104. doi: 10.1016/j.marstruc.2021.103104
  • Dai P, Mi D, Guo B, et al. Bending deformation control in a laser welded long straight structure by elastic pre-bending technique. J Manuf Process. 2023;107:485–495. doi: 10.1016/j.jmapro.2023.10.062
  • Guo Y, Wu D, Ma G, et al. Trailing heat sink effects on residual stress and distortion of pulsed laser welded hastelloy C-276 thin sheets. J Mater Process Technol. 2014;214(12):2891–2899. [Database] doi: 10.1016/j.jmatprotec.2014.06.012
  • Wu C, Wang C, Kim JW. Welding sequence optimization to reduce welding distortion based on coupled artificial neural network and swarm intelligence algorithm. Eng Appl Artif Intell. 2022;114:105142. doi: 10.1016/j.engappai.2022.105142
  • Liang W, Deng D. Investigating influence of external restraint on welding distortion in LAHS steel thin-plate structures by means of integrated computational approach. J Mater Res Technol. 2022;20:2960–2976. doi: 10.1016/j.jmrt.2022.08.048
  • Huang H, Chen J, Feng Z, et al. Large-scale welding process simulation by GPU parallelized computing. Weld J. 2021;100(11):359–370. doi: 10.29391/2022.101.032
  • Dong W, Jimenez XA, To AC. Temperature-dependent modified inherent strain method for predicting residual stress and distortion of Ti6Al4V walls manufactured by wire-arc directed energy deposition. Addit Manuf. 2023;62:103386. doi: 10.1016/j.addma.2022.103386
  • Wang J, Lu H, Wei L. Prediction of welding distortions based on theory of inherent strain by FEM and its application. Trans China Weld Inst. 2002;23(6):36–40. doi: 10.3321/j.issn:0253-360X.2002.06.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.